Scholars Journal of Engineering and Technology (SJET)
 Sch. J. Eng. Tech., 2014; 2(6A):784-785

Short Communication

Some Indices for Hexagonal Triangle Graph
 Wei Gao

School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China

*Corresponding author

Wei Gao
Email: gaowei@ynnu.edu.cn

Abstract

In this short communication, we determine the vertex PI index, second atom bond connectivity index and revised Szeged index for hexagonal triangle graph.

Keywords: vertex PI index, second atom bond connectivity index, revised Szeged index, Hexagonal Triangle Graph

INTRODUCTION

Wiener index, PI index, Szeged index and atom bond connectivity index are applied to reflect certain structural features of organic molecules Yan et al., [1] and [2], Gao and Shi [3] for more details).Let $e=u v$ be an edge of the molecular graph G. The number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v is denoted by $n_{u}(e)$. Analogously, $n_{v}(e)$ is the number of vertices of G whose distance to the vertex v is smaller than the distance to the vertex u. The vertex PI index of G is defined as
$P I_{v}(G)=\sum_{e=u v}\left[n_{u}(e)+n_{v}(e)\right]$.

Let $n(e)$ be the number of vertices equidistant from both ends of $u v \in E(G)$, and m be the edge number of molecular graph G. The revised Szeged index $S z^{*}(G)$ and normalized revised Szeged index $S z s^{*}(G)$ are defined as
$S z^{*}(G)=\sum_{e=u v}\left(n_{u}(e)+\frac{n(e)}{2}\right)\left(n_{v}(e)+\frac{n(e)}{2}\right)$,
$S z s^{*}(G)=\sqrt{\frac{S z^{*}(G)}{m}}$.
The second atom bond connectivity index is denoted by
$A B C_{2}(G)=\sum_{u v \in E(G)} \sqrt{\frac{n_{u}(e)+n_{v}(e)-2}{n_{u}(e) n_{v}(e)}}$.
In our short communication, we present the vertex PI index, second atom bond connectivity index and revised Szeged index for Hexagonal triangle graph $T(n)$, containing j hexagons in the j th row, $1 \leq j \leq n$.

INDICES FOR HEXAGONAL TRIANGLE GRAPH

To determine the vertex PI index and second atom bond connectivity index of this molecular graph, we note that the graph $T(n)$ has an equilateral figure and so $|E(G)|=\frac{3}{2}\left(n^{2}+3 n\right)$ and $|V(G)|=n^{2}+4 n+1$. Consider a vertical edge $e=u v$ of the j th row of the graph $T(n)$. We note that this row has exactly $j+1$ vertical edges and so $S_{j}=n_{u}(e)=j^{2}+2 j$ and $T_{j}=n_{v}(e)=n^{2}+4 n+1-j^{2}-2 j$. Therefore,

$$
P I_{v}(T(n))=3 \sum_{1 \leq i \leq n}\left[n_{u}(e)+n_{v}(e)\right]=3 \sum_{1 \leq i \leq n}(1+i)\left[S_{i}+T_{i}\right]
$$

$$
\begin{gathered}
=3 \sum_{1 \leq i \leq n}(1+i)\left(n^{2}+4 n+1\right)=3\left(n^{2}+4 n+1\right)\left(\frac{n^{2}}{2}+\frac{3 n}{2}\right) . \\
A B C_{2}(T(n))=3 \sum_{1 \leq i \leq n} \sqrt{\frac{n_{u}(e)+n_{v}(e)-2}{n_{u}(e) n_{v}(e)}}=3 \sum_{1 \leq i \leq n} \sqrt{(1+i) \frac{S_{i}+T_{i}-2}{S_{i} T_{i}}} \\
=3 \sum_{1 \leq i \leq n} \sqrt{(1+i) \frac{n^{2}+4 n-1}{\left(j^{2}+2 j\right)\left(n^{2}+4 n+1-j^{2}-2 j\right)}} . \\
=3 z^{*}(T(n))=3 \sum_{1 \leq i \leq n}\left(n_{u}(e)+\frac{n(e)}{2}\right)\left(n_{v}(e)+\frac{n(e)}{2}\right)=3 \sum_{1 \leq i \leq n}(1+i)\left(S_{i}+\frac{n(e)}{2}\right)\left(T_{i}+\frac{n(e)}{2}\right) \\
=\frac{n^{n^{2}+1}+12 n^{5}+49 n^{4}+84 n^{3}+58 n^{2}+12 n}{4} . \\
S z s^{*}(T(n))=\sqrt{\frac{S z^{*}(T(n))}{|E(T(n))|}}=\sqrt{\frac{n^{6}+12 n^{5}+49 n^{4}+84 n^{3}+58 n^{2}+12 n}{6\left(n^{2}+3 n\right)}} .
\end{gathered}
$$

ACKNOWLEDGEMENTS

We thank the reviewers for their constructive comments in improving the quality of this paper. This work was supported in part by NSFC (No.11401519).

REFERENCES

1. Yan L, Li Y, Gao W, Li J; On the external hyper-wiener index of graphs, Journal of Chemical and Pharmaceutical Research, 2014; 6(3):477-481.
2. Yan L, Li Y, Gao W, Li J; PI index for some special graphs, Journal of Chemical and Pharmaceutical Research, 2013; 5(11):260-264.
3. Gao W, Shi L; Wiener index of gear fan graph and gear wheel graph, Asian Journal of Chemistry, 2014; 26(11): 3397-3400.
