Scholars Journal of Engineering and Technology (SJET)

Sch. J. Eng. Tech., 2014; 2(6A):812-816 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

ISSN 2321-435X (Online) ISSN 2347-9523 (Print)

Research Article

Design of a Manual Table-Top Grinder (MaTToG)

¹Abdulmalik, Ibrahim O., ²Amonye, Michael C., ¹Akonyi, Nasiru Sule*, ³Mgbemena, Chinedum Ogonna, ³Aaron-Orsu, Chidiebere Jude, ¹Ambali, Abdulfatai O.

¹Hydraulic Equipment Development Institute, Kano, Nigeria. ²National Board for Technology Incubation ³ Abuja. Nigeria ³National Engineering Design Development Institute, Nnewi, Nigeria.

*Corresponding author

Akonyi , Nasiru Sule Email: akonyi01@yahoo.com

Abstract: The Manual Table-Top Grinder (MaTToG) described in this paper is designed with a set of bevel gears intersecting at right angles with a velocity ratio of 5:1. This is to ease the drudgery encountered when using the existing manual screw grinder. It has advantages over the existing Manual Screw Grinder and the Electric Blender. The MaTToG is designed so that the power output is five times the power input while it is being cranked manually. The specifications on the design and drawings conform to approve international standards. This design can be used to grind fruits, seeds, vegetables, nuts, cooked meats or cooked fish etc.

Keywords: Bevel-gear, Velocity ratio, Output, Table-top, Screw grinder.

INTRODUCTION

The need for grinding/blending of food substances such as seeds, fruits etc. in their dry or fresh state necessitated this design. The ease of grinding these substances although in a small scale has become almost a daily affair to many household[1]. This need has been met by the invention of the Manual Screw Grinder and the Electric Blender. However, these inventions have their shortcomings. The shortcomings of the Manual Screw Grinder is quite low since it requires much power input to function, while the Electric Blender has not been optimally put into use because of the erratic power supply in Nigeria. The efficiency of the Manual Screw Grinder as well as electricity requirement which is epileptic has been identified as disadvantage to the use of the earlier inventions especially in rural areas in Nigeria. Therefore, the *MaTToG* described in this paper tried to overcome those shortcomings and can be used in rural as well as urban areas without electricity[2-4].

The existing models and types of grinding machines which this work tries to modify are as follows.

1. Manual Screw Grinder: This makes use of a screw shaft to convey food substances to be ground to two meshing cutting surfaces where they are ground. This is for grinding fruits, vegetables, nuts, cooked meats or cooked fish. It is made of Cast-Iron construction with a clamping device.

- 2. Manual Blade Bolt-Down Meat Grinder: This is (Weston Tinned Bolt-down Manual Meat Grinder) made of stuffing funnels, stuffing star, flange, two carbon-steel grinder plates, a carbon-steel cutting knife, nylon bearings, wood-grip handle and hopper opening. It is bolted to work surface for permanent and steady use.
- 3. Electric Blender / Grinder: This is made of a plastic or stainless steel container, blades and an electrically powered motor. It combines attractive, streamlined form with a functional product and meets standards for industrial design that were current for its time. It is used for grinding dry and fresh fruits, seeds, vegetables and roots; more so it can be used for blending mixtures. The Multipress Electric Blender is safe, efficient, and easy to use.
- 4. The manual table top grinder (MaTToG): The MaTToG described here is modification to the existing models mentioned above. The major components are as follows.
 - i. A Miter gear: This is a set of bevel gears intersecting at right angles. It has a velocity ratio of 5:1. This will give n^{th} teeth for the driver gear as the driven gear assumes $(n/5)^{th}$ teeth. This implies that the output velocity will be five times the input velocity. This will be made of mild steel.
 - ii. *The Shafts for the Gears:* One shaft will extend from the driver gear to form the

handle for the operator. This handle will be gripped by plastic. The other shaft will extend into a hopper where the cutting blades will be attached. The shafts which will be made of *food grade stainless steel* will respectively pass through a bearing to aid the rotation. The entire compartment will be properly sealed to prevent leakage.

- iii. *The Base:* This will be casted with Cast Iron. It will have comparatively much weight so that there will be no need for clamping. The base will also serve as the gear room.
- iv. *Transparent Hopper:* This will be made of a calibrated transparent plastic container. It will be detachable so that the food substance that has been ground can be turned out. However, for mass production, a permanent mold will be made for it.
- v. *Cutting Blade:* This will be made of *food grade* stainless steel. It has to conform to WHO and NAFDAC regulations on food standards.

DESIGN PARTS

The design parts for the device include, The bevel gears, The Hopper for mass production, The Base, The Shafts and Handle, The Cutting Blade and the design for casting of the base.

A. Design considerations

Human factor consideration:

Human factor considered in this design include (a) **Psychological factor** and (b) **Biomechanics.**

(a). The *Psychological factor* involves the control of the consciousness attached to the precision nature of the design. This psychological factor or control involves the sequential movement of several relatively separate, independent movements in sequence.

(b). The *Biomechanics* of human, deals with the various aspects of physical movement of the hand and body member. This will not be treated here in detail. The abilities for people to perform various types of rotary motions depend essentially on the nervous system, and the metabolic process.

Design speeds:

The speed of this device especially the input speed is considered for human factor. A convenient average revolutions and personal operation of the existing type at various places visited before the design was conceptualized was used for this work.

Human physiological controls involve the type of movement. The types of movement that will be encountered in the present design are as follows: *Continuous movements:* - Involves movement of the arms continuously during cranking of the input handle.

Manipulative movement: - Involves holding the hopper (or work holding) properly in position to avoid displacement of the base. It is a control mechanism.

Repetitive movement: - This is the repetition of the same movement as will be with the control of the input cranking handle. It involves the pronate type of hand posture.

Sequential movement: - Involves movement encountered while holding the input clamp handle and at the same time (simultaneously), the hopper (or work holding).

Energy lost in all of the above movements is related to the amount of work done.

As part of the design considerations, the cranking handle has the following design specifications:

For an Assumed load of 200N:

L = 95mm preferred, L = Arm movement

D = 25mm, D = diameter of grip

R = 190mm or 200mm for RPM lower than 100, R = turning radius

Fig. 1: Design recommendation for crank handle.

Power requirement In the diagram above, a force P acts on the axis of the shaft at point C, a distance R. The turning moment transmitted by the shaft is T = Pr (i)

From the assumptions of Sanders & McCormick, that a grown up man of average power 0.05kW can conveniently apply a hand force of 210N at a speed of 40rpm at a distance of 0.20m from the axes of the shaft and tangential to the shaft.

i.e. $T = 210 \times 0.20 = 42$ Nm.

The Power required to turn the handle based on the maximum applicable load is given as

$$P = \frac{2 \pi NT}{60},$$
 (ii)

Where N=speed of rotation, T=Torque on the shaft, Nm and P=Power required, kW

Operation and maintainability: - The device is easy to operate and maintain.

Therefore, P= 2 x π x 40 x 42/60= 176W =0.176kW

Fig- 2: Bevel gearing

			814
Module, $M = \frac{Dg}{Tg}$	(4)	$W_{RHP} = W_{RVG} \text{ and } W_{RVP} = W_{RHG}$	(17)
$\theta_p = \tan^{-1} \left(\frac{r}{T_g} \right)$	(3)	Note: negative shows that the gear is re	otating in
$ \Theta_{\rm G} = \tan^{-1}(\frac{r_g}{r_p}) $	(2)	Bending moment due to W_{RH} and $W_{RV}M_1$ $M_1 = W_{RV} X$ overhang $- W_{RH} X R_M$	(16)
Pitch Angle θ			
Y I		$W_{RV} = W_T \tan \theta \cos \theta_G$	(15)
$D_{\rm p}$ is diameter of pinion.		Radial force on the shaft,	
D_{α} is diameter of gear and		$W_{RH} = W_T tand S m G_G$	(14)
Where		Axial force on the shaft, $W_{-n} = W_{-} \tan \theta \sin \theta$	(14)
Velocity Ratio , $VR = \frac{velocity \ of \ pinion}{velocity \ of \ gear} = \frac{N_g}{N_P} = \frac{D_g}{D_P}$	(1)	Tangential force on R_m , $W_T = \frac{T}{R_m}$	(13)
Relevant equations for the design		Mean radius of the gear, $R_m = (L - \frac{b}{2})\frac{D_h}{2L}$	(12)
Assuming an overhang of 50mm (pir	nion)	Length of the pinion cone , L =31.62M	(11)
Assuming an overhang of 100mm (g Angular Velocity, $N = 350$ rpm	ear)	Torque , $T = \frac{60P}{2\pi Ng}$	(10)
output power of 750W. Angular velocity, N _g of 70 rpm		Tooth thickness = 1.5708M	(9)
T_{g} is number of teeth of pinion.	150W and	Working depth = 2M	(8)
Where T is number of teath of gear and		Clearance = 0.2M	(7)
$T_{g}=100, T_{P}=20$		Dedendum , $d = 1.2M$	(6)
Velocity ratio needed = $5:1$		Addendum, $a = 1M$	(5)
Pressure angle, $\theta = 20^{\circ}$		Parts of the gear system	
Assumptions for the design analysis.			

Bending moment due to W _T ,	
$M_2 = W_T X$ overhang	(18)

Resultant bending moment, $M = \sqrt{M_1^2 + M_2^2}$ (19)

Equivalent twisting moment $T_e = \sqrt{M^2 + T^2}$ (20)

Determination of	f diameter of the shafts,	
For gear, $D_G = \frac{3}{\sqrt{3}}$	$\frac{16T_e}{\pi E}$	(21)

(Where E = 45 N/mm² is the elasticity modulus for mild steel).

Shaft design for pinion **Power Output** = 750N

Torque, $T = \frac{60P}{2\pi N_P}$ (22)Length of the pitch cone, L

Mean radius of the pinion,					
R _m =	$= (L - \frac{b}{2}) \frac{Dp}{2L}$				(23)
-		-		Т	(a ()

Tangential Force on R_M , $W_T = \frac{I}{R_m}$ (24)

Axial Force on the Shaft $W_{RHP} = -W_{RHG}$ (25)

(26)

Radial Force on the Shaft, $W_{RVP} = - W_{RHG}$

Bending Moment Due to W_{RH} and $W_{RV},\,M_1$

 $M_1 = W_{RV} \; X \; overhang - W_{RH} \; \; X \; R_M$ (27)Bending Moment due to W_T , $M_2 = W_T X$ overhang (28)

Resultant Bending Moment, $M = \sqrt{M_1^2 + M_2^2}$ (29)

Equivalent Twisting Moment, $Te = \sqrt{T^2 + M^2}$ (30)

Diameter of the Shaft,
$$D_p = \sqrt[3]{\frac{16Te}{\pi E}}$$
 (31)

Table -1: Analysis of desi	gn calculations.	
COMPONENT	VALUES	
Pitch Angle θ	11.31°	
Module, M	1.5mm	
Addendum, a	1.5000mm	
Dedendum, d	1.8000mm	
Clearance	0.3000mm	
Working depth	3 000mm	
Tooth thickness	2.3562mm	
Determination of		
diameter of shaft (Gear)		
Torque	16363.63Nm	
Length of the pinion cone	47.43mm	
Mean radius of the gear	65.62mm	
Tangential force on R _m	249.3696N	
Axial force on the shaft	89.00N	
Radial force on the shaft	17.80N	
Bending moment due to W_{RH} and W_{RV}	- 4060.18Nmm*	
Bending moment due to W_T	24936.96Nmm	
Resultant bending moment	25265.33Nmm	
Equivalent twisting	26054.42Nmm	
Diameter of the shaft	14.34mm say 15mm	
Determination of		
diameter of the shaft		
	16262 6Nmm	
Longth of the nitch cone	10303.0INIIII	
Length of the pitch cone	47.43mm	
pinion	13.124/9mm	
Tangential Force on R _m	1246.77N	
Axial Force on the Shaft W_{RH}	-17.80N*	
Radial Force on the Shaft	- 89.00N*	
Bending Moment Due to Way and Way	4450Nmm	
Bending Moment due to W_T	62,338.5Nmm	
Resultant Bending	62497.13Nmm	
Equivalent Twisting	64603.86Nmm	
Diameter of the Shoft	10 1mm Say 20mm	
(pinion)	17.411111, Say 2011111	

* negative shows that the gear is rotating in opposite direction to the pinion.

	GEAR	PINION
	SHAFT	SHAFT
	BEARING	BEARING
Number	202	204
Bore	15mm	20mm
Output	35mm	47mm
Diameter		
Width	11mm	14mm

Table -2: Bearing selection.

Table-3: Material selection.

COMPONENT	MATERIAL	
Gear	Mild steel	
Pinion	Mild steel	
Shaft (Gear)	Mild steel	
Shaft (Pinion)	Food grade stainless	
	steel	
Blade	Food grade stainless	
	steel	
Base/Gear room	Cast iron	
Beverage container	Food grade plastic	
	(transparent)	

Casting

For economy of production, casting design takes into considerations those factors in moulding and coring that would lead to the simplest procedure. Elimination of expensive core, irregular parting lines and deep grafts in the casting were seriously thought of. Combination of the fore going factors with the selection of the right metal for the job was an important facet of the casting design.

The choice of cast iron material is on its unique damping characteristics, desirable in producing bases for machines; hence it minimizes vibration due to its weight. It also aid in strength, stability and rigidity. The casting method was chosen on consideration of kind of metal to be cast, purpose and product, scope of production, availability of moulding processes etc.

REFERENCES

- Govindarajan VS, Connell DW; Gingerchemistry, technology, and quality evaluation: part 1. Critical Reviews in Food Science & Nutrition, 1983;17(1): 1-96.
- 2. Ford AJ; U.S. Patent No. 2,412,141. Washington, DC: U.S. Patent and Trademark Office. 1946.
- 3. Eugene A. Avallone and Theodore Baumeisters III: Marks' Standard Handbook for Mechanical Engineers. 9th edition.
- Robert L; Mott Machine elements in Mechanical Design, Prentice Hall. 4th edition. 2003.