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Abstract: The uniform continuity of the function is an important basic theory of the mathematical analysis course, and it 
has important affect on the future courses. Therefore, it is of great importance to judge the uniform continuity. This paper 

provides eight practical judgment methods and Three comparative judgment methods. Besides, through some examples, 

it emphasizes judging the uniform continuity of the function, and selects proper judgment methods according to the 

characteristics of the function and interval. 
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BASIC JUDGMENT METHODS FOR THE UNIFORM CONTINUITY OF FUNCTION  

 

Theorem 1[1-3] Set function f to be continuous in the finite interval ( , ]([ , ))a b a b , so the necessary and sufficient 

condition for f to be uniformly continuous in ( , ]([ , ))a b a b is: lim ( )( lim ( ))
x a x b

f x f x
  

exists.  

 

Example 1 ( ) ( ) , ( , ]f x x a x a b   . 

0, 0,

lim ( ) 1, 0,

, 0.
x a

f x











 
 

 

   From theorem 1, when 0  , f is uniformly continuous in ( , ]a b ; when 0  , f is not uniformly continuous in 

( , ]a b .  

 

 

Example 2 ( ) log ( )cf x x a  , ( , ]x a b , among which, ,0c .1c lim ( )
x a

f x


  . From theorem 1, f is 

not uniformly continuous in ( , ]a b . 

 

Theorem 2[1-3]  Set function f  to be continuous in the infinite interval[ , )(( , ])a b  . If lim ( )( lim ( ))
x x

f x f x
 

exists, f will be uniformly continuous in[ , )(( , ])a b  .  

 

Example 3 ,
sin

)(
x

x
xf  ),0( x . 

    1
sin

lim)(lim
00


  x

x
xf

xx
. From theorem 1, 

x

x
xf

sin
)(   is uniformly continuous in ]1,0( . 

0
sin

lim)(lim 
 x

x
xf

xx
. From theorem 2,

x

x
xf

sin
)(   is uniformly continuous in ),1[  . 

So, 
x

x
xf

sin
)(   is uniformly continuous in ),0(  . 
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Theorem 3 If function f is the continuous periodic function in ),(  , f  is uniformly continuous in ),(  . 

From theorem 3, kxsin 和 kxcos  is uniformly continuous in ),(  . 

 

Theorem 4 If the monotonous bounded function f is continuous in infinite or finite interval ( , )a b , f  is uniformly 

continuous in ( , )a b . 

From theorem 4, xarcsin  and xarccos  is uniformly continuous in ]1,1[ , xarctan  and xarccot  is 

uniformly continuous in   , . 

Theorem 5[4] The necessary and sufficient condition for Function f to be uniformly continuous in the interval I is:

,}{},{ / Ixx nn  0/  nn xx ),( n and then,  

.0)]()([lim / 


nn
n

xfxf  

Example 4 ).,0(,)(  xexf x
 

Select .,2,1,ln),1ln( /  nnxnx nn  Meet .0)
1

1ln(lim)(lim / 
 n

xx
n

nn
n

 

But, .01]1[lim)]()([lim / 


nnxfxf
n

nn
n

 So, f is not uniformly continuous in ),0(  . 

 

Theorem 6 If function f and g are uniformly continuous in the interval I , gf   is also uniformly continuous in the 

interval I ; when I  is a finite interval, gf   is also uniformly continuous in I . 

 

Example 5 )(xf  is uniformly continuous in ),[ a , and .])([lim lcbxxf
x




 

From theorem 2, cbxxf )(  is uniformly continuous in ),[ a . Besides, cbx  is uniformly continuous in 

),[ a , From Theorem 6, )(xf  is uniformly continuous in ),[ a . 

 

Theorem 7 If function f can be derived in the interval I , and 
/f has boundary, f  is uniformly continuous in I . 

From theorem 7, kxsin , kxcos , xarctan  and xarccot are uniformly continuous in   , . 

 

Theorem 8 Set f to be continuous in [ , )a  , and can be derived in ( , )a  , and 
/lim ( )

x
f x A


  (normal 

extremity or abnormal extremity  exists), the necessary and sufficient condition for f to be uniformly continuous in

[ , )a   is: A  . 

 

Example 6 ( ) log , [ , )af x x x c   , among which, 0a  , and 1a  ， 0.c   

/ 1
( ) .

ln
f x

x a
  

/lim ( ) 0
x

f x


 . From theorem 8, ( ) logaf x x  is uniformly continuous in [ , )c  . 

 

Example 7 ( ) , [ , )f x x x a   , among which, 0a  .
/ 1( )f x x  ，

/

0, 1,

lim ( ) 1, 1,

, 1.
x

f x











 
 

 

From theorem 8, when 1  , ( )f x x  is uniformly continuous in [ , )a  ; when 1  , ( )f x x  is not 

uniformly continuous in [ , )a  . 

     

 

COMPARATIVE JUDGMENT METHOD FOR THE UNIFORM CONTINUITY OF THE FUNCTION 
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 Theorem 9  Set function f  and g to be derived in I , if 0,L   it achieves ,x I    

 / /( ) ,g x L f x So,  

    (1) When f is uniformly continuous in the interval I , g is also uniformly continuous in the interval I . 

    (2) When g is not uniformly continuous in the interval I , f will be not uniformly continuous in the interval I . 

 

Example 8 ).,1[,sin)(  xxxf  

Record .)( xxg   From example 7, xxg )(  is uniformly continuous in ),1[  . 

.)(
2

cos
)( // xg

x

x
xf  From theorem 9, xxf sin)(  is uniformly continuous in ),1[  . 

 

Example 9 ).,1[,)(  xexxf x
 

    Record .)( xexg  From example 4,
xexg )(  is not uniformly continuous in ),1[  . 

   .)()
2

1
()( // xgex

x
exf xx  From theorem 9,

xexxf )( is not uniformly continuous in ),1[  . 

 

Theorem 10[5]
  Set function f and g to be continuous in [ , )a  , and can be derived in ( , )a  , and 

/

/

( )
lim ,

( )x

f x
l

g x
 So, 

(1)  When 0 l   , as for f and g , if anyone is uniformly continuous in [ , )a  , and the other one is 

uniformly continuous in [ , )a  . One of them is uniformly continuous in [ , )a  , and the other one is uniformly 

continuous in [ , )a  . 

    (2)  When 0l  , if g is uniformly continuous in [ , )a  , 则 f is also uniformly continuous in [ , )a  ; 

    (3)  when l   , if g  is not uniformly continuous in [ , )a  , f will not be uniformly continuous in [ , )a  . 

     

Example10 ).,1[),ln()(  xxxxf  

Record .ln)( xxg   From example 6, xxg ln)(   is uniformly continuous in ),1[  . 

.12

1

lim
)(

)(
lim

/

/







 xx

xx

xg

xf

xx
From theorem 10, )ln()( xxxf   is uniformly continuous in ),1[  . 

 

Example 11 ).,1[,1)( 2  xxxxf  

记 .)( 2xxg  From example 7, )(xg  is not uniformly continuous in ),1[  . 

.1
2

12
lim

)(

)(
lim

/

/





 x

x

xg

xf

xx
 From theorem 10, 1)( 2  xxxf  is not uniformly continuous in ),1[  . 

 

Theorem 11[5] Set function f to be continuous in [ , )a  , and can be derived from ( , )a  , 0,a  and 

/lim ( ) ,
x

x f x l


 So,  

    (1) When 0  , and 0 l   , f  is uniformly continuous in [ , )a  ; 

    (2) When 0  , and 0 l  时， f  is not uniformly continuous in [ , )a  . 

 

Example 12 ).,1[,1)( 3 2  xxxxf  



 

Caixia Zhang., Sch.  J. Eng. Tech., 2015; 3(3A):212-215 

    215 
    

 

 

.
3

2

)1(3

2
lim)(lim

3 22

3

1

3

4

/3

1






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xx
xfx

xx
 

  .
3

2
,0

3

1
 l  From theorem 11, )(xf  is uniformly continuous in ),1[  . 

 

Example 13 ).,1[,)( 3  xxxxf   

.
2

1
3

lim)(lim

2

/1 








 x

x
x

xfx
xx

 .,01  l From theorem 11, )(xf  is not uniformly 

continuous in ),1[  . 

 

CONCLUSIONS  

This paper provides 8 practical basic judgment methods and 3 comparative judgment methods. Besides, it also 

provides some examples, and shows it is quite effective to select proper judgment methods according to the 

characteristics of the function and interval.  
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