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INTRODUCTION
In this paper, we consider the Klein-Gordon-Zakharov equation[1].

U, —U, +U+onu=0,

2
ntt - nXX = ﬂqu| )xx’
This system describes the interaction of the Langmuir wave and the ion acoustic wave in a high-frequency plasma. We
use the complete discrimination system for polynomial method to Eq.(1) and give the classification of its all single
traveling wave solutions. The complete discrimination system for polynomial method was proposed by Liu [2-4] in the
past several years. By Liu's method, many nonlinear partial differential equations[5-7] have been solved.

M)

CLASSIFICATION
Taking the following transformation to the Eq.(1)

u=u(&), n=n(&), &=x-ct, @)

then we can get the following equations
c’U —u +u+onu=0,

. - ®)
c’n' —n :ﬂ0u|2),
Integrating Eq.(3), we have
" 1
u = [-280° —2cu® - (2¢, - ¢ +1)], 4
c*-1)
2
+CU+C
and n= M : @)
c° -1
Integrating Eq.(4), we get
W) =au'+au’+au® +a, ©
Yij 2c, c’—-c,—1 _ _
where 8, =—————, @ =——F ", & =—F 5, & C, C, areintegration constants.
2(c2 —1) 3(c2 —1) 2(c2 —1)
1 a 1
When a, >0, we take the transformation W = (a4 )4 u+ 4—3 , &= (a4 )4 &, )
a4
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Eq.(6) becomes w2 =w* + pw’ +qw+r, (8)
3 1 4 2
a a; a,a; | -3a a,a
where p=—=, q=| 5 -—== 3/, r= S+ 25 +a,.
Ja, 8a; 2a, 256a, 16a,
1 a 1
When a, < 0, we take the transformation W = (- a, )4| U + 4—3 , & =(-a,)i&, 9
a'4
Eq.(6) becomes Wg =-(W* + pW? + qw+ 1), (10)
3 4 2
-a a, a,a 1 3a a,a
where p = =, 0= '_32+ = (—a4)4,r: 33_2—2_‘%-
J-a, 8a, 2a, 256a, 16a,
Then Eq.(8)and Eq.(10) become W: =& (W*+ pw? +qw+1), (11)
where & = £1.
dw
Integrating Eq.(10) yields (S - =|—, (12)

where F (W) =w* + pw® +qw+r.
Write the discrimination of F(W) as follows

D, =4
D,=-p
D3 :—2p3 +8pl‘—9q2 (13)

27
D, =-p’q® +4p*r+36pg’r-32p°r? —Tq“ +64r°
D, =9p* -32pq
According to the discrimination , we give the corresponding traveling wave solutions to Eq.(12).
Case21: D, =0, D, =0, D, <0.wehave F(w)= [(W— 1) + 82]2, where |, S are real numbers, s>0.

When & =1, the corresponding traveling wave solutions of Eq.(12) are

w=stan[s(& - & )]+1 (14)

Case22: D,=0, D,=0, D,=0.When £ =1, weassume F (W) =w", the corresponding traveling wave
solutions of Eq.(12) are

-1
W= _(é - 50) (15)

Case23: D, =0, D, =0, D, >0,E, =0. Weassume F(W) = (W—a)*(W— 3)* wherecr, § are real

numbers, & > . 1f £ =1, when W> @ or W< 3, the corresponding traveling wave solutions of Eq.(12) are

W=ﬂ;a{coth(a_ﬁ)z(g_§°)—1}+ﬁ (16)
when < W < ¢, the corresponding traveling wave solutions of Eq.(12) are
W:ﬂ;a[tanh(a_ﬂ)z(g_§°)—l}+ﬂ (17)

Case24: D, =0, D, >0, D, >0.Weassume F (W) =(W-a)*(W—B)(W—-y), B>y
If ¢=1, whenax > B, W> [, 0r o <y, W< y, the corresponding traveling wave solutions of Eq.(12) are

SN (V) 2 ) N ) U |
a-ple-7) w—al

; (18)

i(é'é:o):(
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When o > S, W< y,or a <y,W< 8, the corresponding traveling wave solutions of Eq.(12) are

1 N -a) - (- w7

t(S-6y)= : 19
(£-4&) @l ) W] (19)
When y < a < [, the corresponding traveling wave solutions of Eq.(12) are
1 (W= p)a—y)-(a-pYw-7)
t(6-6y)= ; 20
)= e )™ W e ) 0

If £ =-1, whenax > B, W> [, 0or <y, W< y, the corresponding traveling wave solutions of Eq.(12) are

1 VEwe e -JE-aw=7)

+(£-£)=
£(¢-&) Gala7) W] @
When a > S, W< y,or a <y,W< [, the corresponding traveling wave solutions of Eq.(12) are
1 - - — - —
T W NCwBly-a) - Ja-pw-1)f

p-ala-y) |W—a|

When y < a < [, the corresponding traveling wave solutions of Eq.(12) are

(w+pBla—y)+(B-afw-y) )
(w-a)(B~-7)

+(£-&,)= L arcsin
) a7

Case25: D, =0, D,=0, D, >0, E, =0. Weassume F(w) =(w—a)’(w— ), where
a, [f are real numbers. If & =1, when wW>a,W> f, or W< &, W < f3, the corresponding traveling wave
solutions of Eq.(12) are
4 - )

= +
2 2
(B-a)(E-¢&) -4
If € =1, when W>a,W< S, or W< ,W> [3, the corresponding traveling wave solutions of Eq.(12) are

HNa -
W= (2 ’B) 5 +a. (25)
~(B-a)(E-¢&) -4
Case2.6: D, =0,D,D, <0, we have F(W): (W—a)z[(w— 1)? +s°], where ¢ is real number. If £ =1, the
corresponding traveling wave solutions of Eq.(12) are

[Vl tFes(65) _ ( 0‘;)22|+Sz]+,/(a—l)2+32(2—y)
la -

[leisiea @2 2y

Ja—1) +5s?

Case2.7: D, >0,D, >0,D, >0. Weassume F(W) = (W—a, \W—a, \W—a; W-e,) ,

a; (24)

W=

(26)

where o, a,,04,a, arereal numbers, o, >a, > o, > ,.

Case28: D, <0, D,D, >0.wWeassume F(W) = (W—a)(W— B)[(W—1)* +s], where

a > 3 1,s>0, and they are all real numbers.

Case 2.9: D, >0,D,D, <0.Weassume F(w)=[(w—1,)%+s ][(W—1,)? +5,°], where a,,a,,l, and s, are
real numbers, S, >S, > 0.

The corresponding traveling wave solutions of Eq.(12) in Case 2.7-Case 2.9 are the forms in Elliptic function, its form is
compiles, we omit.
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The solutions (14)- (26) are the classification of exact solutions to the Eq.(12), then by Eq.(5), Eq.(7) and Eqg.(9), we can
get the u(x, t) and V(X, t), they are the solutions of the Klein-Gordon-Zakharov equation.

CONCLUSION

In the present paper, we use the complete discrimination system for polynomial method to the Klein-Gordon-Zakharov
equation, and we obtain the classification of envelop traveling wave solutions. These solutions contain trigonometric
functions , rational functions, solitary wave solutions and so on.
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