Scholars Journal of Engineering and Technology (SJET)
Sch. J. Eng. Tech., 2015; 3(3B):319-322
©Scholars Academic and Scientific Publisher
(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

Research Article

Exact solutions to the regularized Burgers-BBM equation

Huiling Fan ${ }^{1^{*}}$, Yanjun Cheng ${ }^{2}$, Yuanting $\mathbf{Z h u} \mathbf{u}^{1}$, Xin $\mathbf{L i}^{1}$
${ }^{1}$ School of Science, Heilongjiang Bayi Agriculture University, Daqing 163319, China
${ }^{2}$ Institute of technology, Daqing oilfield Fangxing company, Daqing 163000, China

*Corresponding author

Huiling Fan
Email: huilingnepu@126.com

Abstract: The trial equation method is applied to the regularized Burgers-BBM equation, when the parameter p takes the different values, we have obtained all of its corresponding exact traveling wave solutions.

Keywords: traveling wave solution; the trial equation method; the regularized Burgers-BBM equation

INTRODUCTION

In this paper, we consider the regularized Burgers-BBM equation

$$
\begin{equation*}
u_{t}+\sigma(u+1)^{p} u_{x}-\delta u_{x x}-\mu u_{x x t}=0 \tag{1}
\end{equation*}
$$

We use the trial equation method to Eq.(1) and give all of its possible exact traveling wave solutions. The trial equation method was proposed by $\mathrm{Liu}^{[1-5]}$ in the past several years. The trial equation method is a powerful method to solve the nonlinear equations that can not change into the elementary integral form.

CLASSIFICATION

Taking the following transformation to the Eq.(1)
$u=u(\xi), \xi=x-c t$, Eq.(1) becomes

$$
\begin{equation*}
-c u^{\prime}+\sigma(u+1)^{p} u^{\prime}-\delta u^{\prime \prime}+\mu c u^{\prime "}=0 \tag{2}
\end{equation*}
$$

Denote $v=u+1$, Eq. (2) becomes

$$
\begin{equation*}
-c v^{\prime}+\sigma v^{p} v^{\prime}-\delta v^{\prime \prime}+\mu c v^{\prime "}=0 \tag{3}
\end{equation*}
$$

Integrating Eq.(3), we have

$$
\begin{equation*}
v^{\prime \prime}-\frac{\delta}{c \mu} v^{\prime}=-\frac{\sigma}{(p+1) c \mu} v^{p+1}+\frac{1}{\mu} v-\frac{g_{1}}{c \mu} \tag{4}
\end{equation*}
$$

We will give the corresponding exact traveling wave solutions when the parameter p makes three different values.
Case1 $p=1$, Eq.(4) becomes

$$
\begin{equation*}
v^{\prime \prime}+A v^{\prime}=B v^{2}+C v+D \tag{5}
\end{equation*}
$$

where $A=-\frac{\delta}{c \mu}, B=-\frac{\delta}{2 c \mu}, C=\frac{1}{\mu}, D=-\frac{g_{1}}{c \mu}$.
Denote

$$
\begin{equation*}
v=a_{0}+a_{1} \varphi+a_{2} \varphi^{2} \tag{6}
\end{equation*}
$$

Taking the Eq.(6) to the Eq.(5), then we obtain the following equation

$$
2 a_{2}\left(\varphi^{\prime}\right)^{2}+\left(2 a_{2} \varphi+a_{1}\right) \varphi^{\prime \prime}+A\left(2 a_{2} \varphi+a_{1}\right) \varphi=B\left(a_{0}+a_{1} \varphi+a_{2} \varphi^{2}\right)^{2}+C\left(a_{0}+a_{1} \varphi+a_{2} \varphi^{2}\right)+D(7)
$$

Denote $w=\varphi$, Eq. (7) becomes

$$
\left(2 a_{2} \varphi+a_{1}\right) w \frac{d w}{d \varphi}+2 a_{2} w^{2}+A\left(2 a_{2} \varphi+a_{1}\right) w=B\left(a_{0}+a_{1} \varphi+a_{2} \varphi^{2}\right)^{2}+C\left(a_{0}+a_{1} \varphi+a_{2} \varphi^{2}\right)+D(8)
$$

$$
\begin{equation*}
\text { Denote } \quad w=b_{0}+b_{1} \varphi+b_{2}^{2} \varphi^{2} \text {, } \tag{9}
\end{equation*}
$$

take the Eq. (9) into the Eq.(8), we have

$$
\begin{align*}
& \left(2 a_{2} \varphi+a_{1}\right)\left(b_{0}+b_{1} \varphi+b_{2}^{2} \varphi\right)\left(2 b_{2} \varphi+b_{1}\right)+2 a_{2}\left(b_{0}+b_{1} \varphi+b_{2}^{2} \varphi\right)^{2} \\
& +A\left(2 a_{2} \varphi+a_{1}\right)\left(b_{0}+b_{1} \varphi+b_{2}^{2} \varphi\right)=B\left(a_{0}+a_{1} \varphi+a_{2} \varphi^{2}\right)^{2}+C\left(a_{0}+a_{1} \varphi+a_{2} \varphi^{2}\right)+D \tag{10}
\end{align*}
$$

According to the principle of balance, we can obtain the following equations by Eq.(10),

$$
\begin{align*}
& 6 a_{2} b_{2}^{2}=B a_{2}^{2} \\
& 5 a_{2} b_{1} b_{2}+a_{1} b_{2}^{2}+A a_{2} b_{2}=B a_{1} a_{2} \\
& 4 a_{2} b_{1}^{2}+8 a_{2} b_{0} b_{2}+3 a_{1} b_{1} b_{2}+A a_{1} b_{2}+2 A a_{2} b_{1}=B a_{1}^{2}+2 B a_{0} a_{2}+C a_{2} \tag{11}\\
& 6 a_{2} b_{0} b_{1}+2 a_{1} b_{0} b_{2}+a_{1} b_{1}^{2}+2 A a_{2} b_{0}+A a_{1} b_{1}=2 B a_{0} a_{1}+C a_{1} \\
& 2 a_{2} b_{0}^{2}+a_{1} b_{0} b_{1}+A a_{1} b_{0}=B a_{0}^{2}+C a_{0}+D
\end{align*}
$$

Solving this algebraic equations system (11), we obtain a family values of parameters:

$$
\begin{equation*}
a_{2}=\frac{6}{B} b_{2}^{2}, a_{1}=\frac{6 A}{5 B} b_{2}, a_{0}=\frac{6}{B} b_{0} b_{2}-\frac{C}{2 B}, b_{1}=0, A^{2}=-100 b_{0} b_{2} . \tag{12}
\end{equation*}
$$

Becase of $b_{0} b_{2}<0$, take $b_{0}=1, b_{2}=-1$,
$\varphi=\tanh \left(\xi-\xi_{0}\right)$, or $\varphi=\operatorname{coth}\left(\xi-\xi_{0}\right)$, we obtain the corresponding traveling wave solutions are:

$$
\begin{align*}
& u=\frac{12 \mu+1}{\sigma}-\frac{12 \delta}{5 \sigma} \tanh \left(x-c t-\xi_{0}\right) \frac{12 c \mu}{5 \sigma} \tanh ^{2}\left(x-c t-\xi_{0}\right)-1 \tag{13}\\
& u=\frac{12 \mu+1}{\sigma}-\frac{12 \delta}{5 \sigma} \operatorname{coth}\left(x-c t-\xi_{0}\right) \frac{12 c \mu}{5 \sigma} \operatorname{coth}^{2}\left(x-c t-\xi_{0}\right)-1 \tag{14}
\end{align*}
$$

Case2 $p=2$, the Eq. (4) becomes

$$
\begin{equation*}
v^{\prime \prime}+A v^{\prime}=B v^{3}+C v+D \tag{15}
\end{equation*}
$$

where $A=-\frac{\delta}{c \mu}, B=-\frac{\delta}{3 c \mu}, C=\frac{1}{\mu}, D=-\frac{g_{1}}{c \mu}$.
Denote

$$
\begin{align*}
& v^{\prime}=F(v)=a_{m} v^{m}+\Lambda+a_{1} v+a_{0} \\
& v^{\prime \prime}=F^{\prime}(v) F(v) . \tag{16}
\end{align*}
$$

According to the principle of balance, we get $m=2$, then we have

$$
\begin{gather*}
v^{\prime}=a_{2} v^{2}+a_{1} v+a_{0} \tag{17}\\
v^{\prime \prime}=2 a_{2}^{2} \cdot v^{3}+3 a_{1} a_{2} v^{2}+\left(2 a_{0} a_{2}+a_{1}^{2}\right) v+a_{0} a_{1} \tag{18}
\end{gather*}
$$

We obtain the following equations by the Eq.(17) and Eq.(18),

$$
\begin{align*}
& 2 a_{2}=B ; \\
& 3 a_{1} a_{2}+A a_{2}=0 ; \\
& 2 a_{0} a_{2}+a_{1}^{2}+A a_{1}=C ; \tag{19}\\
& a_{0} a_{1}+A a_{0}=D .
\end{align*}
$$

Solving them, we have

$$
\begin{equation*}
a_{2}= \pm \sqrt{-\frac{\sigma}{2 c \mu}}, a_{1}=\frac{\delta}{3 c \mu}, a_{0}=\frac{3 g_{1}}{2 \delta} \tag{20}
\end{equation*}
$$

Integrating Eq.(17), we have

$$
\begin{array}{r}
a_{2}\left(\xi-\xi_{0}\right)=\int \frac{d v}{v^{2}+\frac{a_{1}}{a_{2}} v+\frac{a_{0}}{a_{2}}} \\
\text { Denote } \quad F(v)=v^{2}+\frac{a_{1}}{a_{2}} v+\frac{a_{0}}{a_{2}}
\end{array}
$$

the discrimination of (22) is

$$
\begin{equation*}
\Delta=\left(\frac{a_{1}}{a_{2}}\right)^{2}-\frac{4 a_{0}}{a_{2}} . \tag{23}
\end{equation*}
$$

According to the discrimination, we give the corresponding traveling wave solutions to Eq.(21).
Case 2.1 $\Delta=0$,

$$
\begin{equation*}
F(v)=\left(v+\frac{a_{1}}{2 a_{2}}\right)^{2} \tag{24}
\end{equation*}
$$

the corresponding traveling wave solutions are:

$$
\begin{equation*}
u=\mu \sqrt{\frac{-2 c \mu}{\sigma}} \cdot \frac{1}{x-c t-\xi_{0}}-\frac{\delta}{6} \sqrt{\frac{-2}{c \mu \sigma}}-1 \tag{25}
\end{equation*}
$$

Case $2.2 \Delta>0$,

$$
\begin{equation*}
F(v)=\left(v+\frac{a_{1}}{2 a_{2}}\right)^{2}-\frac{a_{1}^{2}}{2 a_{2}}+a_{0} \tag{26}
\end{equation*}
$$

the corresponding traveling wave solutions are:

$$
\begin{gather*}
x-c t-\xi_{0}=-\frac{2}{\sqrt{a_{1}^{2}-4 a_{0} a_{2}}} \arctan \frac{2(u+1)+a_{1}}{\sqrt{a_{1}^{2}-4 a_{0} a_{2}}} ; \tag{27}\\
x-c t-\xi_{0}=\frac{1}{\sqrt{a_{1}^{2}-4 a_{0} a_{2}}} \ln \left|\frac{2(u+1)+a_{1}-\sqrt{a_{1}^{2}-4 a_{0} a_{2}}}{2(u+1)+a_{1}+\sqrt{a_{1}^{2}-4 a_{0} a_{2}}}\right| \tag{28}
\end{gather*}
$$

Case 2.3 $\Delta<0$, the corresponding traveling wave solutions are:

$$
\begin{equation*}
x-c t-\xi_{0}=\frac{2}{\sqrt{4 a_{0} a_{2}-a_{1}^{2}}} \arctan \frac{2(u+1)+a_{1}}{\sqrt{4 a_{0} a_{2}-a_{1}^{2}}} . \tag{29}
\end{equation*}
$$

Case $3 p=4$, the Eq. (4) becomes

$$
\begin{equation*}
v^{\prime \prime}+A v^{\prime}=B v^{5}+C v+D \tag{30}
\end{equation*}
$$

where $A=-\frac{\delta}{c \mu}, B=-\frac{\delta}{5 c \mu}, C=\frac{1}{\mu}, D=-\frac{g_{1}}{c \mu}$.

$$
\begin{equation*}
\text { Denote } \quad v^{\prime}=a_{3} v^{3}+a_{2} v^{2}+a_{1} v+a_{0} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime \prime}=3 a_{3} v^{5}+5 a_{2} a_{3} v^{4}+\left(4 a_{1} a_{3}+2 a_{2}^{2}\right) v^{3}+\left(3 a_{0} a_{3}+3 a_{1} a_{2}\right) v^{2}+\left(2 a_{0} a_{2}+a_{1}^{2}\right) v+a_{0} a_{1} . \tag{32}
\end{equation*}
$$

We obtain the following equations by the Eq.(31) and Eq.(32),

$$
\begin{align*}
& 3 a_{32}^{2}=B \\
& 5 a_{3} a_{2}=0 \\
& 4 a_{1} a_{3}+2 a_{2}^{2}+A a_{3}=0 ; \\
& 3 a_{0} a_{1}+3 a_{1} a_{2}+A a_{2}=0 ; \tag{33}\\
& 2 a_{0} a_{2}+a_{1}^{2}+A a_{1}=C \\
& a_{0} a_{1}+A a_{0}=D .
\end{align*}
$$

Solving them, we have

$$
\begin{equation*}
a_{3}= \pm \sqrt{-\frac{\sigma}{2 c \mu}}, a_{2}=0, a_{1}=\frac{\delta}{4 c \mu}, a_{0}=\frac{3 g_{1}}{2 \delta} \tag{34}
\end{equation*}
$$

Take the Eq.(34) to the Eq. (31) and integrate it, we have

$$
\begin{equation*}
\xi-\xi_{0}=\int \frac{d v}{a_{3} v^{3}+a_{1} v} \tag{35}
\end{equation*}
$$

We obtain the corresponding traveling wave solutions of the Eq.(35):

$$
\begin{equation*}
x-c t-\xi_{0}=\frac{2 c \mu}{\delta} \ln \left|\frac{(u+1)^{2}}{\frac{\delta}{4 c \mu} \pm \sqrt{\frac{-\sigma}{2 c \mu}}(u+1)^{2}}\right| \tag{36}
\end{equation*}
$$

CONCLUSION

In this paper, all possible traveling wave solutions for the regularized Burgers-BBM equation have been given. The results show that trial equation method is powerful method to solve nonlinear-problems arising in mathematical physics.

ACKNOWLEDGEMENT

- The college students Innovation project of Heilongjiang Bayi Agriculture University (No.xc2014065)
- The project is supported by Scientific Research Fund of Education Department of Heilongjiang Province of China under Grant No. 12531475.
- The project is supported by Scientific Research Fund of Education Department of Heilongjiang Province of China under Grant No. 12521374.

REFERENCE

1. Cheng-shi Liu, Canonical-like transformation method and exact solutions to a class of diffusion equations: Chaos, Solitons and Fractals, 2009; 42:441-446.
2. Cheng-shi Liu; New trial equation methods and exact solution to some nonlinear mathematical physical equations: Far East Journal of Applied Mathematics, 2010; 40(1): 49-64.
3. Cheng-shi Liu; Trial equation method and its applications to nonlinear evolution equations, Acta Phys. Sinica, 2005; 54(6): 2505-2509.
4. Cheng-shi Liu; Trial equation method to noinlinear evolution equations with rank inhomogeneous: mathematical discussions and its applications, Commun. Theor. Phys, 2006; 45:219-223.
5. Cheng-shi Liu; A New trial equation method and its applications, Commun. Theor. Phys, 2006; 45(3):395-397.
