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Abstract: In this paper, we propose a new non-monotone line search algorithm for unconstrained optimization problems. 

We incorporate the proposed non-monotone strategy in [3] into an inexact Wolfe-type line search approach to construct a 

more relaxed line search procedure. The g lobal convergence is subsequently proved under some mild classical 

assumptions. 
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INTRODUCTION 

We consider the following unconstrained optimization problem 

min ( ).
nx R

f x                                                                                             (1) 

where ( )f x  is twice continuously differentiable. Many iterat ive methods for (1) produce a sequence 
0 1 2, , ,x x x where 

1kx  is generated from kx , the current direction kd , and the step-size 0k  by the rule 

1k k k kx x d . 

 

In monotone line search methods, k  is chosen so that 1( ) ( )k kf x f x . In 1982, Chamberlain et al. [2] proposed a 

watchdog technique for constrained optimization p roblems, in which some standard line search condition is relaxed  to 

overcome the Maratos effect. Based on this idea, Grippo, Lampariello  and Lucidi introduced a non -monotone line search 

technique for the Newton method in [1]. Their approach was roughly the following: 

( )( ) .T

k k k l k k k kf x d f g d                                                                    (2) 

where (0,1)  and 

( )
0 ( )
max { }, 0,1,2,l k k j

j m k
f f k                                                                  (3) 

where (0) 0m  and 0 ( ) min{ ( 1) 1, }m k m k N  with 0N . Non-monotone techniques [1,3,4,5,9,10,12] 

can improve convergence rate in the case that a monotone technique is forced to creep along  the bottom of a narrow curved 

valley; also, they can improve the possibility of finding the global optimum. Encouraging numerical results have been 

reported [7,8,9,11,14]. 

 

Although the traditional non-monotone line search technique has many advantages, there are  some drawbacks 

[3,6,12,14]. In order to overcome those disadvantages, Ahoohosh et al.[3] introduced a new formula instead of ( )l kf  in (2). 

In detail, they define 

( ) (1 )k k l k k kR f f  

where min max0 1 and min max[ , ]k . 

 

In this article, we proposed a new line search algorithm for solving unconstrained optimization problems. In the 

algorithm, we combine a non-monotone strategy into a modified Wolfe-type rule and design a new algorithm that possibly 

chooses a larger step-length in each step. We define that 
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( ) .T

k k k k k k kf x d R g d                                                                      (4) 

( )T T

k k k k k kf x d d g d                                                                          (5) 

where 
kd  is a descent direction. This direction is determined by the following formula (see [15]) 

1

0 0,k k kd B g d g   . 

Where 
kB  is an approximation of the Hessian matrix at 

kx  and updated by Perry and Shanno formula: 

2 2

1 2
.

T

Tk k k k

k k kT T T

k k k k k k k

y y y y
B I s s

y s y s s y s
                                                                  (6) 

where  

1 1,k k k k k ky g g s x x     .  

Then the next iteration can be written as  

1 1 1 1

1 1 1 12 2 2
( 2 )

T T T T

k k k k k k k k

k k k k k kT

k k k k k

y s y g s g s g
d B g g s y

y y y s y

   

         .                                      (7) 

The rest of this article is organized as follows: in Section 2, we describe a new non-monotone line search algorithm. In 

Section 3, we prove that the proposed algorithm is globally convergent. Finally, some conclusions are expressed in Section 

4. 

 

NEW ALGORITHM 

Now, we can outline our new non-monotone line search algorithm is as follows: 

Algorithm 1 

Step 1 An initial point 
0

nx R  and symmetric matrix 
0

n nB R  are given. The constants 0  

min 0 max1,0 1, 0N  and 0  are also given. Set 0, (0) 0k m . 

Step 2 Compute kg . If kg , stop. 

Step 3 Generate a descent direction kd  satisfying (7). 

Step 4 Compute ( )l kf  and kR ,  set 1k k k kx x d  where k  satisfies (4) and (5). 

Step 5 Update 1kB  according to (6). Set 1k k  and return to Step 2. 

 

CONVERGENCE ANALYSIS 

To prove the global convergence of the new algorithm, the following assumptions is proved throughout this paper: 

(H1) The objective function f  is continuously differentiable and has a lower bound on the level set 

0 0( ) { | ( ) ( )}nL x x R f x f x . 

(H2) ( )g x  of ( )f x  is Lipschitz continuous function, there exists a constant 0L  such that  

( ) ( ) , , ng x g y L x y x y R . 

(H3) There exist positive constants 1c  and 2c  such that  

2

1

T

k k kg d c g                                                                                   (8) 

2k kd c g                                                                                      (9) 

Lemma 1  (See Lemma 1 and Corollary 1 in [14]) Suppose that the sequence { }kx  is generated by Algorithm 1 and (H1) 

and (8) holds. Then the sequence ( ){ }l kf  is non-increasing and convergent. 

Lemma 2 Suppose that the sequence { }kx  is generated by Algorithm 1, (H1) and (H2) hold and  

the direction kd  satisfies (8) and (9). Then we have  

( )lim lim ( ) liml k k k
k k k

f f x R                                                                     (10) 

Proof. The proof can be found Lemma 2 and Corollary 2 in [14]. 

Lemma 3 Assume that Algorithm 1 generates an infinite sequence { }kx  and (H2) holds, then we have 
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2

| |1
( )

T

k k
k

k

g d

L d
.                                                                              (11) 

Proof. From (5) and (H2), we have 
2 ( ( ) ( )) ( 1) 0T T

k k k k k k k k kL d g x d g x d g d .                                      (12) 

Thus, we can conclude that 

2 2

( 1) | |1
( )

T T

k k k k
k

k k

g d g d

L d L d
.                                                               (13) 

This completes the proof. 

Theorem 4 Suppose that the sequence { }kx  is generated by Algorithm 1 and (H1), (H2) and (H3) hold. Then we have 

lim 0k
k

g .                                                                                      (14) 

Proof. We first show that  
2

1k k kf R g                                                                                (15) 

Where  

2

1

2

2

(1 )c

Lc
                                                                                    (16) 

Using (4) and Lemma 3, we get 

2

1

(1 )
( )( )

T
T k k

k k k k k k

k

g d
f R g d R

L d
.                                                  (17) 

From (8) and (9), we obtain 
2

21
1 2

2

(1 )
( )k k k

c
f R g

Lc
 .                                                                  (18) 

This indicates that (15) holds. 

By setting  as (16), it follows that 0 . Also by (15), we have 

2

1 0k k kR f g .  

This fact along with (10) give (14). This completes the proof. 

Theorem 5 Suppose that the sequence { }kx  is generated by Algorithm 1 and (H1), (H2) and (H3) hold, then there is no 

limit point of the sequence { }kx  being a local maximum of ( )f x . 

Proof. The proof of this fact is similar to the proof given by Grippo et al. in [1], hence we omit the details.  

 

CONCLUSIONS 

In this paper, we propose a new non-monotone Wolfe-type line search algorithm for solving unconstrained optimization 

problems. After we analyzed the properties of the new algorithm, the global convergence theory is proved. We believe that 

there is considerable scope for modifying and adapting the basic ideas introduced in this paper. In  the near future, we would  

like to combine the new algorithm with trust region algorithm in order to sufficiently use the information which the 

algorithm has already derived. 
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