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Abstract: In this paper, investigation of positive solutions for the boundary value problem of eigenvalue problem has 
been reported. It is studied by employing the positive property of the Green’s function, the fixed point theorem and 

Krasnoselskii fixed point theorem in cone. 
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INTRODUCTION 

Boundary value problem has been an important branch in the theory of differential equations, and it is a very active 

research field at present. The research on the eigenvalue problem has attracted many scholars. The features of the high 

order nonlinear boundary value problems of the existence of value enrich the problem [2-6]. However, most authors 

study the problem under the conjugate boundary conditions or more simple boundary conditions, and papers constructed 

the research on high-order ordinary differential equations with more complex boundary conditions are not common. This 

paper is different from theirs, and study the eigenvalue for nonlinear high-order differential equations has been done. It is 
proved that the equation has at least one positive solution through the cone fixed point theorem.  

 

Preliminary Notes 

In this paper, we concern on the following nonlinear higher-order boundary value problem  
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3  Main Results 

   To obtain positive solutions for the problem (1), we state some properties of Green’s function for (1). 

   We can easily obtain it, the problem (1)is equivalent to the integral equation 
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Moreover, the following results have been recently offered by [3]. 

Lemma 2.1  For any ]1,0[, sx , we have 
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Define the cone K in Banach space ]1,0[C , given by 
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We define the operator K:K  by  
1

0
( )( ) ( , ) ( , ( ))dy x G x s f s y s s   . 

For any Ky ,we have 
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This implies ( )K K  . 

We can easily obtain it, : K K  is a completely continuous mapping. 

Theorem 2.2  Assume that 1( )H and 2( )H  hold，Our assumption throughout is，   
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then the problem(1) has at least one positive solution. 

Proof  Choose 0  ，such that 
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     Thus, theorem 2.1 implies， the problem(1) has at least one positive solution.  

Theorem 2.3  Assume that 1( )H and 2( )H hold.Our assumption throughout is，  
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Thus, theorem 2.1 implies， the problem(1) has at least one positive solution. 

Lemma 2.2  Assume that 
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In addition， following from 
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Hence, by Theorem 2.1, the problem (1) has at least one positive solution. 
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