Scholars Journal of Engineering and Technology (SJET)

Sch. J. Eng. Tech., 2015; 3(4C):515-519 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

Research Article

On sandwich theorems for certain analytic functions

Jing Wang, Lifeng Guo

School of Mathematica Science and Technology, Northeast Petroleum University, Daqing 163318, China.

*Corresponding author Jing Wang Email: <u>lbr910@126.com</u>

Abstract: In this paper, we derive some subordination and superordination results for certain normalized analytic functions in the open unit disk. **Keywords:** univalent functions; starlike functions; subordination; superordination

INTRODUCTION

Let *H* denote the class of analytic functions in the open unit disc $U = \{z \in C : |z| < 1\}$, and H[a, n] denote the subclass of the functions $f \in H$ of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots.$$
(1)

Also,Let A be the subclass the functions $f \in H$ of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots.$$
 (2)

A function $f \in A$ is said to be in the class S^* of starlike functions in U, if it satisfies the inequality $Re(\frac{zf'(z)}{f(z)}) > 0, z \in U$. Furthermore, a function $f \in A$ is said to be in the class C of convex functions in U, if it satisfies the inequality $Re(1 + \frac{zf''(z)}{f'(z)}) > 0, z \in U$.

Let f(z) and F(z) be analytic in U, then we say that the function f(z) is subordinate to F(z) in U, if there exists an analytic function w(z) in U such that $|w(z)| \le |z|$, and $f(z) \equiv F(w(z))$, denoted by $f \neq F$ or $f(z) \neq F(z)$. If F(z) is univalent in U, then the subordination is equivalent to f(0) = F(0) and $f(U) \subset F(U)$.

Let $p,h \in H$ and let $\varphi(r,s,t;z): C^3 \times U \to C$. If p and $\varphi(p(z), zp'(z), z^2p''(z); z)$ are univalent and if p satisfies the second-order superordination

$$h(z) p \ \varphi(p(z), zp'(z), z^2 p''(z); z),$$
 (3)

then p is a solution of the differential superordination (3). (If f is subordinate to F, then F is superordinate to f.) An analytic function q is called a subordinant if q p p for all p satisfying (3). A univalent subordinant Q that satisfies q p Q for all subordinants q of (3) is said to be the best subordinant. Recently Miller and Mocanu [1] obtained conditions on h,q and φ for which the following implication holds:

$$h(z) p \ \varphi(p(z), zp'(z), z^2 p''(z); z) \Longrightarrow q(z) p \ p(z).$$
(4)

Using the results of Miller and Mocanu [1], Bulboacă [2] considered certain classes of first-order differential superordinations as well as superordination-preserving integral operators [3]. Ali et al. [4] have used the results of Bulboacă [2] and obtained sufficient conditions for certain normalized analytic functions f(z) to satisfy

$$q(z) p \frac{zf'(z)}{f(z)} p q_2(z),$$
 (5)

where q_1 and q_2 are given univalent functions in U with $q_1(0) = 1$ and $q_2(0) = 1$. Shanmugam et al. [5] obtained sufficient conditions for normalized analytic functions f(z) to satisfy

$$q_{1}(z) p \frac{f(z)}{zf'(z)} p q_{2}(z) and q_{1}(z) p \frac{z^{2} f'(z)}{f^{2}(z)} p q_{2}(z)$$
(6)

where q_1 and q_2 are given univalent functions in U with $q_1(0) = 1$ and $q_2(0) = 1$, while Obradović and Owa [6] obtained subordination results with the quantity $(f(z)/z)^{\mu}$ (see also [7]).

For $0 < \alpha < 1$, a function $f(z) \in N(\alpha)$ if and only if $f(z) \in A$ and

$$Re\left\{\frac{zf'(z)}{f(z)}\left(\frac{z}{f(z)}\right)^{\alpha}\right\} > 0, z \in U.$$

$$\tag{7}$$

 $N(\alpha)$ was introduced by M.Obradović [8] recently, and he called this class of functions to be non-Bazilevič type. Tuneski and Darus [9] obtained Fekete-Szegö inequality for the non-Bazilevič class of functions. Using this non-Bazilevič class, Wang et al. [10] studied many subordination results for the class $N(\alpha, \lambda, A, B)$ defined as

$$N(\alpha,\lambda,A,B) = \{f(z) \in A : (1+\lambda)(\frac{z}{f(z)})^{\alpha} - \lambda \frac{zf'(z)}{f(z)}(\frac{z}{f(z)})^{\alpha} p \frac{1+Az}{1+Bz}, z \in U\}.$$
(8)

where $0 < \alpha < 1, \lambda \in C, -1 \le B \le 1, A \ne B, A \in R$.

The main object of the present sequel to the aforementioned works is to apply a method based on the differential subordination in order to derive several subordination results. Furthermore, we obtain the previous results of Srivastava and Lashin [7], Singh [11], Shanmugam et al. [12] and Obradović andOwa [6] as special cases of some of the results presented here.

Some lemmas

To prove our main result, we will need the following definition and lemmas:

DEFINITION

[1] Denote by
$$\Sigma$$
 the set of all functions $f(z)$ that are analytic and injective on $U - E(f)$, where

$$E(f) = \{\xi \in \partial U : \lim_{z \to z} f(z) = \infty\},$$
(9)

and are such that $f'(\xi) \neq 0$ for $\xi \in \partial U - E(f)$.

Lemma

[5] Let q be univalent in U and let $\beta, \gamma \in C$ with $Re(1 + \frac{zq''(z)}{q'(z)}) > \max\{0, -Re\frac{\beta}{\gamma}\}$. If p(z) is analytic in

U and

$$\beta p(z) + \gamma z p'(z) p \ \beta q(z) + \gamma z q'(z), \tag{10}$$

then p(z) p q(z) and q is the best dominant.

Lemma

[1] Let q be convex univalent in U and let $\gamma \in C$ with $Re(\gamma) > 0$. If $p(z) \in H[q(0), 1] \cap \Sigma$ and $p(z) + \gamma z p'(z)$ is univalent in U, and

$$q(z) + \gamma z q'(z) \mathbf{p} \ p(z) + \gamma z p'(z), \tag{11}$$

then q(z) p p(z) and q is the best subordinant.

Lemma

[13] Let q be univalent in U and let θ, ρ be analytic in a domain Ω containing q(U) with $\rho(w) \neq 0$ when $w \in q(U)$. Set $h(z) = zq'(z)\rho(q(z))$, $F(z) = \theta(q(z)) + h(z)$. Suppose that (1) h(z) is starlike univalent in U; (2) $Re(\frac{zF'(z)}{h(z)}) > 0$ for $z \in U$. If $\theta(p(z)) + zp'(z)\rho(F(z)) p \ \theta(q(z)) + zq'(z)\rho(q(z)),$ (12)

then p(z) p q(z) and q(z) is the best dominant.

Lemma

[3] Let q be convex univalent in U, and let θ, ρ be analytic in a domain Ω containing q(U). Suppose that (1) $zq'(z)\rho(q(z))$ is starlike univalent in U; (2) $Re(\frac{\theta'(q(z))}{\rho(q(z))}) > 0$ for $z \in U$. If $p(z) \in H[q(0),1] \subseteq \Sigma$, with $p(U) \subset \Omega$ and $\theta(p(z)) + zp'(z)\rho(p(z))$ is univalent in U and

 $\theta(q(z)) + zq'(z)\rho(q(z)) p \ \theta(p(z)) + zp'(z)\rho(p(z)),$

then q(z) p p(z) and q is the best subordinant.

Sandwich theroems

By using Lemma 2.1, we first prove the following Theorem.

Theorem 3.1.Let q(z) be univalent in U, $0 < \lambda < 1$ and $\alpha \in C$. Further assume that

$$Re\{1 + \frac{zq''(z)}{q'(z)}\} > \max\{0, -Re\frac{\alpha}{\lambda}\}.$$
(14)

If $f(z) \in A$, $g(z) \in S^*$, then

$$\left(\frac{g(z)}{f(z)}\right)^{\lambda} + \alpha z \left(\frac{g'(z)}{g(z)} - \frac{f'(z)}{f(z)}\right) \left(\frac{g(z)}{f(z)}\right)^{\lambda} \mathbf{p} \ q(z) + \frac{\alpha}{\lambda} z q'(z), \tag{15}$$

implies that

$$\left(\frac{g(z)}{f(z)}\right)^{\lambda} p q(z) \tag{16}$$

and q(z) is the best dominant.

Proof. Define the function p(z) by

$$p(z) = \left(\frac{g(z)}{f(z)}\right)^{\lambda} \tag{17}$$

Then a computation shows that

$$\left(\frac{g(z)}{f(z)}\right)^{\lambda} + \alpha z \left(\frac{g'(z)}{g(z)} - \frac{f'(z)}{f(z)}\right) \left(\frac{g(z)}{f(z)}\right)^{\lambda} = p(z) + \frac{\alpha}{\lambda} z p'(z).$$
(18)

Then we obtain that

$$p(z) + \frac{\gamma}{\alpha} z p'(z) p q(z) + \frac{\gamma}{\alpha} z q'(z).$$
⁽¹⁹⁾

By using Lemma 2.1, we have the result.

(13)

Theorem 3.2.Let q(z) be convex univalent in U, $0 < \lambda < 1$, $\alpha \in C$ with $Re(\alpha) > 0$. Suppose $\left(\frac{g(z)}{f(z)}\right)^{\alpha} \in H[q(0), 1] \cap \Sigma$ and

$$(\frac{g(z)}{f(z)})^{\lambda} + \alpha z (\frac{g'(z)}{g(z)} - \frac{f'(z)}{f(z)}) (\frac{g(z)}{f(z)})^{\lambda}$$
(20)

be univalent in U. If

$$q(z) + \frac{\gamma}{\alpha} z q'(z) \mathbf{p} \left(\frac{g(z)}{f(z)}\right)^{\lambda} + \alpha z \left(\frac{g'(z)}{g(z)} - \frac{f'(z)}{f(z)}\right) \left(\frac{g(z)}{f(z)}\right)^{\lambda},\tag{21}$$

then

$$q(z) \mathbf{p} \left(\frac{g(z)}{f(z)}\right)^{\alpha}$$
(22)

and q(z) is the best subordinant.

Proof. Let $p(z) = \left(\frac{g(z)}{f(z)}\right)^{\alpha}$. Then Theorem 3.2 follows by an application of Lemma 2.2. Combining the results of differential subordination and superordination, we obtain the following sandwich result.

Corollary 3.3.Let $q_1(z)$ be univalent and let $q_2(z)$ be convex univalent in U, $0 < \lambda < 1$ and $\alpha \in C$ with $Re(\alpha) > 0$. Suppose $q_2(z)$ satisfies (14). If $\left(\frac{g(z)}{f(z)}\right)^{\lambda} \in H[q_1(0), 1] \cap \Sigma$, $\left(\frac{g(z)}{f(z)}\right)^{\lambda} + \alpha z \left(\frac{g'(z)}{g(z)} - \frac{f'(z)}{f(z)}\right) \left(\frac{g(z)}{f(z)}\right)^{\lambda}$ is univalent in U, and

$$q_{1}(z) + \frac{\alpha}{\lambda} z q_{1}(z) p \left(\frac{g(z)}{f(z)}\right)^{\lambda} + \alpha z \left(\frac{g'(z)}{g(z)} - \frac{f'(z)}{f(z)}\right) \left(\frac{g(z)}{f(z)}\right)^{\lambda} p q_{2}(z) + \frac{\alpha}{\lambda} z q_{2}(z),$$
(23)

then

$$q_1(z) \mathbf{p} \left(\frac{g(z)}{f(z)}\right)^{\lambda} \mathbf{p} q_2(z)$$
(24)

and $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and the best dominant. For $\alpha = 1$ and g(z) = z, we get the following corollary.

Corollary 3.4.Let $q_1(z)$ be univalent and let $q_2(z)$ be convex univalent in U, $0 < \lambda < 1$. Suppose $q_2(z)$ satisfies (14). If $\left(\frac{g(z)}{f(z)}\right)^{\lambda} \in H[q_1(0), 1] \cap \Sigma$, $\left(2 - \frac{f'(z)}{f(z)}\right)^{(\frac{z}{f(z)})}$ is univalent in U, and

$$q_{1}(z) + \frac{1}{\alpha} z q_{1}(z) \mathbf{p} \left(2 - \frac{z f'(z)}{f(z)}\right) \left(\frac{z}{f(z)}\right)^{\lambda} \mathbf{p} q_{2}(z) + \frac{1}{\alpha} z q_{2}(z),$$
(25)

then

$$q_1(z) p \left(\frac{z}{f(z)}\right)^{\alpha} p q_2(z)$$
 (26)

and $q_1(z)$ and $q_2(z)$ are respectively the best subordinant and best dominant.

4. Open Problem

Let *H* be the class of analytic functions in $U = \{z \in C : |z| < 1\}$, and H[a, p] be the subclass of *H* consisting of functions of the form

$$f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \cdots.$$
(27)

Let A(p) be the subclass of H consisting of functions of the form

$$f(z) = z^{p} + a_{p+1} z^{p+1} + a_{p+2} z^{p+2} + \cdots.$$
(28)

A function $f \in A(p)$ is said to be in the class $S^*(p)$ of p-valent starlike functions in U, if it satisfies the inequality $Re(\frac{zf'(z)}{nf(z)}) > 0, z \in U$.

Let $f(z) \in A(p)$ and $g(z) \in S^*(p)$. We can consider sufficient conditions on h, q_1, q_2 and φ for which the following implication holds:

$$q_1(z) p \left(\frac{g(z)}{f(z)}\right)^{\alpha} p q_2(z),$$
 (29)

or

$$q_{1}(z) p \left(\frac{(1-\beta)f(z) + \beta z f'(z)}{g(z)}\right)^{\alpha} p q_{2}(z),$$
(30)

where $0 < \alpha < 1$ and $0 \le \beta \le 1$.

REFERENCES

- 1. Miller SS, Mocanu PT; Subordinants of differential superordinations. Complex variables, 2003; 48(10): 815-826.
- 2. Bulboacă T; Classes of first-order differential superordinations, Demonstratio Mathematica, 2002; 35(2): 287-292.
- Bulboacă T; A class of superordination-preserving integral operators, IndagationesMathematicae. New Series, 2002; 13(3): 301-311.
- 4. M Ali R, Ravichandran V, Hussain Khan M, Subramanian KG; Differential Sandwich Theorems For Certain Analytic Functions. Far East Journal of Mathematical Sciences, 2004; 15(1): 87-94.
- 5. Shanmugam TN, Ravichandran V, Sivasubramanian S; Differential sandwich theorems for some subclasses of analytic functions, The Australian Journal of Mathematical Analysis and Applications, 2006; 3(1).
- Obradović M, Owa S; On certain properties for some classes of starlike functions, Journal of Mathematical Analysis and Applications, 1990; 145(2): 357-364.
- 7. Srivastava HM, Lashin AY; Some applications of the Briot-Bouquet differential subordination. J. Inequal. Pure Appl. Math, 2005; 6(2): 1-7.
- 8. Obradovic M, A class of univalent functions. Hokkaido Math, 1998; 27: 329-335.
- Tuneski N, Darus M; Fekete-Szegö functional for non-Bazilevič functions, ActaMathematica. Academiae Paedagogicae Nyíregyháziensis. New Series, 2002; 18(2): 63-65.
- Wang Z, Gao C, Liao M; On certain generalized class of non-Bazilevič functions, ActaMathematica. Academiae Paedagogicae Nyíregyháziensis. New Series, 2005; 21(2): 147-154.
- 11. Singh V; On some criteria for univalence and starlikeness, Indian Journal of Pure and Applied Mathematics, 2003; 34(4): 569-577.
- 12. Shanmugam TN, Sivasubramanian S, Silverman H; On sandwich theorems for some classes of analytic functions, International Journal of Mathematics and Mathematical Sciences, 2006.
- Miller SS, Mocanu PT; Differential Subordinations. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 2000; 225.