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INTRODUCTION 

Let H  denote the class of analytic functions in the open unit disc { 1}U z C z    , and [ ]H a n  denote 

the subclass of the functions f H  of the form  

 
1

1( ) n n

n nf z a a z a z 

     (1) 

 

Also,Let A  be the subclass the functions f H  of the form  

 
2 3

2 3( )f z z a z a z     (2) 

 

A function f A  is said to be in the class S 
 of starlike functions in U , if it satisfies the inequality 

( )

( )
( ) 0

zf z

f z
Re z U


     Furthermore, a function f A  is said to be in the class C  of convex functions in U , if it 

satisfies the inequality 
( )

( )
(1 ) 0

zf z

f z
Re z U



       

Let ( )f z  and ( )F z  be analytic in U , then we say that the function ( )f z  is subordinate to ( )F z  in U , if there 

exists an analytic function ( )w z  in U  such that ( )w z z   , and ( ) ( ( ))f z F w z , denoted by f Fp  or 

( ) ( )f z F zp . If ( )F z  is univalent in U , then the subordination is equivalent to (0) (0)f F  and 

( ) ( )f U F U .  

Let p h H   and let 
3( )r s t z C U C       . If p  and 

2( ( ) ( ) ( ) )p z zp z z p z z      are univalent and if p  

satisfies the second-order superordination  

 
2( ) ( ( ) ( ) ( ) )h z p z zp z z p z z     p  (3) 

then p  is a solution of the differential superordination (3). (If f  is subordinate to F , then F  is superordinate to f .) 

An analytic function q  is called a subordinant if q pp  for all p  satisfying (3). A univalent subordinant Q  that 

satisfies q Qp  for all subordinants q  of (3) is said to be the best subordinant. Recently Miller and Mocanu [1] 

obtained conditions on h q  and   for which the following implication holds:  

 
2( ) ( ( ) ( ) ( ) ) ( ) ( )h z p z zp z z p z z q z p z      p p  (4) 

 

Using the results of Miller and Mocanu [1], Bulboacǎ [2] considered certain classes of first-order differential 

superordinations as well as superordination-preserving integral operators [3]. Ali et al. [4] have used the results of 

Bulboacǎ [2] and obtained sufficient conditions for certain normalized analytic functions ( )f z  to satisfy  
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2

( )
( ) ( )

( )

zf z
q z q z

f z


p p  (5) 

where 1q  and 2q  are given univalent functions in U  with 1(0) 1q   and 2 (0) 1q  . Shanmugam et al. [5] obtained 

sufficient conditions for normalized analytic functions ( )f z  to satisfy  

 

2

1 2 1 22

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

f z z f z
q z q z andq z q z

zf z f z




p p p p  (6) 

where 1q  and 2q  are given univalent functions in U  with 1(0) 1q   and 2 (0) 1q  , while Obradović and Owa [6] 

obtained subordination results with the quantity ( ( ) )f z z   (see also [7]).  

For 0 1  , a function ( ) ( )f z N   if and only if ( )f z A  and  

 
( )

{ ( ) } 0
( ) ( )

zf z z
Re z U

f z f z


     (7) 

( )N   was introduced by M.Obradović [8] recently, and he called this class of functions to be non-Bazilevič type. 

Tuneski and Darus [9] obtained Fekete-Szegö inequality for the non-Bazileviˇc class of functions. Using this non-

Bazilevič class, Wang et al. [10] studied many subordination results for the class ( )N A B     defined as  

 
( ) 1

( ) { ( ) (1 )( ) ( ) }
( ) ( ) ( ) 1

z zf z z Az
N A B f z A z U

f z f z f z Bz

    
 

          


p  (8) 

where 0 1 1 1C B A B A R            .  

The main object of the present sequel to the aforementioned works is to apply a method based on the differential 

subordination in order to derive several subordination results. Furthermore, we obtain the previous results of Srivastava 

and Lashin [7], Singh [11], Shanmugam et al. [12] and Obradović andOwa [6] as special cases of some of the results 

presented here.  

 

Some lemmas 
To prove our main result, we will need the following definition and lemmas:  

 

DEFINITION 

[1] Denote by   the set of all functions ( )f z  that are analytic and injective on ( )U E f , where  

 ( ) { lim ( ) }
z

E f U f z





       (9) 

 

and are such that ( ) 0f    for ( )U E f   .   

 

Lemma 

[5] Let q  be univalent in U  and let C    with 
( )

( )
(1 ) max{0 }

zq z

q z
Re Re







     If ( )p z  is analytic in 

U  and  

 ( ) ( ) ( ) ( )p z zp z q z zq z      p  (10) 

 

then ( ) ( )p z q zp  and q  is the best dominant.   

 

Lemma 

[1] Let q  be convex univalent in U  and let C   with ( ) 0Re     If ( ) [ (0) 1]p z H q    and 

( ) ( )p z zp z   is univalent in U , and  

 ( ) ( ) ( ) ( )q z zq z p z zp z    p  (11) 

 

then ( ) ( )q z p zp  and q  is the best subordinant.   
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Lemma 

[13] Let q  be univalent in U  and let    be analytic in a domain   containing ( )q U  with ( ) 0w   

when ( )w q U . Set ( ) ( ) ( ( ))h z zq z q z , ( ) ( ( )) ( )F z q z h z    Suppose that  

(1) ( )h z  is starlike univalent in U ;  

(2) 
( )

( )
( ) 0

zF z

h z
Re


  for z U    

If  

 ( ( )) ( ) ( ( )) ( ( )) ( ) ( ( ))p z zp z F z q z zq z q z      p  (12) 

 

then ( ) ( )p z q zp  and q(z) is the best dominant.   

 

Lemma 

[3] Let q  be convex univalent in U , and let    be analytic in a domain   containing ( )q U . Suppose that  

(1) ( ) ( ( ))zq z q z  is starlike univalent in U ;  

(2) 
( ( )

( ( ))
( ) 0

q z

q z
Re






  for z U .  

If ( ) [ (0) 1]p z H q   , with ( )p U   and ( ( )) ( ) ( ( ))p z zp z p z   is univalent in U  and  

 ( ( )) ( ) ( ( )) ( ( )) ( ) ( ( ))q z zq z q z p z zp z p z      p  (13) 

 

then ( ) ( )q z p zp  and q  is the best subordinant.   

 

Sandwich theroems 
By using Lemma 2.1, we first prove the following Theorem.  

 

Theorem 3.1.Let ( )q z  be univalent in U , 0 1   and C . Further assume that  

 
( )

{1 } max{0 }
( )

zq z
Re Re

q z






   


 (14) 

If ( ) ( )f z A g z S   , then  

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

g z g z f z g z
z q z zq z

f z g z f z f z

  




 
   p  (15) 

implies that  

 
( )

( ) ( )
( )

g z
q z

f z

 p  (16) 

and ( )q z  is the best dominant.   

 

Proof. Define the function ( )p z  by  

 
( )

( ) ( )
( )

g z
p z

f z

  (17) 

Then a computation shows that  

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

g z g z f z g z
z p z zp z

f z g z f z f z

  




 
      (18) 

Then we obtain that  

 ( ) ( ) ( ) ( )p z zp z q z zq z
 

 
   p  (19) 

 

By using Lemma 2.1,we have the result.  
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Theorem 3.2.Let ( )q z  be convex univalent in U , 0 1  , C  with ( ) 0Re   . Suppose 

( )

( )
( ) [ (0) 1]

g z

f z
H q     and  

 
( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

g z g z f z g z
z

f z g z f z f z

 
 

   (20) 

be univalent in U . If  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

g z g z f z g z
q z zq z z

f z g z f z f z

 




 
   p  (21) 

then  

 
( )

( ) ( )
( )

g z
q z

f z

p  (22) 

and ( )q z  is the best subordinant.   

 

Proof. Let 
( )

( )
( ) ( )

g z

f z
p z  . Then Theorem 3.2 follows by an application of Lemma 2.2.  

Combining the results of differential subordination and superordination, we obtain the following sandwich result.  

 

Corollary 3.3.Let 1( )q z  be univalent and let 2 ( )q z  be convex univalent in U , 0 1   and C  with 

( ) 0Re   . Suppose 2 ( )q z  satisfies (14). If 
( )

1( )
( ) [ (0) 1]

g z

f z
H q    , 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )( )

g z g z f z g z

f z g z f z f z
z 

 
   is 

univalent in U , and  

 1 1 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

g z g z f z g z
q z zq z z q z zq z

f z g z f z f z

  


 

 
    p p  (23) 

then  

 1 2

( )
( ) ( ) ( )

( )

g z
q z q z

f z

p p  (24) 

and 1( )q z  and 2 ( )q z  are respectively the best subordinant and the best dominant.   

For 1   and ( )g z z , we get the following corollary.  

 

Corollary 3.4.Let 1( )q z  be univalent and let 2 ( )q z  be convex univalent in U , 0 1  . Suppose 2 ( )q z  satisfies 

(14). If 
( )

1( )
( ) [ (0) 1]

g z

f z
H q    , 

( )

( ) ( )
(2 )( )

zf z z
f z f z


  is univalent in U , and  

 1 1 2 2

1 ( ) 1
( ) ( ) (2 )( ) ( ) ( )

( ) ( )

zf z z
q z zq z q z zq z

f z f z



 


   p p   (25) 

then  

 1 2( ) ( ) ( )
( )

z
q z q z

f z

p p  (26) 

and 1( )q z  and 2 ( )q z  are respectively the best subordinant and best dominant.   

 

4. Open Problem 

Let H  be the class of analytic functions in { 1}U z C z    , and [ ]H a p  be the subclass of H  consisting of 

functions of the form  

 
1

1( ) p p

p pf z a a z a z 

     (27) 

Let ( )A p  be the subclass of H  consisting of functions of the form  

 
1 2

1 2( ) p p p

p pf z z a z a z 

      (28) 
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A function ( )f A p  is said to be in the class ( )S p
 of p -valent starlike functions in U , if it satisfies the inequality 

( )

( )
( ) 0

zf z

pf z
Re z U


      

Let ( ) ( )f z A p  and ( ) ( )g z S p . We can consider sufficient conditions on 1 2h q q   and   for which the 

following implication holds:  

 
1 2

( )
( ) ( ) ( )

( )

g z
q z q z

f z

 p p  (29) 

 

or  

 1 2

(1 ) ( ) ( )
( ) ( ) ( )

( )

f z zf z
q z q z

g z

   
p p  (30) 

 

where 0 1   and 0 1  .  
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