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Abstract: In this paper, the boundary layer flow over a flat plate was presented and discussed. The equations governing 
the boundary layer and the energy equation were equally considered. Modified Adomian decomposition method 

discussed and used with the Runge-Kutta shooting method to solve the Blasius equation and the Energy equation arising 

from the equations governing the boundary layer flow. Numerical results were obtained and each of the methods used 

converges to the true solution as the velocity profile increased to a steady state. The obtained results for the Blasius 

equation revealed one of the features of boundary layer that the boundary layer increases from the edge of the boundary 

layer into the free steam. Different values of Prandtl number used for the obtained results for the energy equation 
revealed that as the Prandtl number used increases, the boundary layer thickness reduces which established the stability 

function of the Prandtl number on the temperature. Values for the skin friction (the measure of velocity profile at the 

wall) as well as the Nusselt number (the heat transfer rate at the wall) were calculated from the results obtained for the 

Blasius equation and the Energy equation. Using the Runge-Kuta shooting method as the standard value, it revealed that 

Modified Adomian Decomposition Method is a good approximation value to Nusselt number. 

Keywords: Boundary layer flow, Modified Adomian Decomposition Method, Runge-Kutta shooting method 

INTRODUCTION  

Background of the Study 

 Boundary layer flows, according to Stern[1], are the external flows around streamlined bodies at high Reynolds 

numbers that have viscous (shear and no-slip) effects confined close to the body surfaces and its wake, but are nearly 

inviscid far from the body. Boundary layer flow, according to Burr et al [2], is the flow of that portion of a viscous fluid 

which is in the neighbourhood of a body in contact with the fluid and in motion relative to the fluid. That portion of a 

fluid flow, near a solid surface, where shear stresses are significant and the inviscid- flow assumption may not be used. 
Thus a fluid flow is retarded by a fixed solid surface, and is finite, slow-moving boundary flow is formed. A requirement 

for the boundary layer to be thin is that Reynolds number of the body be large, i.e 103 or more. Under these conditions 

the flow outside the boundary layer is essentially inviscid and plays the role of a driving mechanism for the layer. 

Boundary layer theory is applied in the fields of aerodynamics (airplanes, rockets, projectiles), hydrodynamics (ships, 

submarines, torpedoes), transportation (automobiles, trucks, cycles), wind engineering (building, bridges, water towers), 

and ocean engineering (buoys, breakwaters, cables)[1]. 

 

Over time, it has been discovered that most scientific problems and physical phenomena occur in the form of 

differential equations and many of these problems are either linear or nonlinear. Problems involving, especially, heat 

transfer, boundary layer (to mention a few), are basically nonlinear. Except for a few of these problems, finding the 

analytical solutions to majority of the problems is always difficult. However, these nonlinear equations can be solved by 

numerical techniques and other methods of approximation like the Adomian Decomposition Method (ADM) and the 
Variational Iteration method (VIM). Of recent, increased interest has been geared towards the variational and 

perturbation methods, where a small parameter is inserted into the equation. One major problem associated with this is 

how to find the small parameter and inserting it into the equation.   

 

In this paper, Modified Adomian Decomposition Method (MADM) and the Runge-Kuta Shooting method were 

used in getting the approximate solutions to the Blasius equation and the Energy equation arising from equations 

governing the boundary layer flow over a flat plate. 
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 LITERATURE REVIEW 

According to Veldman [3], it all started in 1904 at the International Congress in Heidelberg, when Ludwig 

Prandtl gave a lecture titled “Uber FlussigkeitsbewegungenbeisehrkleinerReibung” (English: “On fluid flow with very 

little friction”). He explained that the viscosity of a fluid plays a role in a (very) thin layer adjacent to the surface, which 

he called “Uebergangsschicht” or “Grenzschicht”. Translated into English, the latter led to the term boundary layer. 

With this lecture, the understanding of fluid flow was significantly increased.  
 

Many physical problems can be described by mathematical models that involve differential equations. 

Mathematical modelling involves physical observation, selection of the relevant physical variables, formulations of the 

equations, analysis of the equations, simulation, and finally, validation of the model. The means of mathematical models 

is an equation, or set of equations, whose solutions describe the physical behaviour of a related physical system. In other 

words, a mathematical model is a simplified description of physical reality expressed in mathematical terms. The 

behaviour of each model is governed by the input data for the particular problem: the boundary and initial conditions, the 

co-efficient functions of the differential equation, and the forcing function. This input data causes the solution of the 

model problem to possess highly localized properties in space, in time, or in both. Thus, the investigation of the exact or 

approximate solution helps us to understand the means of these mathematical models. In most cases, it is difficult, or 

infeasible, to find the analytical solution or good numerical solution of the problems. Numerical solution or approximate 

analytical solutions become necessary[4].  

 

The Adomian Decomposition Method 
In the 1980’s, George Adomian (1923-1996) introduced a new powerful method for solving nonlinear functional 

equations. Since then, this method has been known as the Adomian decomposition method (ADM) [5-6]. The technique 

is based on a decomposition of a solution of a linear operator equation in a series of functions. Each term of the series is 

obtained from the polynomial generated from an expansion of an analytic function into a power series. The Adomian 

technique is simple in an abstract formulation but the difficulty arises in calculating the polynomials and in proving the 

convergence of the series of functions[7]. 

 

The Adomian Decomposition Method (ADM) allows exact solutions of nonlinear functional equations of 

various kinds (algebraic, differential, partial differential, integral, and others) without discretizing the equations or 
approximating the operators. The solution, when it exists, is found in a rapidly converging series form, and time and 

space are not discretized. The decomposition method yields rapidly convergent series solutions by using a few iterations 

for both linear and nonlinear deterministic and stochastic equations. The advantage of this method is that it provides a 

direct scheme for solving the problem, i.e., without the need for linearization, perturbation, massive computation and any 

transformation.  

 

Convergence of the Adomian method when applied to some classes of ordinary and partial differential equations 

is discussed by many authors. For example, Abbaoui and Cherrualt [8] proved the convergence of the Adomian method 

for differential and operator equations. Lesnic [9] investigated convergence of the ADM when applied to time-dependent 

heat, wave and beam equations for both forward and backward time evolution. He showed that the convergence was 

faster for forward problems than for backward problems. Al-Khaled and Allan [10] implemented the Adomian method 

for variable-depth shallow water equations with a source term and illustrated the convergence numerically. 

 

METHODOLOGY 

 In this session, we described the formulation of the model equations and the Modified Adomian Decomposition 

Method (MADM).  

 

Governing Equations 

Boundary layer flow over a flat plate is governed by the continuity and the Navier-Stokes equations. Under the boundary 

layer assumptions and a constant property assumption, the continuity and Navier-Stokes equations become[11]: 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                           (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝑑𝑃

𝑑𝑥
+ 𝑣

𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽 𝑇 − 𝑇∞                                                   (2) 

 

Under a boundary layer assumption, the energy transport equation is also simplified. 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2                                                                                       (3) 

 

From Eqs. (2) and (3), the solutions of the energy and momentum equations are coupled[12]; however, the 

buoyancy force may be neglected if there is a pressure gradient perpendicular to the gravitational force. Thus, in the case 
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of the forced convection over a horizontal flat plate, the solution to the momentum equation is decoupled from the energy 

solution. However, the solution of the energy equation is still linked to the momentum solution. Introducing the 

following dimensionless variables in the transformation: 

𝜂 =
𝑦

 𝑥
𝑅𝑒𝑥

0.5,                                                                                          (4) 

𝜃 𝜂 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
                                                                                                  (5) 

 

where𝞱 is non dimensional form of the temperature and the Reynolds number is defined as: 

𝑅𝑒 =
𝑢∞𝑥

𝑣
.                                                                                                (6) 

 

Using Eqs. (1) through (5), the governing equations are reduced to two equations of third and second order differential 

equations where f is a function of the similarity variable (𝜂): 

𝑓′′′ +
1

2
𝑓𝑓 ′′ = 0,              𝜀𝜃 ′′ + 𝑓𝜃 ′ = 0                                                 (7) 

Where 𝜀 =
1

𝑝𝑟
 and f  is related to the u velocity by  

𝑓′ =
𝑢

𝑢∞
.                                                                                               (8) 

 

The reference velocity is the free stream velocity of forced convection. The boundary conditions are obtained from the 

similarity variables. For the forced convection case [14]: 

𝑓 0 = 0,     𝑓′ 0 = 0,      𝜃 0 = 1,    𝑓′ ∞ = 1,        𝜃 ∞ = 0.                            (9) 

 

The Energy Equation 

Under a boundary layer assumption, the energy transport equation is also simplified as 

U
∂T

∂x
+ V

∂T

∂y
= α

∂2T

∂y2                                                                      (10) 

T = Tw      𝑎𝑡     𝑦 = 0 

T = T∞              𝑦 → ∞ 
with the following dimensionless variables introduced in the transformation   

T = T∞ +  Tw − t∞ θ η                                                                     (11) 

θ 0 = 1 

θ ∞ = 0 

where𝜃 is nondimensional form of the temperature and the Reynolds number is defined as: 

𝑅𝑒 =
𝑢∞𝑥

𝑣
 , which is reduced to  

1

𝑃𝑟
𝜃 ′′ + 𝑓𝜃 ′ = 0                                           

 

The Modified Adomian Decomposition Method (MADM) for Differential Equations 
 To describe this method according to Ebaid and Al-Armani [13] we consider the second order differential 

equation:   

𝑢′′ 𝑡 + 𝑝 𝑡 𝑢′ 𝑡 + 𝑞 𝑡 𝑓 𝑡 𝑢′ 𝑡 = 0,                                                                                                      (12) 
Subject to the boundary conditions 

𝑢 𝑎 = 𝛼,     𝑢 𝑏 = 𝛽,                                                                                                                                       (13) 

Where at least one of the functions 𝑝 𝑡  and 𝑞(𝑡) has a singular point and 𝑓(𝑡) is an unspecified function. We first write 

(12) as  

𝑢′′ 𝑡 = −𝑝 𝑡 𝑢′ 𝑡 − 𝑞 𝑡 𝑓 𝑡 𝑢′ 𝑡 .                                                                (14) 
 

Now, suppose that 𝑝(𝑡) and 𝑞(𝑡) have the same singular point (𝑡 = 𝑡0 , say), the following inverse operator was proposed 

to solve (14) with the boundary conditions in (13): 

𝐿−1 ∙ =  𝑑
𝑡

𝑎
𝑡 ′   ∙ 𝑑𝑡 ′′ −

𝑡−𝑎

𝑏−𝑎
 𝑑𝑡 ′   ∙ 𝑑𝑡 ′′,

𝑡 ′

𝑐

𝑏

𝑎

𝑡 ′

𝑐
                                                           (15) 

𝑎 ≠ 𝑏,        𝑐 (arbitrary) ≠ 𝑡0 . 
 

Operating both sides of (14) with this inverse operator, we have 

𝑢 𝑡 − 𝑢 𝑎 −
𝑡−𝑎

𝑏−𝑎
 𝑢 𝑏 − 𝑢(𝑎) = −𝐿−1 𝑝 𝑡 𝑢′ 𝑡 + 𝑞 𝑡 𝑓 𝑡 𝑢′(𝑡) ,                                               (16) 

which can be rewritten as 

𝑢 𝑡 = 𝛼 +
𝑡−𝑎

𝑏−𝑎
 𝛽 − 𝛼 − 𝐿−1 𝑝 𝑡 𝑢′ 𝑡 + 𝑞 𝑡 𝑓 𝑡 𝑢′(𝑡) .                                                      (17) 
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Based on Adomian’s method, the solutions 𝑢(𝑡) and 𝑓(𝑡) of the system are assumed in the following form: 

𝑢 𝑡 =  𝑢𝑛  𝑡 ,∞
𝑛=0                𝑓 𝑡 =  𝑓𝑛  𝑡 .  ∞

𝑛=0                                                           (18) 

 

Inserting these series into (16), we obtain                                                                                                                                                                                                                                                                                                                                                                              

 𝑢𝑛 (𝑡)∞
𝑛=0 = 𝛼 +

𝑡−𝑎

𝑏−𝑎
 𝛽 − 𝛼 − 𝐿−1 𝑝(𝑡) 𝑢𝑛

′  𝑡 + 𝑞(𝑡)  𝑓𝑖 𝑡 𝑢𝑛−𝑖
′ (𝑡)𝑛

𝑖=0
∞
𝑛=0

∞
𝑛=0   (3.42) 

Substituting 𝑝 𝑡 = −(1/(1 − 𝑡) 𝑎𝑛𝑑 𝑞 𝑡 = 𝛾(1/(1 − 𝑡) into (18) yields  

 𝑢𝑛 (𝑡)∞
𝑛=0 = 𝛼 +

𝑡−𝑎

𝑏−𝑎
 𝛽 − 𝛼 + 𝐿−1   

1

1−𝑡
  𝑢𝑛

′  𝑡 − 𝛾  
1

1−𝑡
   𝑓𝑖 𝑡 𝑢𝑛−𝑖

′ (𝑡)𝑛
𝑖=0

∞
𝑛=0

∞
𝑛=0                (19) 

 

To overcome the difficulty of the singular point, we may replace the function 1/(1 − 𝑡) with the series form  𝑡𝑛 ,∞
𝑛=0  

where 𝑡 ∈  0, 1 . thus, we have 

 𝑢𝑛 (𝑡)∞
𝑛=0 = 𝛼 +

𝑡−𝑎

𝑏−𝑎
 𝛽 − 𝛼 + 𝐿−1   𝑡𝑛−𝑖𝑢𝑖

′  𝑡 − 𝛾     𝑡𝑛−𝑗𝑓𝑖 𝑡 𝑢𝑗−𝑖
′ (𝑡)

𝑗
𝑖=0

𝑛
𝑗=0  ∞

𝑛=0
𝑛
𝑖=0

∞
𝑛=0                   (20)                                  

According to the modified decomposition method, the solution 𝑢(𝑡) can be evaluated by using the recurrence scheme: 

𝑢0 𝑡 = 𝛼 

𝑢1 𝑡 =
𝑡 − 𝑎

𝑏 − 𝑎
 𝛽 − 𝛼 + 𝐿−1 𝑢0

′  𝑡 − 𝛾𝑓0 𝑡 𝑢0
′ (𝑡) , 

𝑢𝑛+1 𝑡 = 𝐿−1  𝑡𝑛−𝑖𝑢𝑖
′  𝑡 − 𝛾   𝑡𝑛−𝑗𝑓𝑖 𝑡 𝑢𝑗−𝑖

′  𝑡 
𝑗
𝑖=0

𝑛
𝑗=0  𝑛

𝑖=0  ,          𝑛 ≥ 1.                                        (21) 

The algorithms by (21) was applied in the next session to construct the approximate solutions.  

 

RESULTS 

The Modified Adomian Decomposition Method for the Blasius equation 
Recall (7) 

𝑓 ′′′ +
1

2
𝑓𝑓′′ = 0 

Suppose we put   𝑡 = 1 − 𝑒−𝜂  

Where 𝜂 = 0, 𝑡 = 0 𝑎𝑛𝑑 𝜂 = ∞, 𝑡 = 1 
𝑑

𝑑𝜂
=  1 − 𝑡 

𝑑

𝑑𝑡
                                                                        (22) 

𝑑2

𝑑𝜂2 = (1 − 𝑡)2 𝑑2

𝑑𝑡2 −  1 − 𝑡 
𝑑

𝑑𝑡
                                                                 (23) 

𝑑3

𝑑𝜂3 =
𝑑

𝑑𝜂
 (1 − 𝑡)2 𝑑2

𝑑𝑡2 −  1 − 𝑡 
𝑑

𝑑𝑡
                                                                 (24) 

𝑑3

𝑑𝜂3 =
𝑑𝑡

𝑑𝜂

𝑑

𝑑𝑡
 (1 − 𝑡)2 𝑑2

𝑑𝑡2 −  1 − 𝑡 
𝑑

𝑑𝑡
                                                                (25) 

𝑑3

𝑑𝜂3 =  1 − 𝑡  −2 1 − 𝑡 
𝑑2

𝑑𝑡2 + (1 − 𝑡)2 𝑑3

𝑑𝑡3 −  1 − 𝑡 
𝑑2

𝑑𝑡2
                                                       (26) 

𝑑3

𝑑𝜂3 =  1 − 𝑡  −3 1 − 𝑡 
𝑑2

𝑑𝑡2 + (1 − 𝑡)2 𝑑3

𝑑𝑡3 +
𝑑

𝑑𝑡
                                                           (27) 

𝑑3

𝑑𝜂3 = (1 − 𝑡)3 𝑑3

𝑑𝑡3 − 3(1 − 𝑡)2 𝑑2

𝑑𝑡2 +  1 − 𝑡 
𝑑

𝑑𝑡
                                                       (28) 

Substituting (23) and (28) into (7)  

 that is 

𝑓 ′′′ +
1

2
𝑓𝑓′′ = 0 

We have 

(1 − 𝑡)3 𝑑3𝑓

𝑑𝑡3 − 3(1 − 𝑡)2 𝑑2𝑓

𝑑𝑡2 +  1 − 𝑡 
𝑑𝑓

𝑑𝑡
+

1

2
𝑓 𝑡  (1 − 𝑡)2 𝑑2𝑓

𝑑𝑡2 − (1 − 𝑡)
𝑑𝑓

𝑑𝑡
 = 0                              (29) 

(1 − 𝑡)3 𝑑3𝑓

𝑑𝑡3 − 3(1 − 𝑡)2 𝑑2𝑓

𝑑𝑡2 +  1 − 𝑡 
𝑑𝑓

𝑑𝑡
+

1

2
(1 − 𝑡)2𝑓

𝑑2𝑓

𝑑𝑡2 −
1

2
 1 − 𝑡 𝑓

𝑑𝑓

𝑑𝑡
= 0                                  (30) 

𝑑3𝑓

𝑑𝑡3 −
3

(1−𝑡)

𝑑2𝑓

𝑑𝑡2 +
1

(1−𝑡)2

𝑑𝑓

𝑑𝑡
+

1

2(1−𝑡)
𝑓

𝑑2𝑓

𝑑𝑡2 −
1

2(1−𝑡)2 𝑓
𝑑𝑓

𝑑𝑡
= 0                                                         (31) 

𝑑3𝑓

𝑑𝑡3 =
3

(1−𝑡)

𝑑2𝑓

𝑑𝑡2 −
1

(1−𝑡)2

𝑑𝑓

𝑑𝑡
−

1

2 1−𝑡 
𝑓

𝑑2𝑓

𝑑𝑡2 +
1

2(1−𝑡)2 𝑓
𝑑𝑓

𝑑𝑡
                                                        (32) 

Given  

1

(1 − 𝑡)
=  𝑡𝑛

∞

𝑛=0

,       
1

(1 − 𝑡)2
=  𝑡𝑛

∞

𝑛=0

 𝑡𝑚
∞

𝑚=0

=   𝑡𝑛−𝑚

𝑛

𝑚=0

∞

𝑛=0

 

𝑎𝑛𝑑 
𝑑2𝑓

𝑑𝑡2
=  𝑓𝑛

′′

∞

𝑛=0

 

But (1 + 𝑡)𝑛 = 1 + 𝑛𝑡 +
𝑛 𝑛−1 

2!
𝑡2 + ⋯ 
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=  (𝑛 + 1)𝑡𝑛
∞

𝑛=0

 

=
3  𝑡𝑛−𝑚𝑛

𝑚=0 𝑓𝑚
′′ −∞

𝑛=0

𝑛=0∞𝑚=0𝑛𝑗=0𝑚𝑡𝑛−𝑚𝑡𝑚−𝑗𝑓𝑗′−12𝑛=0∞𝑚=0𝑛𝑗=0𝑚𝑡𝑛−𝑚𝑓𝑚−𝑗𝑓𝑗′′+12𝑛=0∞𝑚=0𝑛𝑗=0𝑚𝑘=0𝑗𝑡𝑛−𝑚𝑡𝑚−𝑗𝑓𝑗−𝑘
𝑓𝑘′       (33) 
=   3 𝑡𝑛−𝑚𝑓𝑚

′′ −   𝑡𝑛−𝑗𝑓𝑗
′ −

1

2
  𝑡𝑛−𝑚𝑓𝑚−𝑗𝑓𝑗

′′ +
1

2
   𝑡𝑛−𝑗𝑓𝑗−𝑘𝑓𝑘

′𝑗
𝑘=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑛
𝑚=0  ∞

𝑛=0              (34) 

𝑓𝑛+1 =
𝑓 ′′(0)

2
𝑡2 + 𝑓′(0)𝑡 + 𝑓 0                                                                   (35) 

= 𝐴𝑡2 +     3 𝑡𝑛−𝑚𝑓𝑚
′′ −  𝑡𝑛−𝑗 𝑓𝑗

′ −
1

2
  𝑡𝑛−𝑚𝑓𝑚−𝑗 𝑓𝑗

′′ +
1

2
   𝑡𝑛−𝑗 𝑓𝑗−𝑘𝑓𝑘

′𝑗
𝑘=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑛
𝑚=0        (36) 

𝑓0 𝑡 = 𝐴𝑡2                                                                         (37) 

𝑓𝑛+1 =     3 𝑡𝑛−𝑚𝑓𝑚
′′ −   𝑡𝑛−𝑗 𝑓𝑗

′ −
1

2
  𝑡𝑛−𝑚𝑓𝑚−𝑗𝑓𝑗

′′ +
1

2
   𝑡𝑛−𝑗𝑓𝑗−𝑘𝑓𝑘

′𝑗
𝑘=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑚
𝑗=0

𝑛
𝑚=0

𝑛
𝑚=0  = 0                (38)                          

(Using MAPLE 14 to solve) 

6𝐴 − 2𝐴𝑡 − 1.000000000𝐴2𝑡2 + 1.000000000𝐴2𝑡3 = 0 

= 𝐴𝑡3 −
1

12
𝐴𝑡4 −

1

60
𝐴2𝑡5 +

1

120
𝐴2𝑡6 

𝑓1 𝑡 = 𝐴𝑡3 −
1

12
𝐴𝑡4 −

1

60
𝐴2𝑡5 +

1

120
𝐴2𝑡6                                                             (39) 

𝑓2 𝑡 =
1

21600
𝐴3𝑡10 −

23

6048  0
𝐴3𝑡9 +

1

8
 

11

2520
𝐴3 −

1

140
𝐴2 𝑡8 +

71

2520
𝐴2𝑡7 +

1

6
 −

3

10
𝐴2 +

1

60
𝐴 𝑡6 −

1

6
𝐴𝑡5 + 𝐴𝑡4     (40) 

𝑓 𝑡 = 𝑓0 + 𝑓1 + 𝑓2 + ⋯ 

𝑓 𝑡 = 𝐴𝑡2 +  𝐴𝑡3 −
1

12
𝐴𝑡4 −

1

60
𝐴2𝑡5 +

1

120
𝐴2𝑡6 +

1

21600
𝐴3𝑡10 −

23

60480
𝐴3𝑡9 +

1

8
 

11

2520
𝐴3 −

1

140
𝐴2 𝑡8

+
71

2520
𝐴2𝑡7 +

1

6
 −

3

10
𝐴2 +

1

60
𝐴 𝑡6 −

1

6
𝐴𝑡5 + 𝐴𝑡4 

𝑓 𝑡 =  𝐴𝑡2 +  𝐴𝑡3 +
11

12
𝐴𝑡4 −

1

60
𝐴2𝑡5 +

1

120
𝐴2𝑡6 +

1

21600
𝐴3𝑡10 −

23

60480
𝐴3𝑡9             +

1

8
 

11

2520
𝐴3 −

1

140
𝐴2 𝑡8 +

71

2520
𝐴2𝑡7 +

1

6
 −

3

10
𝐴2 +

1

60
𝐴 𝑡6 −

1

6
𝐴𝑡5                              (41) 

𝑓′ 𝑡 = 2𝐴𝑡 + 3𝐴𝑡2 +
11

3
𝐴𝑡3 −

1

12
𝐴2𝑡4 +

1

20
𝐴2𝑡5 +

1

2160
𝐴3𝑡9 −

23

6720
𝐴3𝑡8 +  

11

2520
𝐴3 −

1

140
𝐴2 𝑡7 +

71

360
𝐴2𝑡6 +

 −
3

10
𝐴2 +

1

60
𝐴 𝑡5 −

5

6
𝐴𝑡4                                                                  (42) 

 

Substituting  𝑡 = 1 − 𝑒−𝜂  into (41) and (42) respectively, we have 

𝑓 𝜂 = 𝐴(1 − 𝑒−𝜂 )2 + 𝐴(1 − 𝑒−𝜂 )3 +
11

12
𝐴(1 − 𝑒−𝜂 )4 −

1

60
𝐴2(1 − 𝑒−𝜂 )5 +

1

120
𝐴2(1 − 𝑒−𝜂 )6 +

1

21600
𝐴3(1 − 𝑒−𝜂 )10 −

23

60480
𝐴3(1 − 𝑒−𝜂 )9 +

1

8
 

11

2520
𝐴3 −

1

140
𝐴2 (1 − 𝑒−𝜂 )8 +

71

2520
𝐴2(1 − 𝑒−𝜂 )7 +

1

6
 −

3

10
𝐴2 +

1

60
𝐴 (1 − 𝑒−𝜂 )6 −

1

6
𝐴(1 − 𝑒−𝜂 )5 (43) 

𝑓 ′ 𝜂 = 2𝐴 1 − 𝑒−𝜂  + 3𝐴(1 − 𝑒−𝜂 )2 +
11

3
𝐴(1 − 𝑒−𝜂 )3 −

1

12
𝐴2(1 − 𝑒−𝜂 )4 +

1

20
𝐴2(1 − 𝑒−𝜂 )5 +

1

2160
𝐴3(1 − 𝑒−𝜂 )9 −

23

6720
𝐴3(1 −

𝑒−𝜂 )8 +  
11

2520
𝐴3 −

1

140
𝐴2 (1 − 𝑒−𝜂 )7 +

71

360
𝐴2(1 − 𝑒−𝜂 )6 +  −

3

10
𝐴2 +

1

60
𝐴 (1 − 𝑒−𝜂 )5 −

5

6
𝐴(1 − 𝑒−𝜂 )4                                 (44) 

 

Substituting 𝜂 = 5 into (44), we have 

7.744293347𝐴 − 0.1402308544𝐴2 + 0.001356525634𝐴3 = 1                                         (45)       
Solving (45), we have 

𝐴 = 0.1294303030, 51.62279111 + 55.051268271, 51.62279111 − 55.051268271 

∴ 𝐴 = 0.1294303030since other values are imaginary 

 

Substituting 𝐴 into (44), we have 

𝑓′ 𝜂 = 0.2588606060 − 0.2588606060𝑒−𝜂 + 0.3882909090(1 − 𝑒−𝜂)2 + 0.4745777777(1 − 𝑒−𝜂 )3 −
0.1092546027(1 − 𝑒−𝜂 )4 − 0.002030879110(1 − 𝑒−𝜂)5 + 0.000001003816090(1 − 𝑒−𝜂 )9 −
0.000007421068950(1 − 𝑒−𝜂)8 − 0.0001101940435(1 − 𝑒−𝜂)7 + 0.003303906768(1 − 𝑒−𝜂)6               (46) 

𝜂 → 0.2588606060 − 0.2588606060𝑒−𝜂 + 0.3882909090(1 − 𝑒−𝜂)2 + 0.4745777777(1 − 𝑒−𝜂 )3

− 0.1092546027(1 − 𝑒−𝜂)4 − 0.002030879110(1 − 𝑒−𝜂 )5 + 0.000001003816090(1 − 𝑒−𝜂)9

− 0.000007421068950(1 − 𝑒−𝜂)8 − 0.0001101940435(1 − 𝑒−𝜂)7 + 0.003303906768(1 − 𝑒−𝜂)6 
 

Modified Adomian Decomposition Method for the Energy Equation 

        Recall (7), that is, 

 

𝜃 ′′ + 𝑃𝑟𝑓𝜃 ′ = 0 

𝜃 0 = 1 
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𝜃 ∞ = 0 
Recall  

𝑡 = 1 − 𝑒−𝜂  
But  
𝑑

𝑑𝜂
=  1 − 𝑡 

𝑑

𝑑𝑡
                                                                        (47) 

𝑑2

𝑑𝑡2 = (1 − 𝑡)2 𝑑2

𝑑𝑡2 −  1 − 𝑡 
𝑑

𝑑𝑡
                                                   (48) 

1

𝑝𝑟
𝜃 ′′ + 𝑓𝜃 ′ = 0 becomes 

1

𝑝𝑟
 (1 − 𝑡)2 𝑑2𝜃

𝑑𝑡2 −  1 − 𝑡 
𝑑𝜃

𝑑𝑡
 + 𝑓 𝑡  1 − 𝑡 

𝑑𝜃

𝑑𝑡
= 0                                                              (49) 

(1 − 𝑡)2 𝑑2𝜃

𝑑𝑡2 −  1 − 𝑡 
𝑑𝜃

𝑑𝑡
+ 𝑝𝑟𝑓 𝑡  1 − 𝑡 

𝑑𝜃

𝑑𝑡
= 0                                                            (50) 

𝑑2𝜃

𝑑𝑡2 −
1

1−𝑡

𝑑𝜃

𝑑𝑡
+ 𝑝𝑟𝑓 𝑡 

1

1−𝑡

𝑑𝜃

𝑑𝑡
= 0                                                                    (51) 

𝑑2𝜃

𝑑𝑡2 =
1

1−𝑡

𝑑𝜃

𝑑𝑡
− 𝑝𝑟𝑓 𝑡 

1

1−𝑡

𝑑𝜃

𝑑𝑡
                                                                  (52) 

 
𝑑2𝜃

𝑑𝑡2 =  1 − 𝑝𝑟𝑓 𝑡  
1

1−𝑡

𝑑𝜃

𝑑𝑡
                                                                   (53) 

Recall  

𝑑2𝜃

𝑑𝑡2
=  𝜃𝑛

′′

∞

𝑛=0

,   
𝑑𝜃

𝑑𝑡
=  𝜃𝑛

′  𝑎𝑛𝑑 
1

1 − 𝑡
=  𝑡𝑛

∞

𝑛=0

∞

𝑛=0

 

Substituting into (53), we have 
=   1 − 𝑝𝑟𝑓 𝑡   𝑡𝑛  𝜃𝑛

′∞
𝑛=0

∞
𝑛=0                                                                   (54) 

=  1 − 𝑝𝑟𝑓 𝑡    𝑡𝑛−𝑚𝜃𝑚
′𝑛

𝑚=0
∞
𝑛=0                                                                 (55) 

=   𝑡𝑛−𝑚𝜃𝑚
′𝑛

𝑚=0
∞
𝑛=0 − 𝑝𝑟   𝑡𝑛−𝑚𝜃𝑚

′𝑚
𝑗=0

𝑛
𝑚=0

∞
𝑛=0 𝑓𝑚−𝑗                                                        (56) 

𝜃𝑛+1 =  𝑡𝑛−𝑚𝜃𝑚
′𝑛

𝑚=0 − 𝑝𝑟  𝑡𝑛−𝑚𝜃𝑚
′𝑚

𝑗=0
𝑛
𝑚=0 𝑓𝑚−𝑗                                                          (57) 

 
Using MAPLE to solve (57) with the initial conditions, we have 
𝜃0 𝑡 = 1 + 𝐵𝑡                                                                               (58) 

𝜃1 𝑡 =
1

2
𝐵𝑡2 −

71

1200
𝐴𝐵𝑡4                                                                     (59) 

𝜃2 𝑡 =
19

1492561
𝐴3𝐵𝑡11 −

235

7552073
𝐴3𝐵𝑡10 −

469

1695228
𝐴2𝐵𝑡9 +

1349

420000
𝐴2𝐵𝑡8 +

1

7
 

71

7200
𝐴𝐵 +

5041

180000
𝐴2𝐵 𝑡7 −

71

3000
𝐴𝐵𝑡6 −

497

6000
𝐴𝐵𝑡5 +

1

3
𝐵𝑡3                                                                        (60) 

𝜃𝑛 𝑡 = 1 + 𝐵𝑡 +
1

2
𝐵𝑡2 −

71

1200
𝐴𝐵𝑡4+ 

19

1492561
𝐴3𝐵𝑡11 −

235

7552073
𝐴3𝐵𝑡10 −

469

1695228
𝐴2𝐵𝑡9 +

1349

420000
𝐴2𝐵𝑡8 +

1

7
 

71

7200
𝐴𝐵 +

5041

180000
𝐴2𝐵 𝑡7 −

71

3000
𝐴𝐵𝑡6 −

497

6000
𝐴𝐵𝑡5 +

1

3
𝐵𝑡3                                                                                            (61) 

 
But 𝑡 = 1 − 𝑒−𝜂 ,𝐴 = 0.1294303030, substituting into (61) , we have  

𝜃𝑛 𝑡 = 1 + 𝐵 1 − 𝑒−𝜂 +
1

2
𝐵(1 − 𝑒−𝜂 )2 − 0.007657959594𝐵(1 − 𝑒−𝜂)4 + 2.76012922310−8𝐵(1 − 𝑒−𝜂)11 −

6.74698254610−8𝐵(1 − 𝑒−𝜂)10 − 0.000004634646998𝐵(1 − 𝑒−𝜂)9 + 0.00005380648165𝐵(1 − 𝑒−𝜂)8 +

0.0002493544800𝐵(1 − 𝑒−𝜂)7 − 0.003063183838𝐵(1 − 𝑒−𝜂)6 − 0.01072114343𝐵(1 − 𝑒−𝜂)5 +
1

3
𝐵(1 − 𝑒−𝜂)3                                                                 

(62) 
 
Using 𝜂 = 5, we have 

1 + 1.792712054𝐵 = 0, 𝐵 = −0.5578140660 
Now substituting for B in (62), we have 
𝜃𝑛 𝑡 = 0.4421859340 + 0.5578140660𝑒−𝜂 − 0.2789070330(1 − 𝑒−𝜂)2 + 0.004271717578(1 − 𝑒−𝜂)4 −
1.53963890510−8(1 − 𝑒−𝜂 )11 + 3.76356176710−8(1 − 𝑒−𝜂 )10 + 0.000002585271286(1 − 𝑒−𝜂)9 −
0.00003001401231(1 − 𝑒−𝜂)8 − 0.0001390934364(1 − 𝑒−𝜂)7 + 0.001708687032(1 − 𝑒−𝜂 )6 +
0.005980404609(1 − 𝑒−𝜂)5 − 0.1859380220(1 − 𝑒−𝜂)3                                                                                              (63) 
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Table-1: Table of results for the Blasius equation and Energy equation 

 Pr=0.71 

BLASIUS EQUATION ENERGY EQUATION 

�       MADM R-KSM MADM  R-KSM 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

3.2 

3.4 

3.6 

3.8 

4 

4.2 

4.4 

4.6 

4.8 

5 
 

0 

0.062390598 

0.143255013 

0.234890891 

0.329480239 

0.421209531 

0.506439171 

0.583271598 

0.651031284 

0.709824783 

0.760214984 

0.802997586 

0.839056257 

0.869273938 

0.894482298 

0.915436120 

0.932803367 

0.947164691 

0.959018247 

0.968787224 

0.976828403 

0.983440825 

0.988873980 

0.993335256 

0.996996548 

0.999999999 
 

0 

0.06722664 

0.13440071 

0.20138692 

0.26796197 

0.33381881 

0.39857458 

0.46178348 

0.52295447 

0.58157389 

0.63713192 

0.68915154 

0.73721742 

0.78100210 

0.82028696 

0.85497555 

0.88509772 

0.91080418 

0.93235251 

0.95008607 

0.96440855 

0.97575711 

0.98457680 

0.99129836 

0.99632087 

0.99999999 
 

1 

0.888619337 

0.779199047 

0.674767907 

0.577944661 

0.49037356 

0.412748171 

0.345032201 

0.286704663 

0.236965337 

0.194885864 

0.159511395 

0.129923634 

0.105276141 

0.084810902 

0.067862899 

0.053857461 

0.042303612 

0.032785527 

0.024953415 

0.018514591 

0.013225182 

0.008882672 

0.005319334 

0.00239656 

         0.00000009 
 

1 

0.92450746 

0.84909886 

0.77398947 

0.69953375 

0.62621586 

0.55463206 

0.48546352 

0.41943908 

0.35728945 

0.29969589 

0.24723825 

0.20034793 

0.15927249 

0.12405642 

0.09454097 

0.07038332 

0.05109221 

0.03607418 

0.02468394 

0.01627234 

0.01022661 

0.00599918 

0.00312396 

0.00122223 

0 
 

 

 
Fig-1: Velocity Profile for the MADM and R-KSM methods (Pr=0.71). 
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Fig-2: Temperature profile for various values of the Prandt1 number 

 

 
Fig-3: Temperature profile for MADM and R-KSM methods (Pr=0.71) 

  

DISCUSION 

The discussion under this session was held under three subheadings in order to do justice to the discussion. 

 

Velocity Profile  
The Blasius equation was solved in order to obtain the velocity profile using three distinct approximate methods. 

The methods are the Modified Adomian Decomposition Method (MADM) and the Runge-Kutashooting method (R-

KSM). Figure 1 depicts the velocity profile for the methods. It is observed that each of the methods converges to the true 

solution. It is to be noted that the velocity profile increases steadily until steady state is achieved for the methods. It is 

also noted that the boundary layer increases from the edge of the boundary layer into the free stream which is a feature of 

boundary layer flow. Numerical results obtained are also shown in Table 1 

 

Temperature profile  
The Energy equation was solved in order to obtain the Temperature profile using the two methods, Modified 

Adomian Decomposition Method (MADM) and the Runge-Kutta shooting method (R-KSM). Figure 3 represents the 

Temperature profile for the methods. It is observed that the methods also converge to the true solution. It is to be also 
noted that the Temperature profile decreases steadily until steady state is reached for the two methods. Numerical results 

obtained are also shown in Table 1. 

 

Temperature profile for the various values of the Prandtl number 

 In Figure 2, we studied the impact (influence) of the dimensionless of the only thermo physical parameter arising from 

the flow, i.e. the Prandtl number, which depends on the properties of the substance or fluid. In this paper, the following 

values were used; Pr=0.71 for Air at the following degrees centigrade; 0, +50, 100 and 200, Pr=1 for certain gases, Pr=7 

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6

𝞱
(𝞰

)

Axis Title

MADM

R-KSM



 

Adewoye RA., Sch.  J. Eng. Tech., 2015; 3(4C):520-528 

    528 
    

 

 

for water at 200c and Pr=21 for certain class of lubricating oil. It is observed that as the Prandtl number increases, the 

boundary layer thickness reduces which shows that the Prandtl number plays important role in the boundary layer flow as 

it helps to stabilize the temperature. 

 

CONCLUSION 

In this paper, the boundary layer flow over a flat plate was presented and the Blasius equation and the Energy 
equation arising from the governing equations were also solved using the two approximate methods. The methods are the 

Modified Adomian Decomposition Method (MADM) and the Runge-Kutta shooting Method (R-KSM). Modified 

Adomian Decomposition Method (MADM) is semi-analytic while the Runge-Kutta (R-KSM) shooting method which is 

a finite difference method. In the results obtained, it is revealed that in either case all the two methods converge to the 

true solutions.  
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