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Abstract: In this paper, we propose and analyze a new non-monotone self-adaptive trust region method with fixed step-

size for unconstrained optimization. Unlike the traditional non-monotone trust region method, our algorithm utilizes a 

fixed formula to get the next iterative point if a trial step is not adopted. Besides, the trust region radius of related sub-

problem adjusts itself adaptively. By the above techniques, we can decrease the number of solving sub-problems 

efficiently. Under some standard assumptions, we show that the new proposed method has a global convergence. 
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1. Introduction 

Consider the following unconstrained optimization problem: 

min ( ), ,nf x x RÎ                                                            (1) 

where : nf R R®  is a twice continuously differentiable function. Throughout this paper, we use the following 

notation: 

 || ||×  is the Euclidean norm. 

 ( ) ( ) ng x f x R= Ñ Î  and ( ) n nH x R ´Î  are the gradient and Hessian matrix of f  evaluated at x , respectively. 

 
2( ), ( ), ( )k k k k k kf f x g g x H f x= = = Ñ  and kB  is a symmetric matrix which is either kH  or an 

approximation of kH . 

For solving (1), trust region methods usually compute kd  by solving the quadratic sub-problem: 

1
min ( ) , || || .

2

T T

k k k k km d f g d d B d d= + + £ D                                      (2) 

0kD >  is a trust region radius. The initial and the updating rule of kD  are crucial for the performance of the 

traditional trust region methods [1-3]. Furthermore, it is obvious that the radius kD  in (2) is independent from any 

information about kg  and kB . These facts may increase the number of sub-problems that need solving and decrease the 

efficiency of trust region methods. In order to reduce the number of solving sub-problems, Zhang et al. proposed a 

strategy to determine the trust region radius [1]. Specifically, they solved the sub-problem (2) with 

  µ 1

|| || || ||,p
kk kc g B
-

D =  

where (0,1),c p  is a nonnegative integer and  k kB B iE   is a positive definite matrix for some i . Their method 

utilizes the information of kg  and kB , however, it needs to estimate µ 1

|| ||kB
-

 at each iteration which leads us to some 

additional computations. Inspired by Zhang’s method, Shi et al. [4] proposed a simple adaptive trust region method, in 

which the kD  was computed by the following formula: 
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  µ3|| || ,k k

p T

k k kc g g B gD =                                                       (3) 

where (0,1), k kc B B iE    is a positive definite matrix and p  is a nonnegative integer. 

 

Besides, Mo et al. [15] proposed a non-monotone trust region method with fixed step-size. In their algorithm, the 

step-size is computed by a fixed formula if the trial step is rejected. Thus, it can reduce the number of solving sub-

problems efficiently. The fixed step-size formula was defined by the following equation: 

.
T

k k
k T

k k k

g d

d B d

d
a = -                                                              (4) 

2. Non-monotone technique and our strategy 

Recently, non-monotone techniques are widely used in the line search and trust region methods. In 1982, the first 

non-monotone technique that is the so-called watchdog technique was proposed by Chamberlain et al. [5] for constrained 

optimization to overcome the Maratos effect. Motivated by this idea, Grippo et al. first introduced a non-monotone line 

search technique for Newton’s method in [6]. In 1993, Deng et al. [7] proposed a non-monotone trust region algorithm in 

which they combined non-monotone term and trust region method for the first time. Due to the high efficiency of non-

monotone techniques, many authors are interested in working on the non-monotone techniques for solving optimization 

problems [8-11]. Especially, nowadays some researchers are focused on utilizing non-monotone techniques in adaptive 

trust region method and good numerical results have been achieved [12-14].  

The general non-monotone form is as follows: 

{ }( ) ( )
0 ( )

( ) max , 0,1, 2,...l k l k k j
j m k

f f x f k-
£ £

= = =                                      (5) 

where (0) 0, 0 ( ) min{ , ( 1) 1}m m k M m k= £ £ - +  and 0M ³  is an integer constant. Actually, the most 

common non-monotone ratio is defined as follows: 

( ) ( )

(0) ( )

l k k k

k

k k k

f f x d
r

m m d

- +
=

-
. 

 

Some researchers showed that utilizing non-monotone techniques may improve both the possibility of finding the 

global optimum and the rate of convergence [6, 16]. However, although the non-monotone technique has many 

advantages, Zhang et al. [16] found that it still has some drawbacks and they proposed a new non-monotone form kC . 

Recently, Gu et al. [10] introduced another non-monotone form in 2008 and the new form was computed easier than kC . 

They define 

1

( ) 1;

(1 ) ( ) 2

k

k

k k k k

f x k
D

D f x kh h-

ì =ïï= í
ï + - ³ïî

                                            (6) 

for some fixed (0,1),h Î or a variable kh . At the same time, they have the new non-monotone ratio: 

( )
.

(0) ( )

k k k
k

k k k

D f x d

m m d
r

- +
=

-
                                                        (7) 

Inspired by [4, 10, 15], we use (3), (4) and (6) to present a new non-monotone self-adaptive trust region method with 

fixed step-size. To be specific, the algorithm first solve sub-problem (2) to compute the trial step kd , if the trial step is 

accepted, set 1k k kx x d+ = + . Otherwise, the algorithm generates an iterative point whose step length is defined by (4) 

instead of resolving the sub-problem, i.e. 1k k k kx x da+ = + . What’s more, our algorithm can automatically adjust kD  

of related sub-problems in the each iteration. 

 

The rest of this paper is organized as follows. In Section 3, we introduce the algorithm of non-monotone self-adaptive 

trust region method with fixed step-size. In Section 4, we analyze the new method and prove the global convergence. 

Some conclusions are given in Section 5. 

 

3. New algorithm 

In this paper, we consider the following assumptions that will be used to analyze the convergence properties of the 

below new algorithm (similar to [15]): 

(H1) The level set 
1 1{ | ( ) ( )}nL x R f x f x= Î £ Ì W, where 

nRWÎ  is a closed, bounded set.  
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(H2) There exists a constant 0v >  such that 
2|| ||T

kd B d v d³  for all .nd RÎ  

(H3) ( )f xÑ  is a Lipschitz continuous function, i.e. there exists a constant 0L >  such that 

|| ( ) ( ) || || ||, , nf x f y L x y x y RÑ - Ñ £ - " Î . 

(H4) The constant d  in the following algorithm should satisfy { }( )0, min 1,v Ld Î . 

 

The new algorithm can be described as follows: 

Algorithm 0 

Step 1 An initial point 
0

nx RÎ  and a symmetric matrix 
0

n nB R ´Î  are given. The constants 0 1,m< <  0 1,d< <  

0 1,c< <  0 1,h< <  0,M >  0 0,D >  0t >  and 0e >  are also given. Compute 0( )f x  and set 0k =

. 

Step 2 Compute kg . If  || ||kg e£  then stop, else go to Step 3. 

Step 3 Similar to [17], solve (2) inaccurately to determine kd , satisfying 

   
|| ||

(0) ( ) || || min , ,
|| ||

k
k k k k k

k

g
m m d g

B
t

ì üï ïï ï- ³ Dí ý
ï ïï ïî þ

                                        (8) 

   
|| ||

|| || min , .
|| ||

T k
k k k k

k

g
g d g

B
t

ì üï ïï ï£ - Dí ý
ï ïï ïî þ

                                               (9) 

Step 4 Compute kD  and kr . If kr m³ , set 1=k k kx x d+ + . Otherwise, compute the step length ka  according to (4), 

then set 1=k k k kx x da+ + . 

Step 5 Update 1k+D  on the basis of (3), go to step 6. 

Step 6 Update the symmetric matrix kB  by a quasi-Newton Formula (such as DFP and BFGS formula), set 1k k= +

, go to step 2. 

 

4. Convergence analysis 

For the convenience of expression, we Let { }kI k r m= ³  and { }kJ k r m= < . We need the following lemmas 

in order to prove the convergence of the new algorithm. 

Lemma 1(See Lemma 3.1 in [15]) Suppose that (H2), (H3) and (H4) hold, and Algorithm 0 generates an infinite 

sequence { }kx . Then for all k JÎ , we have  

   1 1 0.
2

T

k k k k

L
f f g d

v

d d
+

æ ö
÷ç- £ - £÷ç ÷çè ø

                                                (10) 

 

Lemma 2 Assume that Algorithm 0 generates an infinite sequence { }kx . Then we have  

1 1 , .k k kf D D k+ +£ £ " Î ¥                                          

Proof. From the definition of kD , we have 1 1 1( )k k k kD f D fh+ + +- = - and 

1 1(1 )( ).k k k kD D f Dh+ +- = - -                                                 (11) 

We consider two cases: 

Case1. k IÎ . From (7) and (8), we have  

1

|| ||
[ (0) ( )] || || min , 0.

|| ||

k
k k k k k k k

k

g
D f m m d g

B
m mt+

ì üï ïï ï- ³ - ³ D ³í ý
ï ïï ïî þ

                       (12) 

Therefore, 

1 1 1( ) 0 ,k k k kD f D fh+ + +- = - ³                                                 (13) 

and 1 1(1 )( ) 0 .k k k kD D f Dh+ +- = - - £                                               

Case2. k JÎ .  
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If 1k I- Î , then from (10) and (13), we have 1 .k k kf f D+ £ £  

If 1 ,k J- Î  let { 1 , }M i i k k i I= < £ - Î . If M = Æ, then from (6) and Lemma 1, we have 

1 1 1k kf f f D+ £ £ £ =L . Now we will use mathematical induction to prove 1k kD D+ £ . 

For 1,k =  
12 1 2 1 1 1(1 ) (1 ) .D D f f f f Dh h h h= + - £ + - = =  For ,k n=  we suppose that we have 

1 .n nD D+ £  Then for 1,k n= +  2 1 2 1 1(1 ) (1 ) .n n n n n nD D f D f Dh h h h+ + + + += + - £ + - =  So we get 

1 .k kD D+ £  From (11) and 0 1,h< <  we know 1 .k kf D+ £  Thus,  

1 1 1 1 1(1 ) (1 ) .k k k k k kD D f f f fh h h h+ + + + += + - ³ + - =                                (14) 

On the other hand, if M ¹ Æ, let { }min |m i i M= Î . Then from Lemma 1, we have 1 1.k k k mf f f+ - +£ £ £L  

Obviously, k m I- Î , then we can get 1 1k m k m k mf D D- + - + -£ £  from Case 1. Thus,

2 1 2 1 1(1 ) (1 ) .k m k m k m k m k m k mD D f D f Dh h h h- + - + - + - - + - += + - £ + - =  By the induction principle, we have 

1k kD D+ £ . Then we can get (14) again. 

Both Case 1 and Case 2 imply that 1 1 .k k kf D D+ +£ £  So the proof is finished. 

 

Lemma 3 Suppose that (H1) holds and the sequence { }kx  is generated by Algorithm 0. Then, the sequence { }kD  is 

convergent.  

Proof. Lemma 2 together with (H1) imply that 

1 1 1 1. . : k k ks t n f D D D fl l + +$ " Î £ £ £ £ ×××£ £¥ . 

This shows that the sequence { }kD  is convergent. 

 

Lemma 4 Suppose that (H2)-(H4) hold and the Algorithm 0 generates an infinite sequence { }kx . Then for all k Î ¥ , 

there exists a constant 0j >  such that    

1

|| ||
(1 ) || || min , ,

|| ||

k
k k k k

k

g
D D g

B
h j+

ì üï ïï ï£ - - Dí ý
ï ïï ïî þ

                                               

where min , 1 .
2

L

v

dt d
j mt

ì üæ öï ïï ï÷ç= - ÷í ýç ÷çï ïè øï ïî þ
 

Proof. We still consider two cases: 

Case1. k IÎ . From (12), we can obtain that 

1

|| ||
|| || min , .

|| ||

k
k k k k

k

g
f D g

B
mt+

ì üï ïï ï£ - Dí ý
ï ïï ïî þ

                                            

Case2. k JÎ . From Lemma1, Lemma 2 and (9), we have 

   

1 1
2

|| ||
1 || || min , .

2 || ||

T

k k k k

k
k k k

k

L
f f g d

v

gL
D g

v B

d d

dt d

+

æ ö
÷ç£ + - ÷ç ÷çè ø

ì üæ ö ï ïï ï÷ç£ - - D÷ í ýç ÷ç ï ïè ø ï ïî þ

 

Let min , 1
2

L

v

dt d
j mt

ì üæ öï ïï ï÷ç= - ÷í ýç ÷çï ïè øï ïî þ
, we can conclude 

   1

|| ||
|| || min , .

|| ||

k
k k k k

k

g
f D g

B
j+

ì üï ïï ï£ - Dí ý
ï ïï ïî þ

                                            (15) 

Considering (6) and (15), we obtain for all k  
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1 1(1 )

|| ||
(1 ) || || min ,

|| ||

|| ||
(1 ) || || min , .

|| ||

k k k

k
k k k k

k

k
k k k

k

D D f

g
D D g

B

g
D g

B

h h

h h j

h j

+ += + -

æ öì üï ï ÷ç ï ï ÷£ + - ç - Dí ý÷ç ÷ï ï ÷çè øï ïî þ

ì üï ïï ï= - - Dí ý
ï ïï ïî þ

 

Lemma 5 Suppose that (H1)-(H4) hold, if there exists a constant 0e >  such that ||g ||k e³ , then for all k Î ¥ , we 

have 

{ }lim min , 0,k k
k

Me
® ¥

D =                                                     (16) 

where 
1

=1 max || || .k k
i k

M B
£ £

+  

Proof. From Lemma 4 and the definition of kM , we have 

   { }1 (1 ) min , .k k k kD D Mh j e e+ - £ - - D                                         (17) 

Using the above inequality and Lemma 3, we have (16) holds immediately. 

Lemma 6 (See Lemma 3.7 in [15]) Suppose that (H1)-(H4) hold and ||g ||k e³  is satisfied for all k Î ¥ , then for all 

sufficiently large k JÎ , we have  

{ }|| || min 1, (1 )k kd Mt e m³ - .        

Lemma 7 Suppose that (H1)-(H4) hold and ||g ||k e³  is satisfied for all k Î ¥ , then for all sufficiently large k , there 

exists a constant ( )1 0,1c Î  such that 

{ }1 min 1, (1 )k kc Mt e mD ³ - .                                                                       

Proof. The proof is similar to Lemma 3.8 in [15], we omit it for convenience. 

Theorem 8 Suppose that (H1)-(H4) hold and { }kB  satisfies 

 

0

1

k kM

+ ¥

=

= + ¥å .                                                            (18) 

Then sequence { }kx  generated by Algorithm 0 satisfies 

lim inf || || 0.k
k

g
® ¥

=  

Proof. Assume that (18) does not hold, then for all k Î ¥ , there exists a constant 0e >  such that ||g ||k e³ . From 

Lemma 7, we have 

   { }min , ,k k kM Me gD ³                                                     (19) 

where { } { }1 1 1 1min , (1 ), min , (1 ) .c c c cg t e m e t e m= - = -  

From (17) and (19), we have 

   ( ) { }1

1 1 1

(1 ) min , (1 ) .k k k k k

k k k

D D M Mh j e e h j e g
¥ ¥ ¥

+

= = =

- ³ - D ³ -å å å  

Using the above inequality and Lemma 3, we have  

   ( )1

0 1

1 1

(1 )
k k

k kk

D D
M h j eg

+ ¥ ¥

+

= =

£ - < ¥
-

å å . This contradicts (18). The proof is completed. 

 

5. Conclusions  

In this paper, we introduce the algorithm of new non-monotone self-adaptive trust region method with fixed step-size 

for unconstrained optimization problems based on (3), (4) and (6). When compared with (5), it is obviously that we fully 

employ the current objective function value kf . Besides, with the help of adaptive trust region radius (3) and fixed step-
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size (4), our algorithm can reduce the number of ineffective iterations so that we can decrease the amount of solving sub-

problems. We analyzed and proved the global convergence theory under some mild conditions.  
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