
 600

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online)

Sch. J. Eng. Tech., 2015; 3(6):600-608 ISSN 2347-9523 (Print)
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

Research Article

Design and FPGA Implementation of UART Using Microprogrammed

Controller
Mohammad Awedh, Ahmed Mueen

King Abdulaziz University, Jeddah 22254, Saudi Arabia

*Corresponding author

Ahmed Mueen

Email: mueen123@gmail.com

Abstract: This paper presents an implementation of Universal Asynchronous Receiver-Transmitter (UART) controller
based on Microprogrammed Controller on Field Programmable Gate Array (FPGA. Our design of UART is fully

functional and synthesizable. It is coded using Verilog based top-down hierarchical design methodology and realized in

Spartan-3E FPGA using Xilinx ISE Webpack 14.7. The implementation results demonstrate that the design can operate

at a maximum clock frequency of 218.248 MHz. The maximum clock frequency of hardwired implementation of UART

controller is 192.773 MHz. We also compare our Microprogrammed implementation of UART controller to the standard

ROM method; our implementation uses less number of bits and hence small number of storage elements.

Keywords: Receiver Transmitter, Microprogrammed Controller, and Field Programmable Gate Array

INTRODUCTION
UART (Universal Asynchronous Receiver

Transmitter) controller is a serial communication

device. In several control systems, serial

communication circuit is used largely .A universal

asynchronous receive/transmit (UART) is an integrated

circuit which plays the most important role in serial

communication [9]. Serial communication is another

way of communication used widely because of its

simple structure and long transmission distance [6].

Serial communication is vital to computers and allows

them to communicate with the low speed devices such
as keyboard, mouse, modems etc [11, 7]. UARTs are

used for serial communication between two devices

with minimum wires. The data is sent serially, and no

clock signal is sent along with it. The primary function

of a UART is parallel-to-serial conversion when

transmitting, and serial-to-parallel conversion when

receiving. The sender and receiver have separate,

unsynchronized, clock signals. In order to synchronize

the asynchronous serial data and to insure the data

integrity, Start and Stop bits are added to the serial data.

An example of the UART frame format is shown in

Figure 1.

The transmitted character is composed of an 8-

bit data byte, sent LSB (least significant bit) first,

preceded by a start bit (active low) and followed by a

stop bit (active high). When no character is being

transmitted, the line is idle (active high). The line need

not go idle between characters, as it is possible for the

start bit of a transmission to immediately follow the

stop bit of the previous transmission.

A field-programmable gate array (FPGA) is a logic

device that contains a two dimensional array of generic
logic cells and programmable switches. A logic cell can

be configured (i.e., programmed) to perform a simple

function, and a programmable switch can be customized

to provide interconnections among the logic cells. A

custom design can be implemented by specifying the

function of each logic cell and selectively setting the

connection of each programmable switch. Once the

design and synthesis are completed, we can use a

simple adaptor cable to download the desired logic cell

and switch configuration to the FPGA device and obtain

the custom circuit.

 Time

Fig.1. Transmission Frame

D0 ideal start D1 D2 D3 D4 D5 D6 D7 ideal stop

http://www.saspublisher.com/
mailto:mueen123@gmail.com

Awedh M et al., Sch. J. Eng. Tech., September 2015; 3(6):600-608

 601

Top Level Design
The top-level design of UART consists of a

click generator, a receiving module and a sending

module. The UART Transmitter is used to transform the

parallel data for output in accordance with the basic

UART frame format to serial Out signal serial output.
UART Receiver receives the serial signal on serialIn,

and converts it into parallel data [2]. Clock generator

specifically produces a local clock far higher rate than

the baud rate to sample the input serialIn continuously

to enable the receiver to maintain synchronization with

the transmitter. Figure 2 shows a functional block

diagram of the UART.

Fig.2. Functional Block Diagram

Part of a UARTs function, and the tricky part,

is to ”sample” the serial input at just the right time to

reliably capture the bit stream. A high-speed clock to

sample the bit stream multiple times per data bit allows

one to accomplish this task.

Fig.3. Top level schematic of UART

UART Transmitter
The proposed UART transmitter architecture

comprises of two main building blocks which are data

path unit and control unit, Figure 4. The architecture of

the transmitter data path unit consists of a data register,

a data shift register, and a status register, which counts

the bits that are transmitted. The figure shows the input-

output signals of the transmitter. The input signals are

provided by the host device, and the output signals are

the serial data stream and a status signal. Data is

transmitted serially on the serial Outout put. The

transmitter is ready transmit when the status signal

txDoneis asserted high. When data Readyis asserted

high, the transmitter loads the content of the dataIn into

dataRegister. bitCnt Max indicates the status of the bit

counter in the datapath unit.

Fig-4: Functional Block Diagram of the Transmitter

The ASM chart of the state machine

controlling the transmitter is shown in Figure 6. The

control signals produced by the ASM chart induce state-

dependent register transfers in the datapath. The

assertion of loadShiftReg loads the contents of data

register into shift register.

clear txDone
shift
loadShftReg

Control Unit Data Path

reset
clock

dataIn

loadDataReg

8

serialOut

bitLtMax
dataReady

8

dataRcvd error

8

UART
Clock

Generator

UART
Transmitter clock

sampleClock
Receiver
UART

reset

serialIn serialOut

dataOut dataIn

dataReady sysClock

Awedh M et al., Sch. J. Eng. Tech., September 2015; 3(6):600-608

 602

Fig.5. Top level RTL Schematic of UART Transmitter

Fig.6. ASM Chart of the Transmitter Controller

UART Receiver
Figure 7 shows a functional block diagram of

the UART receiver. Data is received serially on the

serialIn input. When one byte of data has been received,

it is output to the dataOut output bus, and the output

control signal dataRcvd is asserted high for one clock

period. The block is clocked with a frequency 16 times

the baud rate.

Fig.7. Functional Block Diagram of the Receiver

error

load

dataRcvd

shift

clearBitCounter

incSampleCounter
clearSampleCounter

incBitCouter

Data Path

bcEq8

scEq7

clock
reset

Control Unit

8

serialIn

dataOut

dataRegister bitCounter

shftRegister sampleCounter

serIn0

scLt15

shift

bitCount < = 0 ;
shiftRegister < = 9 ’h1FF

reset 0

1

dataReady
0

1

dataRegister < = dataIn

loadShiftReg shiftRegister < = { dataRegister,1’b0 }

loadDataReg

ideal

sending

bitLtMax
1 0

clear

bitCount < = 3 ’b 000

ready

shiftRegister < = { 1 ’b1,shiftRegister [8:1] }

Awedh M et al., Sch. J. Eng. Tech., September 2015; 3(6):600-608

 603

Although the data arrives at a standard bit rate,

the data is not synchronized with the internal clock at

the UART receiver. This issue of synchronization is

resolved by generating a local clock at a higher

frequency and using it to sample the received data in a

manner that preserves the integrity of the data.

In the scheme used here, the data, assumed to

be in a 10-bit format, will be sampled at a rate

determined by sample Clock, which is generated at the

receiver’s host. The cycles of sampleClock will be

counted to ensure that the data are sampled in the

middle of a bit time, as shown in Figure 8.

In order to ensure the arrival of the start bit, at

least half of the start bit successive samples (8 samples

in our design) of value 0 are detected after the serial

input data goes low.

The ASM chart of the state machine
controlling the UART receiver is shown in Figure 9.

The ASM block of the starting state determines whether

the first bit is a valid start bit. The ASM block of the

receiving state receives the remaining (8) bits which is

controlled by bcE8 status signal. The assertion of shift

will cause the sample bit value to be loaded into the

shiftRegister. If there is no error in receiving the data,

the contents of the shiftRegister is loaded into the

dataRegister and the dat aRcvd is asserted high.

Fig.8. Samples

UART Clock Generator
The UART Clock Generator in Figure 2 is

used to generate UART transmitter clock and receiver

sample clock based on the following calculation.

 Baud Rate Divisor for transmitter clock = System
Clock/baud rate.

 Baud Rate Divisor for Sample clock = (System

Clock/baud rate)/16.

The following table shows the baud rate

divisor and the minimum number of bits that are
required to store the baud rate divisor for sample clock.

Baud

Rate

Baud Rate

Divisor

bits

9600 325.5208333 9

19200 162.7604167 8

38400 81.38020833 7

57600 54.25347222 6

115200 27.12673611 5

230400 13.56336806 4

460800 6.781684028 3

921600 3.390842014 2

If, for example, the system clock = 50 MHZ

and baud rate is 115200 bps, then the Baud Rate Divisor

(BRD) for Sample clock is 27.12673611. If the scaling

factor is 25, then the fixed-point representation of BDR

= 27.12673611 ∗ 25 ≈ 868. Therefore, the generated

baud rate divisor = 868/25 = 27.15625. The generated

baud rate =
50MHA/27.15625)/16 = 115075. Hence, the error is

0.1085%.

Microprogrammed Controller
In digital system design, Control Unit

(controller) controls the flow of data through the digital

system, and coordinates the activities of the units within

the Datapath Unit. Control Unit (CU) receives external

instructions (through set of controller inputs) which it

converts into a sequence of control signals that the CU
applies to the Datapath Unit (DPU) to implement a

sequence of register-transfer level (RTL) operations.

{

...

bit
Data Data Data Data Data

0 bit bit bit bit bit bit bit 1 2 3 4 5 7
Data Data

6
Data Start

bit
Stop
bit

time

Receiver clock

Sample for stopbit

8 Samplesto detectstartbit Sampleto detectdatabit

Awedh M et al., Sch. J. Eng. Tech., September 2015; 3(6):600-608

 604

Fig.9. ASM Chart of the Receiver

The algorithm for control unit is usually

specified by state machine. Flowchart description [1]

may be used to specify the operation of the controller

state machine. An algorithmic state machine chart, or
ASM chart, is a kind of such flowchart that is used to

describe the behavior of a state machine. ASM chart

systematically specifies all the controller signals that

should be generated at each time during the flow of the

controller from the initial state through each of the other

controller states.

Definition 1.An Algorithmic State Machine ∆ is a

directed connected graph, ∆ =

hS,C,D,E,X,Y,Ls,Lc,Ldi[10] where:

 S is a finite set of state vertices.

 C is a finite set of conditional output vertices.

 D is a finite set of decision vertices.

 E is a finite set of edges.

 X is a finite set of controller inputs. X =

{x0,x1,...,xn}

 Y is a finite set of control signals. Y = {y0,y1,...,ym}

 Ls :S → 2Y is a function that labels each state vertex

with a set of control signals that are asserted in that

state.

 Lc:C → 2Y is a function that labels each conditional

output vertex with a set of control signals that are

asserted in that conditional vertex.

 Ld:D → 2X is a function that labels each decision

vertex with a set of control inputs that are to be

checked in that decision vertex .

In the above definition of ASM char, if C = φ,

then ∆ defines aa Moore machine. If Ls is empty, then ∆
defines a mealy machine. Otherwise, ∆ defines a

Moore/Mealy machine.

Awedh M et al., Sch. J. Eng. Tech., September 2015; 3(6):600-608

 605

An ASM chart is constructed from SM blocks.

Each SM block contains exactly one state vertex,

together with the decision and conditional vertices

associated with that state. An ASM block has one

entrance path and one or more exit paths. Each ASM
block describes the machine operation during the time

that the machine is in one state. When a controller

enters the state associated with a given ASM block, the

outputs on the output list in the state box asserted.

There are several methods to design a

controller, such as hardwired controller and

microprogrammed controller [10]. In this paper, we

used microprogrammed controller to implement the

control unit of UART in FPGA. The main advantage of

the microprogrammed controller is its flexibility and

simplicity [4, 3].

Microprogrammed controller architecture,

Figure 10, consists of a microprogram counter (µPC),

Microprogram ROM, and a multiplexer, MUX [4, 8].

Each ROM location stores a microinstruction. Each

microinstruction consists of three fields; the first filed,
selectInputs, controls the output of the multiplexer,

MUX. It selects which input of controller inputs to be

tested. The output of the multiplexer are used to control

the order of execution of microoperations

(microinstruction). The output of MUX specifies the

next value of µPC. As shown in Figure 10, if the output

of the MUX is logical 0, then the value of µPC is

incremented by 1, µPC = µPC +1. If the output of the

MUX is logical 1, then the value of µPC is loaded from

the second filed of the microinstruction, branchAddress.

The last filed of the microinstruction, controlSignals,

contains the list of control signals to be asserted.

Fig.10. Microprogrammed Controller Architecture

Microprogrammed Implementation
ASM chart description of a control unit is

inspected to realize a control unit in microprogrammed

controller. A microprogrammed controller based on

ASM chart specifies which microinstructions should be

executed in each step. Since a microinstruction is done

in a clock-by-clockbasis, its timing is similar to a state

transition of an ASM chart.

In order to realize a control units of UART using
Microprogramming technique, the ASM chart of the

control units are used. However, transformations are

performed on the ASM chart to facilitate easy and

efficient microprogramming [8] using the

microprogrammed controller architecture in Figure 10.

The ASM chart must describe a Moore machine and

only a single decision boxes determining the sequencing

between states.

Figure 11 illustrates the modified ASM chart

for UART transmitter controller with state assignments.

The the state assignments are chosen such that, if the

controller input is false, the next state should be the

current state incremented by 1. The next state when the
controller input is true will explicitly specified in the

microinstruction, in branchAddress field. The

corresponding microprogrammed implementation is

given in Table 1.

Table-1: Content of the Control Memory of the Transmitter Controller

Address Microinstruction

 selectInput branchAddress controlSignals

 clear shift loadDataReg loadShiftReg

00 00 00 1 0 0 0

01 01 00 0 0 1 0

10 10 00 0 0 0 1

11 11 11 0 1 0 0

Figure 12 illustrates the modified ASM chart for UART receiver controller with state assignments. The the state

assignments are chosen such that, if the controller in-

MUX
...

branchAddress selectInput

inc1 dataIn

Counter

µ PC

load

Inputs

controlSignals

Microinstruction

Microprograme ROM

Controller

Awedh M et al., Sch. J. Eng. Tech., September 2015; 3(6):600-608

 606

bitCount<= 4’b0000
shiftRegister<= 9’h1FF dataRegister<= dataIn

shiftRegister<= {dataRegister, 1’b0}

shiftRegister<= {1’b1, shiftRegister[8:1]}

Fig-11: Modified ASM chart for Transmitter Controller put is true, the next state should be the current state

incremented by 1. The next state when the controller input is false will explicitly specified in the microinstruction,

in branchAddress field. The corresponding microprogrammed implementations is given in Table 2.

Fig-12: Modified ASM chart for Receiver Controller

1

0

1

ideal/
clrBitCounter

reset

serIn0

1 0 scEq7

serIn0

starting
incSampleCounter

1

bcEq8 1

receiving/

sampling/ 0

shifting/
shift,incBitCounter

incSampleCounter

loading/
load, dataRcvd

serIn0
0

error
1

0

000

001

010

011

100

101

110

clrSampleCounter

clrSampleCounter

scLt 15 0

dataReady

reset 0

1

loadDataReg
loadingData/

loadingShift/
loadShiftReg

sending/
shift

bitLtMax
1

ideal/
clear

0

0

1

10

11

01

00

Awedh M et al., Sch. J. Eng. Tech., September 2015; 3(6):600-608

 607

If the transmitter controller is implemented by

a standard ROM method using Figure 6, the ROM size

must be 16 × 6. There are three states, requiring two

flip-flops and two next-state equations. There are 2

inputs. Hence, the state table for this state machine will

have 24 = 16 rows. There will be two next-state
equations and 4 outputs, requiring 6 bits in each entry.

A comparison of the ROM method with the

microprogrammed implementations of the transmitter

controller is shown in Table 3. Similarly, a comparison

of the ROM method with the microprogrammed

implementations of the receiver controller is shown in

Table 3.

Table-2: Content of the Control Memory of the Receiver Controller

Address

Microinstruction

 controlSignals

clrBit clrSample incBit incSample

 selectInput branchAddress Count Counter Counter Counter shift load error

000 000 000 1 1 0 0 0 0 0

001 001 001 0 0 0 1 0 0 0

010 010 101 0 1 0 0 0 0 0

011 000 000 0 0 0 0 0 1 0

100 011 000 0 0 0 0 0 0 1

101 100 101 0 0 0 1 0 0 0

110 011 010 0 0 1 0 1 0 0

Table-3: Comparison of Different Implementations of UART Controller

Method ROM Size of the transmitter

Controller

 Size No. of bits

ROM method with original SM

chart

16×6 96

Microprogrammed

implementations

4×8 32

Method ROM Size of the receiver

Controller

 Size No. of bits

ROM method with original SM

chart

128×10 1280

Microprogrammed

implementations

7×13 91

The MUX configuration of the transmitter and

receiver controller is illustrated in Figure 13 and Figure

14 respectively.

SYNTHESIS RESULT
The design of UART is coded using Verilog

based top-down hierarchical design methodology and

realized in Spartan-3E FPGA using Xilinx ISE

Webpack 14.7. Table 4 shows the FPGA utilization for

the Microprogrammed implementation of the UART

controller compared to the Hardwired implementation.

Both implementations use almost the same amount of

FPGA resources. However, Microprogrammed

implementation operates faster: the minimum clock
period of the Microprogrammed implementation is

4.582ns (Maximum Frequency is 218.248MHz) and is

5.187ns (Maximum Frequency is 192.773MHz) for

Hardwired implementation.

Awedh M et al., Sch. J. Eng. Tech., September 2015; 3(6):600-608

 608

selectNext selectNext

Fig-13: MUX for Transmitter Fig-14: MUX for Receiver

Table-4: FPGA Utilization

Method FPGA Utilization for Transmitter

 Number of

Slices

Number of Slice Flip

Flops

Number of 4 input

LUTs

Hardwired Implementation 16 25 20

Microprogrammed

Implementation

17 26 22

Method FPGA Utilization for Receiver

 Number of

Slices

Number of Slice Flip

Flops

Number of 4 input

LUTs

Hardwired Implementation 20 27 28

Microprogrammed

Implementation

21 29 30

EXPERIMENTAL RESULT
To prove the functionality of our design of

UART, we implemented our design in Digilent Basys2
Spartan3E FPGA Board [5]. We then connect the FPGA

board to a PC that runs a program that transmits and

receives large-size (50 MB to 100 MB) of plain text and

binary files. The program then compares the sent bytes

to the received bytes. All the bytes that are sent are

received correctly.

CONCLUSION
In this paper, we have presented FPGA

realization of micro programmed implementation of

UART controllers. Our design is fully functional and

synthesizable and can operate at a maximum clock
frequency of 218.248 MHz. The design uses less

number of FPGA resources compared to the ROM-

based method.

REFERENCES
1. Alexander Barkalov LT; Logic Synthesis for FSM-

Based Control Units. Springer Berlin Heidelberg,

2009.

2. Ali L, Sidek R, Aris I, Ali AM, Suparjo BS; Design

of a micro-uart for soc application. Computers &

Electrical Engineering, 2004; 30(4):257-268.
3. Barkalov AA, Titarenko LA, Efimenko KN;

Optimization of circuits of compositional

microprogram control units implemented on fpga.

Cybernetics and Sys. Anal, 2011; 47(1):166–174.

4. Bomar BW; Implementation of microprogrammed

control in fpgas. Industrial Electronics, IEEE

Transactions on, 2002; 49(2): 415–422.
5. Digilent. Digilent Basys2 Spartan-3E FPGA Board.

6. HU Likun WQ; Uart-based reliable communication

and performance analysis. In Computer

Engineering, 2006; 32: 15–21.

7. Norhuzaimin J, Maimun H; The design of high

speed uart. In Applied Electromagnetics, APACE

2005. Asia-Pacific Conference on, 2005.

8. Roth Jr. CH, John LK; Digital Systems Design

Using VHDL. Thomson-Engineering, 2007.

9. Tomasi W; Advanced electronic communication

systems, Third Edition. Prentice-Hall, 1994.

10. Wis´niewski R, Barkalov A, Titarenko L, Halang
W; Design of microprogrammed controllers to be

implemented in fpgas. Int. J. Appl. Math. Comput.

Sci, 2011; 21(2):401–412.

11. Yi-yuan F, Xue-jun C; Design and simulation of

uart serial communication module based on vhdl.

In Intelligent Systems and Applications (ISA),

2011 3rd International Workshop on, 2011; 1-4.

scLt 15
011

010

001

000

100

serIn0

scEq7

bcEq8

select

3

MUX

0

dataReady

11

10

01

00

bitLtMax

select

MUX

0

