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Abstract: This paper presents an implementation of Universal Asynchronous Receiver-Transmitter (UART) controller 
based on Microprogrammed Controller on Field Programmable Gate Array (FPGA. Our design of UART is fully 

functional and synthesizable. It is coded using Verilog based top-down hierarchical design methodology and realized in 

Spartan-3E FPGA using Xilinx ISE Webpack 14.7. The implementation results demonstrate that the design can operate 

at a maximum clock frequency of 218.248 MHz. The maximum clock frequency of hardwired implementation of UART 

controller is 192.773 MHz. We also compare our Microprogrammed implementation of UART controller to the standard 

ROM method; our implementation uses less number of bits and hence small number of storage elements. 
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INTRODUCTION 
UART (Universal Asynchronous Receiver 

Transmitter) controller is a serial communication 

device. In several control systems, serial 

communication circuit is used largely .A universal 

asynchronous receive/transmit (UART) is an integrated 

circuit which plays the most important role in serial 

communication [9]. Serial communication is another 

way of communication used widely because of its 

simple structure and long transmission distance [6]. 

Serial communication is vital to computers and allows 

them to communicate with the low speed devices such 
as keyboard, mouse, modems etc [11, 7]. UARTs are 

used for serial communication between two devices 

with minimum wires. The data is sent serially, and no 

clock signal is sent along with it. The primary function 

of a UART is parallel-to-serial conversion when 

transmitting, and serial-to-parallel conversion when 

receiving. The sender and receiver have separate, 

unsynchronized, clock signals. In order to synchronize 

the asynchronous serial data and to insure the data 

integrity, Start and Stop bits are added to the serial data. 

An example of the UART frame format is shown in 

Figure 1. 

 
The transmitted character is composed of an 8-

bit data byte, sent LSB (least significant bit) first, 

preceded by a start bit (active low) and followed by a 

stop bit (active high). When no character is being 

transmitted, the line is idle (active high). The line need 

not go idle between characters, as it is possible for the 

start bit of a transmission to immediately follow the 

stop bit of the previous transmission. 

 

A field-programmable gate array (FPGA) is a logic 

device that contains a two dimensional array of generic 
logic cells and programmable switches. A logic cell can 

be configured (i.e., programmed) to perform a simple 

function, and a programmable switch can be customized 

to provide interconnections among the logic cells. A 

custom design can be implemented by specifying the 

function of each logic cell and selectively setting the 

connection of each programmable switch. Once the 

design and synthesis are completed, we can use a 

simple adaptor cable to download the desired logic cell 

and switch configuration to the FPGA device and obtain 

the custom circuit. 

 

 

 Time 

Fig.1. Transmission Frame 

D0 ideal start D1 D2 D3 D4 D5 D6 D7 ideal stop 
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Top Level Design 
The top-level design of UART consists of a 

click generator, a receiving module and a sending 

module. The UART Transmitter is used to transform the 

parallel data for output in accordance with the basic 

UART frame format to serial Out signal serial output. 
UART Receiver receives the serial signal on serialIn, 

and converts it into parallel data [2]. Clock generator 

specifically produces a local clock far higher rate than 

the baud rate to sample the input serialIn continuously 

to enable the receiver to maintain synchronization with 

the transmitter. Figure 2 shows a functional block 

diagram of the UART. 

 

 
Fig.2. Functional Block Diagram 

 

Part of a UARTs function, and the tricky part, 

is to ”sample” the serial input at just the right time to 

reliably capture the bit stream. A high-speed clock to 

sample the bit stream multiple times per data bit allows 

one to accomplish this task. 

 
Fig.3. Top level schematic of UART 

 

UART Transmitter 
The proposed UART transmitter architecture 

comprises of two main building blocks which are data 

path unit and control unit, Figure 4. The architecture of 

the transmitter data path unit consists of a data register, 

a data shift register, and a status register, which counts 

the bits that are transmitted. The figure shows the input-

output signals of the transmitter. The input signals are 

provided by the host device, and the output signals are 

the serial data stream and a status signal. Data is 

transmitted serially on the serial Outout put. The 

transmitter is ready transmit when the status signal 

txDoneis asserted high. When data Readyis asserted 

high, the transmitter loads the content of the dataIn into 

dataRegister. bitCnt Max indicates the status of the bit 

counter in the datapath unit. 

 

 
Fig-4: Functional Block Diagram of the Transmitter 

 

The ASM chart of the state machine 

controlling the transmitter is shown in Figure 6. The 

control signals produced by the ASM chart induce state-

dependent register transfers in the datapath. The 

assertion of loadShiftReg loads the contents of data 

register into shift register. 
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Fig.5. Top level RTL Schematic of UART Transmitter 

 
Fig.6. ASM Chart of the Transmitter Controller 

 

UART Receiver 
Figure 7 shows a functional block diagram of 

the UART receiver. Data is received serially on the 

serialIn input. When one byte of data has been received, 

it is output to the dataOut output bus, and the output 

control signal dataRcvd is asserted high for one clock 

period. The block is clocked with a frequency 16 times 

the baud rate. 

 
Fig.7. Functional Block Diagram of the Receiver 
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Although the data arrives at a standard bit rate, 

the data is not synchronized with the internal clock at 

the UART receiver. This issue of synchronization is 

resolved by generating a local clock at a higher 

frequency and using it to sample the received data in a 

manner that preserves the integrity of the data. 
 

In the scheme used here, the data, assumed to 

be in a 10-bit format, will be sampled at a rate 

determined by sample Clock, which is generated at the 

receiver’s host. The cycles of sampleClock will be 

counted to ensure that the data are sampled in the 

middle of a bit time, as shown in Figure 8. 

 

In order to ensure the arrival of the start bit, at 

least half of the start bit successive samples (8 samples 

in our design) of value 0 are detected after the serial 

input data goes low. 

 

The ASM chart of the state machine 
controlling the UART receiver is shown in Figure 9. 

The ASM block of the starting state determines whether 

the first bit is a valid start bit. The ASM block of the 

receiving state receives the remaining (8) bits which is 

controlled by bcE8 status signal. The assertion of shift 

will cause the sample bit value to be loaded into the 

shiftRegister. If there is no error in receiving the data, 

the contents of the shiftRegister is loaded into the 

dataRegister and the dat aRcvd is asserted high. 

 

 
Fig.8. Samples 

 

UART Clock Generator 
The UART Clock Generator in Figure 2 is 

used to generate UART transmitter clock and receiver 

sample clock based on the following calculation. 

 Baud Rate Divisor for transmitter clock = System 
Clock/baud rate. 

 Baud Rate Divisor for Sample clock = (System 

Clock/baud rate)/16. 

 

The following table shows the baud rate 

divisor and the minimum number of bits that are 
required to store the baud rate divisor for sample clock. 

 

Baud 

Rate 

Baud Rate 

Divisor 

# 

bits 

9600 325.5208333 9 

19200 162.7604167 8 

38400 81.38020833 7 

57600 54.25347222 6 

115200 27.12673611 5 

230400 13.56336806 4 

460800 6.781684028 3 

921600 3.390842014 2 

 

If, for example, the system clock = 50 MHZ 

and baud rate is 115200 bps, then the Baud Rate Divisor 

(BRD) for Sample clock is 27.12673611. If the scaling 

factor is 25, then the fixed-point representation of BDR 

= 27.12673611 ∗ 25 ≈ 868. Therefore, the generated 

baud rate divisor = 868/25 = 27.15625. The generated 

baud rate = 
50MHA/27.15625)/16 = 115075. Hence, the error is 

0.1085%. 

Microprogrammed Controller 
In digital system design, Control Unit 

(controller) controls the flow of data through the digital 

system, and coordinates the activities of the units within 

the Datapath Unit. Control Unit (CU) receives external 

instructions (through set of controller inputs) which it 

converts into a sequence of control signals that the CU 
applies to the Datapath Unit (DPU) to implement a 

sequence of register-transfer level (RTL) operations. 
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Fig.9. ASM Chart of the Receiver 

 

The algorithm for control unit is usually 

specified by state machine. Flowchart description [1] 

may be used to specify the operation of the controller 

state machine. An algorithmic state machine chart, or 
ASM chart, is a kind of such flowchart that is used to 

describe the behavior of a state machine. ASM chart 

systematically specifies all the controller signals that 

should be generated at each time during the flow of the 

controller from the initial state through each of the other 

controller states. 

 

Definition 1.An Algorithmic State Machine ∆ is a 

directed connected graph, ∆ = 

hS,C,D,E,X,Y,Ls,Lc,Ldi[10] where: 

 S is a finite set of state vertices. 

 C is a finite set of conditional output vertices. 

 D is a finite set of decision vertices. 

 E is a finite set of edges. 

 X is a finite set of controller inputs. X = 

{x0,x1,...,xn} 

 Y is a finite set of control signals. Y = {y0,y1,...,ym} 

 Ls :S → 2Y is a function that labels each state vertex 

with a set of control signals that are asserted in that 

state. 

 Lc:C → 2Y is a function that labels each conditional 

output vertex with a set of control signals that are 

asserted in that conditional vertex. 

 Ld:D → 2X is a function that labels each decision 

vertex with a set of control inputs that are to be 

checked in that decision vertex . 

In the above definition of ASM char, if C = φ, 

then ∆ defines aa Moore machine. If Ls is empty, then ∆ 
defines a mealy machine. Otherwise, ∆ defines a 

Moore/Mealy machine. 
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An ASM chart is constructed from SM blocks. 

Each SM block contains exactly one state vertex, 

together with the decision and conditional vertices 

associated with that state. An ASM block has one 

entrance path and one or more exit paths. Each ASM 
block describes the machine operation during the time 

that the machine is in one state. When a controller 

enters the state associated with a given ASM block, the 

outputs on the output list in the state box asserted. 

 

There are several methods to design a 

controller, such as hardwired controller and 

microprogrammed controller [10]. In this paper, we 

used microprogrammed controller to implement the 

control unit of UART in FPGA. The main advantage of 

the microprogrammed controller is its flexibility and 

simplicity [4, 3]. 

 

Microprogrammed controller architecture, 

Figure 10, consists of a microprogram counter (µPC), 

Microprogram ROM, and a multiplexer, MUX [4, 8]. 

Each ROM location stores a microinstruction. Each 

microinstruction consists of three fields; the first filed, 
selectInputs, controls the output of the multiplexer, 

MUX. It selects which input of controller inputs to be 

tested. The output of the multiplexer are used to control 

the order of execution of microoperations 

(microinstruction). The output of MUX specifies the 

next value of µPC. As shown in Figure 10, if the output 

of the MUX is logical 0, then the value of µPC is 

incremented by 1, µPC = µPC +1. If the output of the 

MUX is logical 1, then the value of µPC is loaded from 

the second filed of the microinstruction, branchAddress. 

The last filed of the microinstruction, controlSignals, 

contains the list of control signals to be asserted. 
 

 
Fig.10. Microprogrammed Controller Architecture 

 

Microprogrammed Implementation 
ASM chart description of a control unit is 

inspected to realize a control unit in microprogrammed 

controller. A microprogrammed controller based on 

ASM chart specifies which microinstructions should be 

executed in each step. Since a microinstruction is done 

in a clock-by-clockbasis, its timing is similar to a state 

transition of an ASM chart. 

 

In order to realize a control units of UART using 
Microprogramming technique, the ASM chart of the 

control units are used. However, transformations are 

performed on the ASM chart to facilitate easy and 

efficient microprogramming [8] using the 

microprogrammed controller architecture in Figure 10. 

The ASM chart must describe a Moore machine and 

only a single decision boxes determining the sequencing 

between states. 

 

Figure 11 illustrates the modified ASM chart 

for UART transmitter controller with state assignments. 

The the state assignments are chosen such that, if the 

controller input is false, the next state should be the 

current state incremented by 1. The next state when the 
controller input is true will explicitly specified in the 

microinstruction, in branchAddress field. The 

corresponding microprogrammed implementation is 

given in Table 1. 

 

Table-1: Content of the Control Memory of the Transmitter Controller 

Address Microinstruction 

 selectInput branchAddress controlSignals 

   clear shift loadDataReg loadShiftReg 

00 00 00 1 0 0 0 

01 01 00 0 0 1 0 

10 10 00 0 0 0 1 

11 11 11 0 1 0 0 

 
Figure 12 illustrates the modified ASM chart for UART receiver controller with state assignments. The the state 

assignments are chosen such that, if the controller in- 
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bitCount<= 4’b0000 
shiftRegister<= 9’h1FF dataRegister<= dataIn 

 

shiftRegister<= {dataRegister, 1’b0} 

shiftRegister<= {1’b1, shiftRegister[8:1]} 

Fig-11: Modified ASM chart for Transmitter Controller put is true, the next state should be the current state 

incremented by 1. The next state when the controller input is false will explicitly specified in the microinstruction, 

in branchAddress field. The corresponding microprogrammed implementations is given in Table 2. 

 

 
Fig-12: Modified ASM chart for Receiver Controller 

1 

0 

1 

ideal/ 
clrBitCounter 

reset 

serIn0 

1 0 scEq7 

serIn0 

starting 
incSampleCounter 

1 

bcEq8 1 

receiving/ 

sampling/ 0 

shifting/ 
shift,incBitCounter 

incSampleCounter 

loading/ 
load, dataRcvd 

serIn0 
0 

error 
1 

0 

000 

001 

010 

011 

100 

101 

110 

clrSampleCounter 

clrSampleCounter 

scLt 15 0 

dataReady 

reset 0 

1 

loadDataReg 
loadingData/ 

loadingShift/ 
loadShiftReg 

sending/ 
shift 

bitLtMax 
1 

ideal/ 
clear 

0 

0 

1 

10 

11 

01 

00 



 

Awedh M et al., Sch.  J. Eng. Tech., September 2015; 3(6):600-608 

    607 
    

 

 

If the transmitter controller is implemented by 

a standard ROM method using Figure 6, the ROM size 

must be 16 × 6. There are three states, requiring two 

flip-flops and two next-state equations. There are 2 

inputs. Hence, the state table for this state machine will 

have 24 = 16 rows. There will be two next-state 
equations and 4 outputs, requiring 6 bits in each entry. 

A comparison of the ROM method with the 

microprogrammed implementations of the transmitter 

controller is shown in Table 3. Similarly, a comparison 

of the ROM method with the microprogrammed 

implementations of the receiver controller is shown in 

Table 3. 

 

Table-2: Content of the Control Memory of the Receiver Controller 

Address 

Microinstruction 

  controlSignals 

clrBit clrSample incBit incSample    

 selectInput branchAddress Count Counter Counter Counter shift load error 

000 000 000 1 1 0 0 0 0 0 

001 001 001 0 0 0 1 0 0 0 

010 010 101 0 1 0 0 0 0 0 

011 000 000 0 0 0 0 0 1 0 

100 011 000 0 0 0 0 0 0 1 

101 100 101 0 0 0 1 0 0 0 

110 011 010 0 0 1 0 1 0 0 

 

Table-3: Comparison of Different Implementations of UART Controller 

Method ROM Size of the transmitter 

Controller 

 Size No. of bits 

ROM method with original SM 

chart 

16×6 96 

Microprogrammed 

implementations 

4×8 32 

Method ROM Size of the receiver 

Controller 

 Size No. of bits 

ROM method with original SM 

chart 

128×10 1280 

Microprogrammed 

implementations 

7×13 91 

 

The MUX configuration of the transmitter and 

receiver controller is illustrated in Figure 13 and Figure 

14 respectively. 

 

SYNTHESIS RESULT 
The design of UART is coded using Verilog 

based top-down hierarchical design methodology and 

realized in Spartan-3E FPGA using Xilinx ISE 

Webpack 14.7. Table 4 shows the FPGA utilization for 

the Microprogrammed implementation of the UART 

controller compared to the Hardwired implementation. 

Both implementations use almost the same amount of 

FPGA resources. However, Microprogrammed 

implementation operates faster: the minimum clock 
period of the Microprogrammed implementation is 

4.582ns (Maximum Frequency is 218.248MHz) and is 

5.187ns (Maximum Frequency is 192.773MHz) for 

Hardwired implementation. 
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selectNext selectNext 

Fig-13: MUX for Transmitter       Fig-14: MUX for Receiver 

 

Table-4: FPGA Utilization 

Method FPGA Utilization for Transmitter 

 Number of 

Slices 

Number of Slice Flip 

Flops 

Number of 4 input 

LUTs 

Hardwired Implementation 16 25 20 

Microprogrammed 

Implementation 

17 26 22 

Method FPGA Utilization for Receiver 

 Number of 

Slices 

Number of Slice Flip 

Flops 

Number of 4 input 

LUTs 

Hardwired Implementation 20 27 28 

Microprogrammed 

Implementation 

21 29 30 

 

EXPERIMENTAL RESULT 
To prove the functionality of our design of 

UART, we implemented our design in Digilent Basys2 
Spartan3E FPGA Board [5]. We then connect the FPGA 

board to a PC that runs a program that transmits and 

receives large-size (50 MB to 100 MB) of plain text and 

binary files. The program then compares the sent bytes 

to the received bytes. All the bytes that are sent are 

received correctly. 

 

CONCLUSION 
In this paper, we have presented FPGA 

realization of micro programmed implementation of 

UART controllers. Our design is fully functional and 

synthesizable and can operate at a maximum clock 
frequency of 218.248 MHz. The design uses less 

number of FPGA resources compared to the ROM-

based method. 

 

REFERENCES 
1. Alexander Barkalov LT; Logic Synthesis for FSM-

Based Control Units. Springer Berlin Heidelberg, 

2009. 

2. Ali L, Sidek R, Aris I, Ali AM, Suparjo BS; Design 

of a micro-uart for soc application. Computers & 

Electrical Engineering, 2004; 30(4):257-268. 
3. Barkalov AA, Titarenko LA, Efimenko KN; 

Optimization of circuits of compositional 

microprogram control units implemented on fpga. 

Cybernetics and Sys. Anal, 2011; 47(1):166–174. 

4. Bomar BW; Implementation of microprogrammed 

control in fpgas. Industrial Electronics, IEEE 

Transactions on, 2002; 49(2): 415–422. 
5. Digilent. Digilent Basys2 Spartan-3E FPGA Board.  

6. HU Likun WQ; Uart-based reliable communication 

and performance analysis. In Computer 

Engineering, 2006; 32: 15–21. 

7. Norhuzaimin J, Maimun H; The design of high 

speed uart. In Applied Electromagnetics, APACE 

2005. Asia-Pacific Conference on, 2005. 

8. Roth Jr. CH, John LK; Digital Systems Design 

Using VHDL. Thomson-Engineering, 2007. 

9. Tomasi W; Advanced electronic communication 

systems, Third Edition. Prentice-Hall, 1994. 

10. Wis´niewski R, Barkalov A, Titarenko L, Halang 
W; Design of microprogrammed controllers to be 

implemented in fpgas. Int. J. Appl. Math. Comput. 

Sci, 2011; 21(2):401–412. 

11. Yi-yuan F, Xue-jun C; Design and simulation of 

uart serial communication module based on vhdl. 

In Intelligent Systems and Applications (ISA), 

2011 3rd International Workshop on, 2011; 1-4. 

scLt 15 
011 

010 

001 

000 

100 

serIn0 

scEq7 

bcEq8 

select 

3 

MUX 

0 

dataReady 

11 

10 

01 

00 

bitLtMax 

select 

MUX 

0 


