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Abstract: This article reviews and establishes the current state of research and technology for low-cost, portable and 

easy to use Brain Computer Interface (BCI) suitable for non-medical applications such as communication, environmental 

control, entertainment and gaming. The scope of this research is to analyse all possible technologies that are currently 
available to enable channel of communication between humans and electronic devices using only cerebral activities. In 

addition, the EMOTIV Epoc wireless EEG hardware has been reviewed 
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INTRODUCTION
1
 

The purpose of this paper is to review the feasibility 

of developing a low-cost, portable and easy to use BCI 

system that might be used in various non-medical 

applications such as electronic device and computer 

control, entertainment (gaming) and other assistive 

technologies, based on the current state of technology 

and research.  

 

A brain-computer interface (BCI) can be described as 
a combination of hardware and software producing a 

system allowing for communication between the 

human‘s brain and external devices such as computer 

only through the use of cerebral activity [1]. There are 

five distinctive steps required in order for the BCI to 

work. The first is the signal acquisition [1]. This can be 

done in various ways through either invasive or 

noninvasive methods.  

 

Invasive methods are known as Intracortical Neuron 

Recording and Electrocorticography (ECoG). 
Noninvasive methods include Electroencephalography 

(EEG), Magnetoencephalography (MEG), Functional 

Magnetic Resonance Imaging (fMRI) and Near Infrared 

Spectroscopy (NIRS) [1]. In order to satisfy the scope 

of this paper only Electroencephalography (EEG) will 

be considered for its low cost, portability and relatively 

easy operation. The second step involves signal 

preprocessing and enhancement which requires signal 

amplification and filtration. The third step is responsible 

for accurate feature extraction with the use of various 
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mathematical algorithms such as Principle Component 

Analysis (PCA), Independent Component Analysis 

(ICA) and Common Spatial Pattern (CSP) depending on 

the complexity of the signals recorded and precision 

required. 

 

Classification relates to the process of recognizing 

the subject‘s intended actions based on the vector 

information derived from the extracted features. The 

last step requires building a control interface which 
depends on the system‘s intended application [1].  

 

Following the introduction, Section II ‗EEG-

Electroencephalography‘ describes the basics of 

Electroencephalography. Section III ‗How EEG works‘ 

explains all the elements that make up a typical EEG 

system and describes the principles of its operation. In 

Section IV ‗Physiological and non-physiological 

artefacts‘ the variety of internal and external artefacts 

that disturb the EEG signal are clarified while Section V 

‗Other artefacts correcting methods‘ continues on 
analyzing, correcting and removing unwanted signal 

components from the EEG. Section VI ‘10-20 Electrode 

placement system‘ refers to internationally agreed 

system that unifies the placement of EEG electrodes in 

relation to the scalp. In Section VII ‗Brain waves‘ 

rhythmic and transient components of the brain 

oscillations are briefly reviewed while Section VIII 

‗EEG rhythmic activity comparison by frequencies‘ 

presents an extensive table with all the commonly 

known brain waves, their band names and 

characteristics. Section IX ‗Various types of electrical 

brain activities commonly used for EEG based BCI‘ 
explains in great detail slow cortical potentials (SCP), 

sensorimotor rhythms, event related potentials (ERP), 

oddball paradigm and P300 phenomena and steady state 

visual-evoked potentials (SSVEP). ‗Other types of 
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stimuli used in SSVEP‘ are explained in Section X, 

where alternative methods of eliciting stimuli related 

brain oscillations are discussed. Section XI ‗BCI 

classification‘ categorises BCI systems based on their 

mode of operation. In Section XII ‗EMOTIV Epoc as 

BCI hardware‘ the specific model of wireless, low-cost 
EEG device and its usability in BCI systems are 

reviewed. Section XIII titled ‗BCI mobility‘ discusses 

first attempts of using mobile phones and tablets in 

assembling a truly portable BCI system. Finally Section 

XIV ‗Conclusions‘ presents a brief summary of all the 

BCI related topics discussed in the paper. 

 

EEG – Electroencephalography 

Electroencephalography (EEG) is an imaging 

technique used in research and medical applications that 

records electrical signals emitted by the brain along the 

scalp. It measures changes in voltage caused by ionic 

current flowing through the brain neurons which are 

picked up by metal electrodes often using conductive 

media such as gels or paste [2]. The signals are so weak 

that they need to be massively amplified in order to be 
properly digitised and stored. Digitisation of the analog 

signals is performed by A/D (analog-to-digital) 

converters which then are stored and displayed by a PC 

or other relevant device [3]. A typical EEG equipment 

consists of a group of electrodes, where at least one of 

them is an active electrode, one acts as a reference 

electrode and one as a ground electrode. In 

multichannel systems there can be as many as 14 up to 

256 active electrodes. In such arrangements electrodes 

are placed on a cap or a headband [3]. 

 

 
(a) Fig-1:  Cap with electrodes placed according to 10-20 system [3]. 

 

How EEG works 

The EEG data acquisition is performed by placing 
electrodes on the scalp with gel or paste applied to them 

in order to increase conductivity of the signal. Some 

systems use electrodes with each electrode attached to 

an individual wire while other use caps or nets [2, 3]. 

International 10-20 system is utilized in most research 

practice where EEG technique is used [4]. It determines 

electrode‘s placement and naming which is consistent 

across laboratories. In most applications 19 recording 

electrodes are used with addition of grounding and 

system reference [5]. For more demanding research 

projects additional electrodes can be added to increase 
spatial resolution of any given brain area. When caps or 

nets are used, they usually hold up to 255 electrodes 

(high density arrays) which can be evenly spaced on the 

scalp [2].  

 

In order to properly carry a usable signal, each 

electrode is connected to one input of a differential 

amplifier. The other input of this amplifier is connected 

to the reference electrode. The operation of these 

amplifiers is induced by the voltage difference between 

the active electrode and the system reference electrode 

and the voltage gain they provide usually ranges 

between 60-100 dB. The EEG electrical signal by its 

nature is analogue and with today‘s availability of 
digitising devices it is normally more convenient to 

transcode it to digital form [3]. First the signal is passed 

through an anti-aliasing filter and then sent to an 

analog-to-digital converter. Depending on the research 

objectives various activities may be used to measure the 

EEG signal such as light stimulation, eye closure and 

opening, mental activity [1]. After digitisation the EEG 

signal can be stored as data for further display or 

manipulation [3]. In order to properly display the signal 

a series of filters need to be applied. Those filters 

include a high-pass filter (frequencies below 0.5-1 Hz) 
for slow artefacts removal resulting from electro-

galvanic signals or movement artefacts, low-pass filter 

(for frequencies between 35-70 Hz) for high frequency 

artefacts removal such as electromyographic signals and 

a notch filter for electrical power line artefact 

elimination in 50 Hz for Europe or 60 Hz for America 

[2]. A typical scalp signal amplitude of EEG ranges 

between 10μV and 100μV [6].  

 

There are numerous advantages to using EEG system 

for brain signal analysis. EEG is much more affordable 

[7] and offer lower-cost operation in comparison to 
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other systems such as Electrocorticography (ECoG), 

Functional Magnetic Resonance Imaging (fMRI), Near 

Infrared Spectroscopy (NIRS). The other above 

mentioned methods are also much more bulky and thus 

considerably more difficult to transport (Nicolas-

Alonso, Gomez-Gil, 2012) 1. Mobility can only be 
yielded from EEG which also guarantees very high 

temporal resolution in the range of milliseconds. For 

digitisation of the EEG signal usually 250-2000 Hz 

sampling rate is used; however for more accurate data 

sampling systems achieving 20kHz should be used [8]. 

Another advantage of the EEG system is better handling 

of the subject‘s movement and with the proper use of 

filtration movement artefacts can be further eliminated 

[9]. By its nature EEG provides silent operation where 

auditory stimuli can be used. It also doesn‘t expose the 

subject to high-intensity magnetic fields allowing EEG 

to be used by people with metal implants (pacemaker) 
[10]. While being highly non-invasive recording 

system, the EEG can read hidden processes that occur 

in the brain, especially those that don‘t require subject‘s 

response [11]. It is also suitable for subjects who are not 

able to perform motor responses [12]. Although EEG 

recording system contains a lot of noise and is prone to 

artefacts it is the most often used signal acquisition 

technique in BCI which is reflected in over 80% of 

published BCI related work [13]. 

 

EEG has also disadvantages. The main one is quite 
low spatial resolution on the surface of the scalp 

resulting in poor signal-to-noise ratio response 

compared to other systems. Therefore, a thorough 

interpretation of the EEG signal and sophisticated data 

analysis algorithms are required to collect useful data 

[14, 15]. The EEG exhibits rather poor response to 

activities found in deeper layers of the brain i.e. the 

cortex [2]. Also quite long set-up time is required in 

order for the electrodes to be placed correctly with the 

use of gels, saline solution or pastes to increase 

conductivity of the electrodes [2]. 

 

Physiological and non-physiological artefacts in 

EEG signals 

Fisch [16] revealed in his publication ―Fish and 

Spehlmann‘s EEG Primer: Basic Principles of Digital 

and Analog EEG‖ that artefacts shown in the EEG 

signals are of non-cerebral origin and they are one of 

the main factors confusing and sometimes distorting 

EEG readout. They can be divided into two main 

categories which Fisch [16] called physiological 

artefacts and non-physiological artefacts. 

 
Physiological artefacts are generated by various body 

activities that are caused by head movement, body or 

scalp (e.g. pulsations of the scalp arteries) which 

directly affect the electrode scalp interface. They can 

also occur as bioelectrical potentials produced by other 

moving signal sources within the body itself such as 

eyes, tongue, jaw or stationary sources like the scalp 

muscles, heart or even sweat glands [16]. 

 

For the non-physiological artefacts they distinguish 

two main sources: external electrical interference 

originating from other power sources like power lines 
or electrical equipment located in the same room as the 

EEG system; and internal electrical defects and 

malfunctioning of the EEG recording system 

developing from recording electrodes (electrodes 

integrity, positioning and application), leads, amplifiers 

and filters [16].  

 

Later in the book the authors precisely explain the 

specifics of artefacts generation. For example blinking 

and eye movements cause potential changes which are 

mainly picked up by the nearest frontal electrodes; Fp1 

and Fp2 for blinking, F7 and F8 for horizontal (lateral) 
eye movement. Artefacts linked to eye activities are 

usually identifiable by their frontal distribution, bilateral 

symmetry and characteristic shape [16]. Muscle 

artefacts are known to cause very short potential 

changes which usually recur. Muscle artefacts produced 

by scalp and face muscles mainly show in the frontal 

and temporal lobes. Head and body movement artefacts 

appear even if all the electrodes make good mechanical 

and electrical contact. Many artefacts associated with 

movement can be eliminated by simply avoiding body 

movement during the recording. Heart activity potential 
changes referred to as ECG (electrocardiogram) are 

better picked up by the EEG with wider electrode 

arrangements [16]. Unlike most other artefacts the ECG 

usually cannot be avoided by simply improving the 

electrode contact or replacing it [16]. Tongue 

movement produce intermittent or repetitive slow 

oscillations in a wide distribution showing their 

maximum amplitudes in the mid-temporal region. 

Tongue artefacts can be caused by speaking, 

swallowing, chewing and coughing [16]. Electrical 

interference artefacts as externally caused emanate from 

electrical equipment and power lines. In Europe it is 50 
Hz and in the US 60 Hz interference. Wherever an 

electrical equipment powered by alternating current is 

used the artefacts will occur regardless if the electrodes 

are faulty or working properly [16]. These artefacts can 

be introduced as either electrostatic interference 

produced by moving charged objects or electromagnetic 

interference by strong currents flowing through cables 

and equipment i.e. transformers or electric motors. Both 

types can be minimised by shielding the offending 

power cables and by proper wiring of the power cables 

[16].  
 

Huster et al. [17] agree that the most problematic are 

the artefacts caused by physiological functions and 

processes of the body. They can be either corrected or 

rejected. They also suggest that pronounced cardiac 

artefacts can be avoided by proper electrode placement 

while most of the signal power linked to muscle 
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movement occupy higher frequency bands which are 

usually neglected by the current BCI designs [17]. 

Huster et al. [17] confirm that simply by instructing the 

subject not to clench teeth or move the head 

significantly eliminates all myographic artefacts while 

stating that no such easy solution is available for the eye 
movement artefacts. Blinks or eye movement cannot be 

avoided during longer EEG recording sessions. They 

also contaminate the frequency bands often used for 

neurofeedback training. Simply monitoring and 

rejecting suspiciously high (75 µV) signal amplitudes is 

the most effective method since eye blinks and 

horizontal movement generate signals shifts larger than 

the normal EEG [17]. 

 

Other artefact correcting methods  

There are various Independent Component Analysis 

(ICA) techniques available today that can be used to 
analyse, correct and remove unwanted signal from the 

EEG system [18, 19]. Their main function is to extract 

separate components from the EEG signals. Whatever 

the method used, after determining which part of the 

signal is usable, the noise is nullified and the remaining 

components are mixed back together. Some of the 

methods used in ICA are so advanced that the process 

of ‗unmixing‘, signal purifying and mixing it back 

together is fully automated [20. As researched in the 

last few years by comparing EEG data between 

paralysed and healthy subjects, it has been observed that 
muscle movement play a significant role in the EEG 

signal contamination in particular in the range of higher 

Gamma frequencies above 20 Hz. Surface Laplace 

operator is one of the methods used in removing muscle 

artefacts however it works best with EEG systems 

comprising of at least 64 electrodes [21].  

 

10-20 Electrode placement system 

The 10-20 system [3] has been developed to unify the 

electrode placement for easy comparison and 

reproducibility of conducted EEG measurements. The 

‘10-20‘ refer to the percentage by which the electrodes 
are spaced away from one another (20%) and from 

nasion, inion and both ears (10%). The letters F, T, C, 

P, and O indicate frontal, temporal, central, parietal and 

occipital lobes. All electrodes marked as ‗z‘ (zero) have 

been placed in the middle of the skull. Even numbered 

electrodes such as 2, 4, 6 represent right hemisphere 

placement while odd numbered electrodes (1, 3, 5) 

indicate left hemisphere placement [3] as shown in 

Figure 2. 

 

 
Fig-2:  Electrode placement according to 

international 10-20 system [3]. 

 

Brain waves 

Brain waves are oscillations that occur naturally in 

the brain and can be measured by EEG system. The 

majority of oscillations is within 1-20 Hz and represents 

rhythmic patterns [2]. There are also transient 

components that can be observed. These occur as sharp 

waves and spikes in the waveform and usually are 

associated with seizure [2]. Vertex waves and sleep 

spindles seen during sleep are considered normal. There 

are also so called ‗normal variants‘ which although 

statistically uncommon are not considered as pathology 

with Mu waves being one of them. Mu waves also 
known as Mu rhythms occur within 7 Hz - 13 Hz 

frequency band and can be mainly observed when body 

is at rest [ 2]. The EEG patterns vary with age. Young 

children have slower oscillation than adults. Also state 

of mind and other individual characteristics have an 

impact on the EEG patterns [2]. EEG is built of set of 

signals which are classified and named in relation to 

their distribution over the scalp, biological function and 

frequency range. Commonly known frequency bands 

are called delta [δ], theta [θ], alpha [α], beta [β] and 

gamma [ɣ] [1] as detailed below in Table-1. 
 

Various types of electrical brain activities commonly 

used for an EEG based BCI 

Slow Cortical Potentials (SCP) 

      SCP signals are very slow brain waves that 

mostly occur below 1 Hz. There are negative and 

positive potentials within this range and they are 

correlated with increased or decreased brain activities 

respectively [36]. These self-regulated brain waves can 

be used to control computer cursor or select different 

targets on the screen. A thorough user training is 

necessary to use SCPs effectively. For that purpose 
thought-translation devise is used [37]. During training 

this devise equipped with a screen cursor constantly 

provides the user with feedback showing SCP‘s 

amplitude through cursor‘s vertical position [38]. The 

learning process is heavily dependent on the user‘s 

psychological state, mood or motivation. Therefore, the 
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user‘s capability to obtain this particular skill has to be determined on individual basis during initial trials [37].

 

Table 1: EEG rhythmic activity comparison by frequency bands 

Band 

name 
Frequency 

in Hz 

Characteristics/ 

Location 

Activity 

Delta  [δ] 0.5 - 4 the highest in amplitude 

the slowest in frequency 

most prominently occur frontally 

in adults and posteriorly in 

children 

decreases with age 

can be confused with artefacts [1] 

most neonatal brain activity 

in adults this slow wave represents sleep 

occasionally recorded during long 

attention tasks Kirmizi-Alsan et al. [22] 

large amounts in awake adults is 

abnormal and suggest neurological 

deceases [1] 

Theta [θ] 4 - 7 locations not related to tasks 

performed 

larger amount observed in young and 

older children, in adults relate to 

neurological decease [23] 

associated with drowsiness or arousal in 
adults and teenagers [23] 

also found in states of relaxation, 

meditation and creativity [24-26] 

Alpha [α] 8 - 12 mostly found in the occipital lobe 

of the brain [27] 

found in the state of relaxation and 

reflection 

amplitude increases when eyes are closed 

decreases with open eyes and mental 

effort [85] 

mainly associated with visual processing 

[28] 

Beta [β] 13 - 30 low amplitude waves 

mostly detected at the frontal and 

central regions of the head [1] 

associated with motor activities [1] 

during real movement and motor imagery 

Beta oscillations are desynchronised  

symmetrically distributed with no motor 

activity [29] 

Gamma [ɣ] 30 - 100 Hz somatosensory cortex displayed during activity requiring 
combination of two different senses (ie. 

smell and taste) [30, 31] 

related to certain motor functions or 

perceptions [32] 

observed during maximal muscle 

contraction [33] and replaced by Beta 

rhythms during weaker contractions [34] 

less common in BCI applications, prone 

to artefacts related to eye movement and 

muscle contractions [35] 

Mu 7 - 13 sensorimotor cortex 

band overlaps with other 

frequencies 

related to motor activities  

may correlate with beta rhythms [27, 87] 

 

Sensorimotor rhythms 

Beta rhythms (13-30 Hz) which have symmetrical 

distribution over the central part of the brain possess 

harmonic relation to the mu rhythms. Sensorimotor 

rhythms are a combination of Mu rhythms (7 Hz - 13 

Hz) and Beta rhythms (13 Hz - 30 Hz). Mu rhythms 
also referred to as Mu waves have the form of 

synchronised patterns of electrical activity that are 

associated with voluntary movement [2]. Although Mu 

rhythms are occupying similar frequency band as the 

Alpha waves they differ in nature. Unlike Alpha waves, 

which occupy occipital lobe and are associated with the 

state of relaxation and brain‘s vision processing 

activity, Mu rhythms occur in the motor cortex between 

the ears and are associated with motor action, although 
physical movement is not actually required for the 

oscillations to appear. With training such brain waves 

can be triggered by only mental rehearsal of a motor act 
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which results in a paradigm called imaginary movement 

[27]. Beta rhythms are also closely linked to motor 

behaviour and have been observed to attenuate during 

active movements [39]. Sensorimotor rhythms as the 

combination of both Mu and Beta oscillations can be 

used to control a BCI because people can be trained to 
trigger these voluntary modulations, although it is time 

consuming and not easy to do [29]. Imaginary 

movement can be observed as decrease in amplitude 

and signals desynchronisation within motor cortex 

along the entire range of Mu and Beta waves (8-30 Hz) 

[40]. These amplitude changes and desynchronisation 

can be utilised to successfully control a BCI. There are 

two types of amplitude modulations found in 

sensorimotor rhythms. They are Event-Related 

Desynchronisation (ERD) involved in amplitude 

suppression and Even-Related Synchronisation (ERS) 

linked to amplitude enhancement [29]. 
 

 
(b) Fig-3:  Example of ERD and ERS desynchronisation 

[29]. Negative time represents the time before the 

movement onset. 

 
Figure-3 illustrates the process of desynchronisation 

during voluntary index finger lifting experiment. In this 

example ERD (suppression) of Mu wave starts 

approximately two seconds before the onset of the 

movement, reaches its maximum at the movement and 

restores back its original level after three seconds [29]. 

At the same time we can observe different behaviour of 

the Beta wave where a short ERD (suppression) occurs 

at the movement start and then it shows ERS 

(enhancement) peaking immediately after the 

movement execution [29]. This is the moment of the 

maximum desynchronisation where Beta ERS appears 
while the Mu wave is still being suppressed. In this 

illustration we can also notice a short ERS peaking of 

the Gamma wave right before the movement execution. 

Gamma waves (36-40 Hz) which are fastest brain 

oscillations registered by the EEG are also known to be 

linked to human motor activity [29]. In the BCI design 

sensorimotor rhythms are very useful since they can be 

generated voluntarily by the brain without the actual 

movement [41].  

 

Event Related Potential (ERP) 

Event Related Potentials (ERP) are very small 

voltages that can be measure by an EEG system 

reflecting brain activities which are time locked to and 

directly induced by specific sensory, cognitive or motor 

events [42]. Because ERPs can be detected by an EEG 
they produce opportunity for a noninvasive and safe 

mode of brain waves research. It is believed that ERPs 

are generated by thousands to millions of neurones 

synchronously firing electrical signals when 

information is being processed by the brain exposed to 

sensory, cognitive or motor events [86]. There are two 

categories of ERPs that have been detected in humans. 

The first wave appears during the first 100 ms after the 

stimulus and is referred to as ‗sensory‘ or ‗exogenous‘ 

since it is directly related to the physical quality of the 

stimulus. In the next portion of the brain wave, 

approximately within 200 ms, another signal peak can 
be observed which is usually termed as ‗cognitive‘ or 

‗endogenous‘ which reflects the subjects attempt to 

analyse and evaluate the stimulus [42].  

 

Oddball Paradigm and P300 phenomena 

Oddball Paradigm refers to an experiment mainly 

used in Event Related Potential (ERP) research area 

[43]. It is based on the idea of presenting sequenced 

repetitive auditory or visual patterns (considered 

‗standard‘) occasionally interrupted by a stimulus not 

expected by the subject (called ‗target‘). The subject is 
requested to react to these unexpected elements by 

either counting them or pressing a button to confirm. 

The difference between the expected (standard) and 

unexpected (target) stimuli is that the latter requires a 

response from the subject [43]. Although each stimuli 

triggers an ERP, it has been found that the unexpected 

target signals that required a reaction produce brain 

waves that occur approximately 300 ms after the 

stimulus presentation and their amplitude is greater 

compared to a standard (expected) stimuli. The average 

300 ms reaction time and positive (P) deflection of the 

wave contributed to the name of P300 given to this 
specific potential [44]. Based on published research it is 

wise to state that P300 is a distinct brain signal directly 

related to decision making [44]. It means that rather 

than being a direct product of physical occurrence of 

either auditory or visual stimuli, the P300 wave is 

associated with human‘s reaction to it. To be more 

specific, the P300 is believed to be more dependent on 

the human‘s ability to evaluate and categorise events 

[44]. The oddball experiment provides perfect mode for 

eliciting and evaluation of the P300 signal. In 

electroencephalography (EEG) the P300 shows as a 
positive peak in voltage with delay ranging between 

250 and 500 ms [44]. 

 

The two parameters of P300 which are measured are 

amplitude and latency (delay). Amplitude measured in 

μV is expressed as the difference between the pre-

stimulus baseline voltage level and the greatest 
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registered positive peak of the waveform. The 

measurement is taken within pre-defined time window 

of 250-500 ms which matches the length of the usual 

P300 peak, although it may vary depending on various 

conditions such as person‘s age, task intensity. Latency 

measured in ms is expressed as the time between 
stimulus onset and the highest registered point in the 

positive waveform within the same time window [44]. 

 

Steady State Visual-Evoked Potential (SSVEP) 

SSVEP is one of the easiest methods to trigger brain 

waves. The brain signals can be elicited by exposing 

retina to repetitive flickering light or graphic. The 

frequency of the flicker generates brain waves that carry 

the same fundamental frequency together with higher 

order harmonics [45]. Thanks to this phenomena an 

SSVEP-based BCI can control many parameters 

through multiple classes which can be achieved without 
elaborate training. The main advantage of this system is 

that the user doesn‘t have to concentrate on motor 

action simulation which is necessary for other BCI 

systems. The user only needs to switch his/her eye view 

between different stimuli sources [46]. In SSVEP 

system the user can select between different commands 

where each command needs a separate visual stimulus. 

Each stimulus must have a distinctive characteristic 

(frequency or phase). For practical reasons it is best 

when the display simultaneously presents the user with 

all stimuli and the user can select each one as required 
by the application by shifting his/her gaze [45]. The 

possible range of frequencies that can be elicited in 

SSVEP system is between 1 to 100 Hz [47]. The 

strongest signal amplitudes were obtained within 10 Hz 

range as well as between 16-18 Hz bands while the 

weakest ones could be observed in the high frequency 

range (30-60 Hz) [48]. The main concerns in using this 

method are related to safety and comfort of the user. 

Due to the nature of the stimuli there is a danger of 

evoking epileptic seizures, inducing fatigue and 

weakening the user‘s vision [49, 45]. It has been 

determined that the most annoying flicker frequencies 
for humans are in the low range of 5-25 Hz. 

Furthermore, the danger of inducing epileptic seizures 

has been recognised between 15-25 Hz frequency bands 

[49]. Another problematic issue is associated with the 

fact that the user needs to be focused on the stimuli at 

all times in order to maintain the matching oscillation in 

the brain. In cases where the user wants to control a 

computer cursor or other moving object the eye contact 

with the stimulus is lost. One way of mitigating this 

problem is to program the application in such way that 

the stimulus will move together with the controlled 
object [50, 51]. Also Van Vliet et al. [52] experimented 

with SSVEP visual flicker using EMOTIV Epoc [53] 

EEG for data recording. In their experiment which was 

organised during I-Brain & Senses event (18-19 March 

2011, Ghent, Belgium) they encouraged 25 users to 

play their custom designed game which was controlled 

by only one flickering square placed at the lower left 

corner of the computer screen. In questionnaires 

provided afterwards the users contributed their feedback 

in relation to playability of the game and expressed their 

enjoyment especially for the parts where they could 

monitor the brain signal detection process and could see 

the results of their actions on the computer screen [52]. 
 

Other types of stimuli used in SSVEP 

Various approaches can be taken in designing visual 

stimuli. It can be presented as a flickering light, a colour 

alternating graphic or as a checkerboard [54]. Various 

devices can also be utilised for the flicker presentation. 

For light flickers a flash tube, a light bulb or an LED 

panel will work. For more elaborate graphic elements a 

CRT/LCD screen should be used. To facilitate 

portability and tighter integration with the BCI modern 

portable screens (laptop, tablet, smartphone) will be 

taken into account in this research. Computer/tablet 
monitors are more convenient since they offer more 

opportunities for detailed graphics and feedback 

presentation as well as target alignment [54]. Nakamishi 

et al. [55] point out all the advantages of using a 

computer screen for the flicker presentation. All the 

stimulation parameters such as the amount, colour, 

pattern, size and position can be flexibly configured 

[55]. However, the number of targets is limited by the 

common 60 Hz refresh rate of most screens available 

today. In the Alpha range of 8-12 Hz where the SSVEP 

is most effective the number of available flickers is very 
limited [56]. For instance, for an effective checkerboard 

flicker we need constant period graphics meaning an 

equal amount of black and white frames per period to 

display a steady stimulus using 60 Hz screen. That 

leaves us with frequencies such as 7.5 Hz (60 Hz/7.5 Hz 

gives 8 frames per period, 4 for black and 4 for white 

fields), 10 Hz (6 frames per period) and 15 Hz (4 

frames per period) [55].  

 

Therefore, other solutions must be introduced to 

expand the available amount of frequencies to increase 

the number of commands in the resulting BCI. Wang, 
Y., et al. [57] proposed a method where flickering 

graphics are created by approximation where variable 

number of frames are utilised to display frequencies that 

otherwise could not be shown by a 60 Hz screen. In 

their example they suggested that an 11 Hz flicker can 

be approximated by mixing 10 Hz and 12 Hz 

frequencies, where 5 and 6 frames periods can be 

interleaved as ‗1110001110011100011100…‘ [57]. 

Figure 4 below shows a graphic representation of this 

method used to create 6.3 Hz flicker.  

 

 
(c) Fig-4: Example of 6.3 Hz flicker with approximated 

period of 9.5 frames. 
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This method gives us additional frequencies such as 

11 Hz (with approximated period of 5.45 frames), 8 Hz 

(7.5 period), 9.2 Hz (6.52 period), 13.3 Hz (4.5 period), 

7.05 Hz (8.5 period) and 6.3 Hz (9.5 periods) that will 

work with 60 Hz screen refresh rate [55]. Nakamishi et 

al. [55] in their paper compared the results of their 
SSVEP based system using both constant period 

approach and the approximation approach and stated 

that the results were comparable. They further claimed 

that the approximation approach for rendering SSVEP-

based oscillations may lead to a more practical BCI 

system requiring large number of user selections such 

as spelling systems using more than 30 targets. Their 

only concern for the future work is developing a multi-

command, real-time portable BCI with the use of the 

approximation method in light of the ever growing 

various display technologies utilizing not only 60 Hz 

but also 75 Hz and 120 Hz refresh rates [55]. Szalowski 
and Picovici [58] investigated the robustness of variable 

period stimuli graphics against the constant period 

flickers. In their experiment they used Emotiv EPOC 

headset and two computers. The response of three 

subjects was tested in a set up where one computer 

wirelessly registered the EEG signals while the other 

displayed checkerboard flickering graphics of various 

frequencies. The tests were performed in two different 

environments. One was normal office room with 

fluorescent lighting with regular ambient noise and the 

other was a quiet dark room with no distractions. They 
found out that indeed the constant period stimuli 

graphics produced better overall performance with 

cleaner signals and less harmonics. Also based on the 

fact that the same stimuli graphics produced different 

responses in the three subjects they suggest that 

individual features of each subject such as eyesight, 

age, ability to concentrate, might play a significant role 

in the resulting signal discrepancies. Originality of this 

approach lays in the fact that Szalowski and Picovici 

[58] used external professional motion graphics 

software like Adobe after Effects to produce high 

quality stimuli graphics. This method allows to free 
some computing power of the future BCI systems for 

EEG signal decoding algorithms.  

 

Another method of increasing the possible number of 

stimuli graphics is through the use of phase feature of 

the oscillations [54]. In this method a single frequency 

can be used with varying phase. In the example below 

10 Hz flickers have been presented with phase equally 

shifted by 60° giving six independent flickering 

graphics [54]. 

 

 

(d) Fig-5:  Six independent 10 Hz graphic elements with 

phase shifted by one frame which equals 60°. 

 

Using phase shift in stimuli design the screen‘s 

refresh rate stability are of the utmost importance [54]. 

As reported by Kluge and Hartmann [59] who used only 
two phase shifted targets, the online application of this 

method was not feasible at that time due to increased 

demand for computational power that was required 

from the computers to classify them. It will be worth 

checking though whether current personal computer is 

able to process online this type of data.  

 

Another important issue is the physical appearance of 

the stimuli, their sizes and arrangement on the display 

([60]. Wu and Lekany [60] investigated the impact of 

configuration of multi-stimuli presented on a computer 

monitor for the SSVEP response. They looked over the 
three distinctive parameters such as the size, the 

separation distance between the stimuli and the layout 

that might impact the resulting BCI signal. In their tests 

they found out that the configuration with bigger size 

and larger separation between the stimuli gave better 

results pointing to the layout as having the least impact 

[60].  

 

An area that lacks in research and presents high 

opportunity for new discoveries is the SSVEP response 

to different colours. Colour of the stimulus among other 
parameters such as size and separation also influences 

SSVEP signal as it presents different responses to red, 

blue and yellow light [61]. Singla, Khosla and Jha [62] 

in their study used four colours (green, red, blue and 

violet) to investigate the colour influence in SSVEP. In 

their findings they state that an SSVEP with violet 

colour showed higher performance than green and red. 

 

The concept of improving SSVEP response with 

different colour stimuli presentation is based on the fact 

that SSVEP is heavily dependent on human vision 

system [63]. The human eye is equipped with two types 
of photoreceptive cells: rods and cones. There are 

approximately 120 million rods and only 6-7 million 

cones in the retina [64]. The rods are over one thousand 

times more sensitive to light compared to the cones 

hence they are responsible for the human night-vision. 

In contrast they are not sensitive to colour and are very 

slow in response [64]. This can be observed when we 

enter a dark room and start to see some details after a 

few minutes. The rods are also better motion sensors 

especially in the peripheral vision. The cones provide 

the eye‘s colour sensitivity and are responsible for high 
resolution vision. They are less sensitive to light but 

much faster in response. The cones can be divided into 

three categories based on their response to different 

light wavelengths: ‗red‘ cones [64%], ‗green‘ cones 

[32%] and ‗blue‘ cones [2%] [64]. All this may lead to 

a conclusion that colour response of the human eye and 

specifically the anatomy of the retina might have a 
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substantial effect on the signal elicited by SSVEP 

stimuli graphics. 

 

BCI classification 

Based on the various BCI control signal types 

discussed earlier in this paper it is possible to categorise 
BCI systems into the following categories: exogenous, 

endogenous, synchronous (cue-paced) and 

asynchronous (self-paced) [1]. The first two categories 

refer to the nature of the signals that the BCI system 

receives, while the last two depend on the input data 

processing modality. 

 

In exogenous BCI an external stimulus is required for 

the specific brain activity to be elicited [1]. Previously 

discussed SSVEP and P300 are good examples of such 

BCI systems. There are numerous advantages of the 

exogenous BCI systems. Among them are minimal to 
no training required and easy set up of control signals 

[65]. Another very crucial parameter for any control 

systems are Information Transfer Rates (ITR) [54]. This 

determines how many individual commands can be sent 

through the system during set amount of time. 

Exogenous BCI systems excel in this area and they can 

provide up to 60 bits per minute [1]. This means that an 

average person after minimal training can send 60 

different commands per second using this method. In 

most of the situations it‘s more than enough to control 

any type of domestic device or computer application 
[65]. Also stimulus based control signals require only 

one EEG channel which significantly simplifies the 

system and lowers the overall cost [1]. The list of 

disadvantages is not very long but they may cause some 

problems in various situations. First of all this type of 

BCI requires the user to be constantly focused on the 

stimulus. This means that if the eye contact is lost also 

the elicited signal disappears. One way to overcome this 

problem would be to programme the application in such 

a way that when the controlled object moves the 

stimulus moves along with it or the controlled objects 

are presented as flickers themselves [66]. Also the 
quality of the flickering graphics and their accuracy in 

terms of frequency plays an important role in the overall 

robustness of the system. As indicated by Bakardjian et 

al. [67], visual graphic employed in BCI systems using 

SSVEP need the same degree of optimization as the 

analysis algorithms in order to maximize the brain‘s 

response. As Wang et al. [68] reported, also the number 

of commands (targets) has a considerable impact on the 

tiredness of the person using the system. The more 

flickering graphics will be presented to the user the 

more discomfort the system will cause. Wang et al. [68] 
suggested that systems with more targets provide higher 

transfer rates giving an example of 13-target system 

versus 2-target system, where the first one operated at 

43 bit/minute and the second one at just 10 bits/minute 

transfer rate. They also pointed out that the number of 

targets implemented in the BCI needs to be considered 

as a tradeoff between the performance and user comfort 

[68]. In summary, the exogenous BCI systems won‘t 

allow the user to freely move a computer cursor or a 

mechanical arm in any desired direction. Instead it 

constrains the device‘s control by only the choices the 

stimuli graphics present [1]. 

 
In contrast, endogenous BCI systems are operated on 

the principle of self-regulation and self-control of the 

brain waves without the use of any kind of external 

stimulation [65]. Endogenous BCI systems are based on 

sensorimotor rhythms (Mu band) and the user needs to 

be trained how to change brain oscillations based on 

motor imagery [1] or on Slow Cortical Potentials 

(SCPs) where a though-translation device is used [37]. 

In this training the user performs certain motor imagery 

tasks while the EEG records the signal which then 

further needs to be extracted and classified by 

comparing to the reference data. Based on the success 
results a visual feedback is presented to the user 

enhancing the learning experience [1]. It is a rather 

time-consuming task and the results are never 

guaranteed and depend on the individual‘s abilities [69]. 

Another disadvantage of this method is the need to use 

multichannel EEG systems in order to increase the 

performance and stability of the system. It also delivers 

significantly lower bit rate of approximately 20-30 

bits/minute compared to exogenous systems. However, 

the fact that it operates at free will and is stimulation 

independent makes it a good choice for systems where 
cursor control is required [1].  

 

Endogenous systems can further be classified 

according to the input data processing modality i.e. 

synchronous and asynchronous. In synchronous systems 

there are predetermined time slots during which the 

brain signal is analyzed and recorded. Any brain 

activities that occur outside this time are ignored. 

During this predefined time space the user is presented 

with auditory or visual cues [70]. The most obvious 

advantage of this method is the ability to simplify the 

system‘s design and brain signal evaluation methods. 
Also eye blinks, eye movement and most of other 

biological artefacts can be eliminated since the signal 

recording is only limited to the allocated time windows 

and it is easier for the user to focus during this time.  

 

Asynchronous BCI presents more natural mode of 

interaction where brain signals are recorded at all times. 

In consequence this approach requires elaborate system 

where signal evaluation is much more difficult and the 

demand for computation is much higher [1]. 

 

EMOTIV Epoc as BCI hardware 

Using standard EEG equipment for popular 

applications imposes various problems such as high 

cost, difficult assembly and lack of portability due to 

sizeable dimensions and wire connections. Therefore, a 

relatively small device with wireless transmission 

capability is necessary. Among various devices 
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available on the market that fulfill this requirement are 

NeuroSky [71],, Mindflex [72] and EMOTIV Epoc 

[53]. Clear advantage of the latter lays in the number of 

electrodes and according to Stamps and Hamam [73] it 

is the most effective low-cost EEG system delivering 

acceptable performance [73]. 
 

 
(e) Fig-6: Emotiv Epoc headset [53]. 

 

 
(f) Fig-7:  Scalp locations covered by Emotiv EPOC 

according to 10-20 system. 

 
According to the producer‘s specifications the device 

is equipped with 14 EEG active electrodes accompanied 

by 2 reference electrodes (CMS and DRL) as shown in 

Figure 7. It uses the following EEG locations in 

accordance with the 10-20 international system for 

signal acquisition: AF3, AF4, F3, F4, FC5, FC6, F7, F8, 

T7, T8, P7, P8, O1, O2. It is capable of capturing signal 

frequencies between 0.16 Hz and 43 Hz with internal 

sampling rate of 2048 Hz and resolution up to 16 bits 

(Compare 2015). The signals are internally filtered and 

down-sampled to 128 or 256 Hz. The sensors are saline 
soaked felt pads which need to be kept wet while in 

operation. Epoc EEG connects to any operating system 

PC via the supplied USB wireless dongle. The supplied 

software allows for the use of preset mental commands 

or extract EEG raw data which then can be used in 

research.  

 

While Emotiv‘s EPOC appears to be perfectly suited 

for testing and designing video games, entertainment 

and neurotherapy [74], numerous researchers report its 

high usability in scientific research [75, 76, 52, 77]. In 

this respect it is very useful that the product is 

accompanied by a dedicated Application Programming 

Interface (API) which simplifies any potential BCI-

based application development [1]. 

 

Yue et al. [75] in their paper compared the easy of 
use, setup time and final results between Emotiv EPOC 

and the more elaborate g.tec systems. In their results 

they stated that although EPOC operated noticeably 

poorer it still delivered useful performance of 95% 

accuracy using SSVEP stimuli. They also pointed out 

that EPOC was not only much more affordable but also 

easier to setup and operate which is an ideal 

combination for the type of system this paper tries to 

establish [75]. 

 

Duvinage et al. [78] performed a similar comparison 

between EPOC and a medical-grade system costing in 
the range of tens of thousands of dollars produced by 

Advanced Neuro Technology [79] using P-300 

paradigm. In their discussion they noted that although 

EPOC device was able to record EEG data in a 

satisfying manner it delivered a significantly worse 

performance pointing out that it should rather be used 

for non critical applications such as gaming or 

entertainment.  

 

Stytsenko, Jablonskis and Prahm [76] stated in their 

EPOC performance comparison paper that in general it 
delivered comparable EEG data to a more advanced 

g.tec system with the latter producing clearer and 

stronger signal. They also observed a drift in recording 

speed between the devices despite the fact that both 

operated with 128 samples/second setting. They also 

suggested possible benefits of using the built-in 

gyroscope sensors in EPOC presenting potential for 

developing future software applications that could be 

used within BCI system augmenting its usability 

(artefacts reduction, yes/no nodding, etc.).  

 

Van Vliet et al. [52] denoted in their paper that 
SSVEP detection on EPOC is robust and opens the way 

to developing commercial BCI-based games that can be 

fully controlled using only brain commands. They also 

noticed poorer performance of other BCI paradigms 

such as P-300 in current state of the research while 

stating that it might be feasible to employ them in the 

future using EPOC device [52]. One of the reasons for 

the EPOC to under perform, especially in comparison to 

other more advanced systems might be the fact that the 

electrode placement in EPOC is predetermined, limiting 

its use in certain BCI paradigms where other 
arrangement is preferable. For example, in SSVEP an 

occipital lobe electrode placement is preferred to 

increase the EEG signal [52].  

 

Therefore, as Manyakov et al. [80] indicate, for 

successful application of SSVEP in EPOC a reversal of 
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the headset is advised. This enables the electrodes to 

access specific (occipital lobe) areas of the brain.  

 

AlZu'bi, Al-Zubi and Al-Nuaimy [77] compared the 

EMOTIV Epoc‘s performance to a more expensive 

BrainAmp EEG system using asynchronous BCI tasks 
and they claim that the inexpensive Epoc can deliver 

comparable accuracy. They also noted a more natural 

mode of operation of the Epoc device due to wireless 

communication with the computer. In summary they 

recommend using Epoc for further BCI study and 

application development [77]. 

 

BCI mobility 

Majority of the BCI systems especially used in 

research laboratories are based on bulky and wired 

equipment. This does not translate to easy of use, 

portability, practicability and ubiquity of the system this 
paper is attempting to establish. As it has been 

determined earlier in the paper the signal acquisition 

should be performed by a non-invasive, easy to set-up 

and operate, portable, wireless and low-cost device such 

as the latest generation of EMOTIV Epoc EEG headset. 

But it still requires equally small and yet powerful 

device to elicit the signal, process it, ideally in real time, 

and perform tasks such as web browsing, game control 

or making a phone call. Modern tablets and smart-

phones with multi-core processing power seem to be the 

best candidates for such mobile system.  
 

One of the first attempts utilising this approach was 

demonstrated by Wang, Y.T., Wang, Y. and Jung, T.P. 

[81]. They integrated a cell-phone in a system 

consisting of a wearable and wireless EEG (Figure 8) 

implementing SSVEP. 

 

 
(g) Fig-8: An EEG headband with an embedded data 

acquisition and wireless telemetry unit [81]. 

 

The EEG system used 4 electrodes which acquired 

the bio-signal form the brain. The signal was then 
amplified, band-pass filtered and digitized by analog-to-

digital 12-bit converters. The digitized EEG signal was 

then sent to a cell-phone via a Bluetooth module.  For 

the stimulator they used a 21-inch CRT computer 

screen (140 Hz refresh rate and 800x600 resolutions) 

that displayed SSVEP flickers representing virtual 

phone keypad with 0-9 digits, BACKSPACE and 

ENTER. The stimuli frequencies between 9 Hz and 

11.75 Hz were picked (Wang, Y.T., Wang, Y. and Jung, 

T.P. 2010). Although the bulkiness of the computer 

screen does not make it for a true portable system, the 
experiment proved that a cell-phone can be 

programmed in much the same way a computer is, 

providing data processing, real-time monitoring and 

task execution. All subjects participating in this EEG-

based phone dialing experiment with an average 

accuracy of 95.9% in an average time of 88.9 seconds 

[81]. The average Information Transfer Rate (ITR) was 
28.47 bit/minute which can be compared to results 

achieved on high-end computers [82, 57]. 

 

In order to move the complete BCI system from 

laboratories to real-life applications and environments a 

more portable and practical system needs to be 

developed. Ever growing computational speed of the 

most recent smart phones and tablets leads to a concept 

of using them as a complete BCI solution. In this 

respect tablets seem to be the better option due to bigger 

storage space available for applications, faster 

processors for data processing and larger screen for 
flickers presentation.  

 

This approach has been thoroughly examined by 

Wang et al. [83] by using a laptop, a tablet and a smart-

phone for both stimuli display and data processing, 

achieving much better results and thus increasing 

functionality and portability of the system. Again 

SSVEP was used for eliciting the EEG signals due to its 

robustness and minimal training required. They 

displayed the flickering graphics through a Lenovo 

X200S laptop, a Motorola XOOM tablet and a Samsung 
Galaxy S smart-phone [83]. 

 

TABLE-2: Specifications Of The Devices Used In 

The Experiment [83]. 

 
 

From the Table 2 above it is evident that in general 
the computational specifications have been matched 

between all of the devices. The most obvious 

differences can be observed in the screen‘s resolution, 

size and refresh rate. Wang et al. [83] pointed out that 

while the refresh rate of the laptop and tablet were 

comparable and the signal‘s phase was almost identical 

in every second, the smart-phone presented a little bit of 

a challenge while presenting 11 Hz flicker due to phase 
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shifting back and forth. The averaged ITR of the 

experiment was 33.87 bits/minute which is better when 

compared to the previous experiment. Despite the 

refresh rate differences and slight instability of the 

flicker on the smart-phone, all three devices were able 

to produce a signal with correct 11 Hz fundamental 

frequency [83].

 

 
(h) Fig-9: The waveforms and power spectra of the stimuli graphics [83]. 

 

Figure-9 shows the normalised amplitude of the 

stimulation as being the smallest on the smart-phone but 

the frequency is still accurate. Although Wang et al. 

[83] describe the BCI operation as near real-time it is 

still very promising for future development. 

 

CONCLUSIONS 

As it has been shown in the above sections, most of 
the technical requirements for a mobile low-cost, easy 

to set up and operate BCI system can be achieved with 

today‘s off the shelf technology.  

 

Starting with the hardware it is essential that it 

provides quick set-up mode, straightforward operation 

and wireless connectivity. In order to satisfy these 

guidelines the latest generation of EMOTIV Epoc EEG 

headset has been identified.  

 

Based on the literature review SSVEP (Steady State 
Visual Evoked Potential) has been also identified as the 

mode of eliciting oscillations in the brain. This methods 

satisfies the minimal training requirement for the 

system operation, providing also excellent signal-to-

noise ratio (SNR) thus significantly simplifying the 

signal recognition and classification. SSVEP is also 

known to produce high information transfer rate (ITR) 

of up to 60 bits/minute which in conjunction with multi-

target operation can increase the possible number of 

commands that the end user could perform in any given 

time frame.  

 

As it has been described in section IX of this paper, 

despite screen refresh rate limitation, the SSVEP 

stimulation can be successfully presented on various 
modern displays including laptops, tablets and even 

smart-phones using either the method of frequency 

approximation or phase shift. Reportedly a 48-

command BCI system using SSVEP has been 

successfully implemented, although this result was 

achieved by only one user [84].  

Modern displays offer unparalleled possibilities for 

stimuli presentation in terms of stimuli arrangement and 

movement, size, resolution, contrast and colour. The 

quality of the graphic elements serving as stimulators is 

very important and is directly linked to the robustness 
of the EEG signal. It has been concluded that one area 

that lacks in research thus providing opportunity for 

new development is the SSVEP‘s response to different 

colours. It is envisaged that introducing certain colour 

combinations with varying colour saturation and 

contrast might greatly reinforce signal strength. This is 

a niche area that the authors are going to investigate. 
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