
      640 
 

Scholars Journal of Engineering and Technology (SJET)      ISSN 2321-435X (Online) 

Sch.  J. Eng. Tech., 2015; 3(6):640-644                  ISSN 2347-9523 (Print) 
©Scholars Academic and Scientific Publisher       

(An International Publisher for Academic and Scientific Resources) 
www.saspublisher.com 

 

Research Article 
 

A new non-monotone self-adaptive trust region method for unconstrained 

optimization 
Baowei Liu  

Department of Mathematics, Cangzhou Normal University, Cangzhou, Hebei Province, China 

 

*Corresponding author  

czlbw@sina.cn 

Email: qinghua.zhou@gmail.com 

  

Abstract: In this paper, we consider a novel non-monotone self-adaptive trust region method for solving unconstrained 
optimization problem. Unlike the usual trust region methods, our proposed the new algorithm does not only uses current 

iterative but also the previous information to update the trust region radius at each iteration. The global convergence of 

the algorithm is established under some reasonable assumptions. 
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INTRODUCTION 

In this paper, we consider the following unconstrained optimization problem:  

                        min ( )
nx R

f x


                                       (1.1) 

where ( ) : nf x R R  is a function that is twice continuously differentiable.  

 

Already, there are many methods to solve problem (1.1) such as line search methods and trust region methods. In the 

trust region method, at each iterative point
kx , it needs to compute a trial step kd  by solving the following quadratic sub-

problem: 

1
2

min ( ) ,

. . ,

T T

k k k k

k

q d f g d d B d

s t d

  

 
                        (1.2) 

where ( ), ( ), n n

k k k k kf f x g f x B R     is a symmetric matrix which is the Hessian matrix or its approximation 

of ( )f x at the current point kx , 0k  is the trust radius and   denotes to the Euclidean norm. By computing the ratio  

1( ) ( )

(0) ( )
k k

k k k

f x f x

k q q d
r 


 , 

we can decide whether kd  is acceptable or not and how to adjust the trust region radius. The iteration is said to be 

successful if 1kr  . Then we obtain the new point 1kx  , and the trust region radius is updated. If not, the iteration is 

unsuccessful, and the trail point is rejected.  

 

However, there exists a difficulty that how to adjust the trust region radius. In order to choose an self-adaptive trust 

region radius, many adaptive trust region methods have been studied in [1, 2].  

 

In 1997, Sartenaer [3] introduced a strategy that can automatically determine the initial trust region radius. The 

strategy requires additional evaluations of the objective function. Zhang et al. [4] presented another efficient strategy of 

updating the trust region radius. That is, ( )kgp

k c   , 0 1c  , min( ,1)kB   and p is a positive integer. But, 

there still exist some drawbacks in the adaptive trust region method. Recently, a new updated rule is introduced by Cui et 
al. in [5]. They presented a new self-adaptive trust region method. The main difference between other methods and the 

new method is that in the new method of the trust region radius is defined by not only the current iterative information of 
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kg and kB but also the previous iterative information of 1kd  . In the new method, it does not need to compute 
kB  or 

 1

kB


, which can decrease the cost of computation. 

In the 1980s, Grippo et al. [6] firstly gave a non-monotone line search for Newton’s method. This algorithm accepts 

the step-size k  whether 

   
( )( ) ( ) ( ) ,T

k k k l k k kf x d f x f x d                                   (1.3) 

where 1
2

(0, )  ,  ( ) 0 1
0

( ) max ( ), 0,0 min 1, ( 1),
k

l k k j k k
j m

f x f x m m m M k 
 

      and 0M   is an 

integer. Since then, many researchers [4, 7] have exploited the non-monotone technique and a lot of numerical tests have 

showed that the non-monotone technique proposed by Grippo et al. [6] is efficient at some extent. In 1993, Deng et al. 

[7] made some changes and applied it to the trust region method, and developed a non-monotone trust region method for 

unconstrained optimization. Zhang et al. [8] proposed another non-monotone line search method. In detail, their method 

finds a step-size k  satisfying the following condition: 

 ( ) ( ) ,T

k k k k k kf x d C f x d                                  (1.4) 

where  

1 1 1 ( )

1 1
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k
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Q C f xk k

k kQ

f x k k
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Q k

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 
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ｋ １, 　
       (1.5)   

and 1 min max min[ , ], [0,1)k      and max min[ ,1)   are two chosen parameters. Numerical results showed that 

this non-monotone technique was superior to (1.3). In 2008, Gu and Mo [9] introduced a new simple non-monotone 
strategy as follow:  

          
1

, 0,

(1 ) , 1

k

k

k k k k

f k
D

D f k 


 

  
                             (1.6) 

for min max[ , ]k   .This non-monotone technique is efficient and robust which is showed by numerical experiments in 

[9].  

 

Inspired by the ideas introduced above, we use the new technique to update the radius, then applied it to the trust 

region method with non-monotone strategy proposed by Gu and Mo [9]. The purpose of this paper is to present a new 

non-monotone adaptive trust region method. 

 

The rest of the paper is organized as follows. In Section 2, we describe our new non-monotone self-adaptive trust 

region algorithm. In Section 3, we prove the global convergence properties of this novel algorithm. Finally, some 

conclusions are summarized in Section 4. 

 

Algorithm 

In this section, we will describe our new non-monotone self-adaptive trust region method. After we obtain kd , the 

ratio kr  is defined by 

( )

Pr (0) ( )

k k k k
k

k k k k

Ared D f x d
r

ed q q d

 
 


，                                 (2.1) 

Algorithm 2.1 

Step 1.  Given 0 0 0 0, , ,n n nx R g B R     0 10 1c c   , 20 1c  0  , set : 0k  . 

Step 2.  Compute kg . If kg  , stop. Otherwise, go to Step 3. 

Step 3.  Solve the sub-problem (1.2) for kd . Compute kD , kAred , kPred and kr . 

Step 4.  If 0kr c , set 1 2k kc   , go to the Step 3; otherwise, go to Step 5. 

Step 5.  Set 1k k kx x d   . Compute 1kg   and 1kB  , and let 
2

1
3

k
T
k k k

d

d B d
c



 .        (2.2) 

Step 6.  Update the trust region radius 1k  as 
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max{ ,4 } ,
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                   (2.3) 

And set : 1k k  , go to Step 2. 

Remark: Step 3- Step 4 is called the internal circulation and the cycling index is denoted by kp at the current iterative 

point kx . 

 

Global convergence 

In this section, we will prove the global convergence properties of Algorithm 2.1. The following assumptions are 

necessary to analyze the convergence properties. 

(H1) The level set 
0 0( ) { ( ) ( )}nL x x R f x f x   is bounded for any given

0

nx R .  

(H2) The matrix kB is uniformly bounded, i.e., there exists a constant 0M  , such that, for all k , kB M . 

Lemma 3.1. (See Lemma 13.3.1 in [10]) If kd  is the solution to sub-problem (1.2), then 

           1
2

(0) ( ) min{ , }k

k

g

k k k k k k B
Pred q q d g    .                       (3.1) 

Lemma 3.2. 
2

( ) ( )k k k k kf f x d Pred O d     

Proof. From Taylor expansion and the definition of kPred , this lemma is obviously true.. 

Lemma 3.3. Let kx be the sequence generated by Algorithm 2.1. For any fixed 0k  , we have  

                 1 1k kf D  .                                               (3.2)  

Proof. We obtain 
1 1 1 1( )k k k k kD f D f      for all 0k   from the definition of

kD . By
0kr c , (2.1) and Lemma 

3.1, we have 

            0

1 0 2
Pr min , 0k

k
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k k k k k B
D f c ed g                           (3.3) 
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1 1 1 1 0 1
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k k k k k k k
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k k k B

D f D f c ed

g

 


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

   

  
                         (3.4) 

Therefore, we have 1 1k kD f  . 

Lemma 3.4. (See Lemma 3.3 in [5]) Suppose that Assumption (H1) holds, then 

                         2
21

2

pk

k

c

k kM
Pred g                                  (3.5) 

hold for all k , where k kM B  and kp is the cycling index at the current iterate and the last iterate. 

Lemma 3.5. (See Lemma 4.10 in [11]) Suppose that the sequence { }kx  generated by Algorithm 2.1. The algorithm is 

well defined, i.e., it could not cycle infinitely in the inner cycle. 

Lemma 3.6. Suppose that the sequence { }kx  generated by Algorithm 2.1. Then the sequence { }kD  is decreasing. 

Proof. From formula (3.3), we know that 
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 
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  

              (3.7) 

The formula above indicates that the sequence { }kD  is monotonically decreasing. 

Theorem 3.7. Suppose that Assumption (H1) holds. Let the sequence { }kx  generated by Algorithm 2.1, then we have 

                      liminf 0.k
k

g


                                      (3.8) 
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Proof.  We assume that (3.8) is not true, that is, there exists a positive constant 0  , such that 

                  
kg  for all k .                                       (3.9) 

From (3.9), Assumption (H2) and Lemma 3.4, we obtain that 

                  2 2
2 21 1

2 2

p pk k

k

c c

k kM M
Pred g                            (3.10) 

where kp  is the largest cycling index at the iterate kx . 

According to Lemma 3.5 and the definition of kr , we know that 

                           
2

0 21
1 2

pkc c

k k M
D f



                               (3.11) 

By (3.11), Assumption (H1) and the convergence of the sequence kD , we can obtain  

lim k
x

p


   

By the definition of Algorithm 2.1, we know that the solution  kd  of the following sub-problem 

                    

2
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2

min ( ) ,

. . ,k

T T

k k k
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q d g d d B d
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
                         (3.12) 

is not accepted, i.e., 

                        



 0

( )

(0) ( )

kk k

kk k

D f x d
c

q q d

 



                              (3.13) 

On the other hand, from Lemma 3.1, we have  

1 1
1 0 0 02 2

Pr min{ , } min{ , }k

k

g

k k k k k k MB
D f c ed c g c                   (3.14) 

By (3.14) and Assumption (H1), we can obtain 

                            lim 0.k
x

                                     (3.15) 

Thus, we have 


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From (3.15) and (3.16), 







 0

( ) ( )
,

(0) ( ) (0) ( )

k kk k k k
k

k kk k k k

D f x d f f x d
r c k

q q d q q d

   
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 
                 (3.17) 

This is a contradiction with Formula (3.13). Theorem 3.7 has been proved. 

 

CONCLUSIONS 

   In this paper, we give a new non-monotone self-adaptive trust region method for unconstrained optimization. In the 

algorithm, the trust region radius relies on the previous and current iterative information. Under some mild conditions, 

we establish the global convergence result of the proposed method. 

 

Acknowledgments 

The author would be very grateful to the referees for their valuable comments and suggestions. 

 

References 

1. Sang Z, Sun Q; A self-adaptive trust region method with line search based on a simple sub-problem model, 

Journal of Applied Mathematic and Computing, 2009; 232(2): 514-522. 

2. Fan JY, Ai WB, Zhang QY, A line search and trust region algorithm with trust region radius converging to zero, 

Journal of Computational Mathematics,  2004; 22(6): 865–872. 

3. Sartenaer; Automatic determination of an initial trust region in nonlinear programming, SIAM Journal on 

Scientific Computing, 1997; 18(6): 1788–1803. 

4. Sun W, Zhou Q, An unconstrained optimization method using nonmonotone second order Goldstein’s line 
search, Sci. China Ser. A 50, 2007: 1389-1400. 



 

Baowei Liu. Tech., September 2015; 3(6):640-644 

    644 
    

 

 

5. Cui Z, Wu B, A new self-adaptive trust region method for unconstrained optimization, Journal of Vibration and 

Control, 2011; 18(9): 1303–1309. 

6. Grippo L, Lamparillo F, Lucidi S; A nonmonotone line search technique for Newton’s method, SIAM Journal 

on Numerical Analysis, 1986; 23(4): 707-716. 

7. Deng N, Xiao Y, Zhou F; Nonmontonic trust region algorithm, Journal of Optimization Theory and Application, 

1993; 76(2): 259-285. 
8. Zhang H, Hager W; A nonmonotone line search technique and its application to unconstrained optimization, 

SIAM Journal on Optimization, 2004; 14(4): 1043-1056. 

9. Gu N, Mo J; Incorporating nonmonotone strategies into the trust region method for unconstrained optimization 

problem, Computer & Mathematics with Applications, 2008; 55(9): 2158-2172. 

10. Yuan Y, Sun W, Optimization Theory and Methods, Science Press of China, 1997. 

11. Zhou Q, Hang D, Nonmonotone adaptive trust region method with line search based on new diagonal updating, 

Applied Numerical Mathematics, 2015; 91: 75-88. 

 


