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Abstract: The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index which reflects certain structural 
features of organic molecules. Each structural feature of such organic molecule can be expressed as a graph. In this 

paper, we study the weighted vertex PI indices for some special graphs, such as Ir (Fn), Ir(Wn), 
~

nF , 
~

nW , Ir(
~

nF ) and Ir(

~

nW ). 
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Introduction 

The studies of topological indices for molecular structures have been conducted for over 35 years. Distance-based 

topological indices are numerical parameters of molecular structure, and play important roles in physics, chemistry and 

pharmacology science. 

 

Specifically, let G be a molecular graph, then a topological index can be regarded as a positive real function f: G
 . As numerical descriptors of the molecular structure deduced from the corresponding molecular graph, topological 

indices have found several applications in theoretical chemistry, like QSPR/QSAR study. For instance, harmonic index, 

Wiener index, PI index, Randic index and sum connectivity index are introduced to reflect certain structural features and 

chemical characteristics of organic molecules. Recently, several articles contributed to reporting certain distance-based 

indices of special molecular graph (See Yan et al., [1-2], Gao et al., [3-4], Gao and Shi [5], Gao and Wang [6], Xi and 

Gao [7-8], Xi et al., [9], Gao et al., [10] for more detail). The notation and terminology used but undefined in this paper 
can be found in [11]. 

 

In this paper, we study the weighted vertex PI index of several simple connected graphs. Let e=uv be an edge of 

the molecular graph G. The number of vertices of G whose distance to the vertex u is smaller than the distance to the 

vertex v is denoted by ( )un e . Analogously, ( )vn e  is the number of vertices of G whose distance to the vertex v is 

smaller than the distance to the vertex u. Note that vertices equidistant to u and v are not counted. The weighted vertexPI 

index of a graph G was defined by Ilic and Milosavljevic [12] which is stated as follows: 

( )wPI G = ( ( ) ( ))[ ( ) ( )]u v

e uv

d u d v n e n e


  . 

      

In this paper, we determine the weighted vertexPI index for some special graphs. The organization of rest paper is 

as follows. First, we give some necessary definition in the next section. Then, the main result in this article is given in the 

third section. 

 

Preliminaries 

Definition 1.The graph Fn= {v} Pnis called a fan graph and the graph Wn={v} Cnis called a wheel graph, where Pn is 

a path with n vertices and Cn is a cycle with n vertices. 

 

Definition 2. Graph Ir(G) is called r- crown graph of G which splicing r hang edges for every vertex inG. The vertex set 

of hang edges that splicing of vertex v is called r-hang vertices, note v*. 
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Definition 3.By adding one vertex in every two adjacent vertices of the fan path Pn of fan graph Fn, the resulting graph is 

a subdivision graph called gear fan graph, denote as
~

nF . 

 

Definition 4. By adding one vertex in every two adjacent vertices of the wheel cycle Cn of wheel graph Wn, The resulting 

graph is a subdivision graph, called gear wheel graph, denoted as 
~

nW . 

 

Main results and Proof 

Theorem 1. ( ( ))rw nP I FI =
3 2 2 2 3 2( 2 1) (8 12 8) ( 9 31 45)r n n r n n r n n n          

3 2( 2 21 36)n n n    . 

 

Proof. Let Pn=v1v2…vn and the r hanging vertices of vibe 
1

iv , 
2

iv ,…, 
r

iv  (1 i n). Let v be a vertex in Fn beside Pn, and 

the r hanging vertices of v be 
1v , 

2v , …, 
rv . Using the definition of weighted vertex PI index, we have  

( ( ))rw nP I FI =
1

( ( ) ( ))( ( ) ( ))i

r
i i i

v v
i

d v d v n vv n vv


  +
1

( ( ) ( ))( ( ) )( )
i

n

i v i v i

i

v n vvv n vd d v


  +

1

1

1 1 1

1

( ( ) ( ) ( ) ()( ))
i i

n

i i v i i v i i

i

v v n v v n v vd d




  



  +

1 1

( )( ( ) ( ))( ( ))j
i i

n r
j j j

i i v i i i iv
i j

v v n v v nd d v v
 

  

= ( 1) ( 1)( 1)n r r n r    + (2 ( 1)( 2 2)n r n r   ( 2)( 1)( 1)( 2 3))n n r n r      + 2(3 3)(2 5)r r  +

( 3)(4 4)(2 6)n r r   + 2 ( 1)( 1)( 3) ( 2) ( 1)( 1)( 4)r n r r n r n r r         

=
3 2 2 2 3 2 3 2( 2 1) (8 12 8) ( 9 31 45) ( 2 21 36)r n n r n n r n n n n n n             .  

 

Corollary 1. ( )nwPI F =
3 22 21 36n n n   . 

 

Theorem 2. ( ( ))rw nP I WI =
3 2 2 2 3 2( 2 1) (8 14 2) ( 8 33 1)r n n r n n r n n n          

3 2( 2 29 )n n n   . 

 

Proof. Let Cn=v1v2…vn and
1

iv , 
2

iv ,…, 
r

iv  be the r hanging vertices of vi(1 i n). Let v be a vertex in Wn beside Cn, 

and
1v , 

2v , …, 
rv be the r hanging vertices of v. We denote 1n nv v  = 1nv v . In view of the definition of weighted vertex 

PI index, we infer 

( ( ))rw nP I WI =
1

( ( ) ( ))( ( ) ( ))i

r
i i i

v v
i

d v d v n vv n vv


  +
1

( ( ) ( ))( ( ) )( )
i

n

i v i v i

i

v n vvv n vd d v


  +

11 1 1

1

( ( ) ( )) ( ))(( )
i i

n

i i v i i v i i

i

v v n v v n v vd d
  



   +
1 1

( )( ( ) ( ))( ( ))j
i i

n r
j j j

i i v i i i iv
i j

v v n v v nd d v v
 

  

= ( 1)( 1)( 1)r n r n r    + ( 1)( 1)( 2 3)n n r n r    + (4 4)(2 6)n r r  + ( 1)( 1)( 4)nr n r r    

=
3 2 2 2 3 2 3 2( 2 1) (8 14 2) ( 8 33 1) ( 2 29 )r n n r n n r n n n n n n            .         

 

Corollary 2. ( )nwPI W =
3 22 29n n n  . 

 

Theorem 3. ( ( ))w r nP I FI  =
2 3 2 2 3 2 3 24 (48 32 ) (2 54 48 ) (2 26 32 )n r r n n r n n n n n n        . 

 

Proof. Let Pn=v1v2…vn and 
, 1i iv 

be the adding vertex between viand vi+1. Let 
1

iv ,
2

iv ,…, 
r

iv  be the r hanging vertices of 

vi (1 i n). Let 
1

, 1i iv  , 
2

, 1i iv  ,…, , 1

r

i iv  be the r hanging vertices of 
, 1i iv 

 (1 i n-1). Let v be a vertex in Fn beside Pn, 

and the r hanging vertices of v be
1v , 

2v , …, 
rv . 
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By virtue of the definition of weighted vertex PI index, we yield 

( ( ))w r nP I FI  =
1

( ( ) ( ))( ( ) ( ))i

r
i i i

v v
i

d v d v n vv n vv


  +
1

( ( ) ( ))( ( ) )( )
i

n

i v i v i

i

v n vvv n vd d v


  +

1 1

( )( ( ) ( ))( ( ))j
i i

n r
j j j

i i v i i i iv
i j

v v n v v nd d v v
 

 +
, 1

1

, 1 , 1 , 1

1

( ( ) ( ) ( )) (( ))
i i i

n

i i i v i i i v i i i

i

v v n v v n v vd d




  



 +

, 1 1

1

, 1 1 , 1 1 , 1 1

1

( )( ( ) ( ))( )( )
i i i

n

i i i v i i i v i i i

i

v v n v vd nd v v
 



     



  

+
, 1 , 1 , 1 , 1

, 1

1

, 1 , 1 , 1

1 1

( ( ) ( ) ( ) ( ))( )j
i i i i i i i i

i i

n r
j j j

i i v i i i iv
i j

v v n v v n v vd d
   





  

 

  

= (2 ( 1))( 1)r n r n r   + 2 2 ( 1)( 2 2)n r n r    + ( 2)2 ( 1)( 2 3)n n r n r    +

2 2 ( 1)( 3) ( 2) 2 ( 1)( 4)r n r r n r n r r        + 2 2 ( 1)(2 4) ( 3)2 ( 1)(2 5)n r r n n r r       +

2 2 ( 1)(2 4) ( 3)2 ( 1)(2 5)n r r n n r r       + ( 1) 2 ( 1)( 3)n r n r r     

=
2 3 2 2 3 2 3 24 (48 32 ) (2 54 48 ) (2 26 32 )n r r n n r n n n n n n        .              

 

Corollary3. ( )nwPI F =
3 22 26 32n n n  . 

 

Theorem 4. ( ( ))w r nP I WI  =
2 3 2 2 3 2(4 6 1) (28 18 2) (2 52 27 1)n n r r n n r n n n          

3 2(2 20 10 )n n n   . 

 

Proof. Let Cn=v1v2…vnand v be a vertex in Wn beside Cn, and 
, 1i iv 

be the adding vertex between viand vi+1. Let 
1v , 

2v , …, 
rv .be the r hanging vertices of v and 

1

iv , 
2

iv ,…, 
r

iv  be the r hanging vertices of vi(1 i n). Let 
, 1n nv 

=
1,nv and

1

, 1i iv  , 
2

, 1i iv  ,…, , 1

r

i iv   be the r hanging vertices of 
, 1i iv 

 (1 i n). Let . 1n nv  = .1nv , 1nv  = 1v . In view of the definition 

of weighted vertex PI index, we deduce 

( ( ))w r nP I WI  =
1

( ( ) ( ))( ( ) ( ))i

r
i i i

v v
i

d v d v n vv n vv


  +
1

( ( ) ( ))( ( ) )( )
i

n

i v i v i

i

v n vvv n vd d v


  +

1 1

( )( ( ) ( ))( ( ))j
i i

n r
j j j

i i v i i i iv
i j

v v n v v nd d v v
 

 +
, 1

1

, 1 , 1 , 1

1

( ( ) ( ) ( )) (( ))
i i i

n

i i i v i i i v i i i

i

v v n v v n v vd d




  



 +

, 1 1

1

, 1 1 , 1 1 , 1 1

1

( )( ( ) ( ))( )( )
i i i

n

i i i v i i i v i i i

i

v v n v vd nd v v
 



     



  

+
, 1 , 1 , 1 , 1

, 1

1

, 1 , 1 , 1

1 1

( ( ) ( ) ( ) ( ))( )j
i i i i i i i i

i i

n r
j j j

i i v i i i iv
i j

v v n v v n v vd d
   





  

 

  

= (2 1)( 1)( 1)r n r n r    + (2 1)( 1)( 2 3)n n r n r    + (2 1)( 1)( 4)nr n r r   + (2 1)( 1)( 5)n n r r   +

(2 1)( 1)( 5)n n r r   + (2 1)( 1)( 3)nr n r r    

=
2 3 2 2 3 2 3 2(4 6 1) (28 18 2) (2 52 27 1) (2 20 10 )n n r r n n r n n n n n n            .   

 

Corollary 4. ( )nwPI W =
3 22 20 10n n n  . 

 

Conclusion 

Fan graph, wheel graph, gear fan graph, gear wheel graph and their r-corona graph are common structural features 

of organic molecules. The contributions of our paper are determining the weighted vertex PI index of these special 

structural features of organic molecules.  
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