
 40

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online)

Sch. J. Eng. Tech., 2016; 4(1):40-48 ISSN 2347-9523 (Print)
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)

www.saspublisher.com

Original Research Article

A Comprehensive Contextual Industrial Engineering Research and Software

project Management Using Product Metrics
Prodip Kumar Sarker, Md. Jamal Hossain

Department of Computer Science and Engineering, Begum Rokeya University, Rangpur, Bangladesh.

*Corresponding author

Prodip Kumar Sarker

Email:

Abstract: For the purpose of exact and flawless valid conclusions while aggregating evidence of software project, it is

important to describe the context in which industrial studies and inspection were conducted. This paper exhibits and

structures the context for comprehensive and empirical inspections, studies, analysis and provides a checklist. The prime

concern of this paper is to assists decisions makers and researchers in making well equipped informed decisions

concerning which parts of the context is to include into the project descriptions and software project management and

maintenance using product metrics. In additions to this there will be surveyed the descriptions of industrial studies and

analysis.

Keywords: Contextual Structure, Project Checklist, Software Project, Product Metrics, Project Management, Project

Development.

INTRODUCTION

To assists the decisions makers and researchers

in defining the context in a way to allow better

aggregation of evidence, this paper proposes the

following noble contributions: (1) provides a checklist

to describe the context in industrial studies and analysis;

(2) conduct investigations, inspection and a brief survey

to determine the degree of industrial case studies. (3)

Providing the software selection metrics features.

Overview of the Approach

Software Engineering is concerned with the

acquisition, definition, management, monitoring, and

controlling of software development projects as well as

the management of risks emerging during project

execution. The research for Software Design &

Architecture advances techniques for the development,

management, and analysis of (formal) descriptions of

abstract representations of the software system as well

as required tools and notations.

In order to successfully develop and maintain a

large software project for a long times even for a many

years, organizations need to keep some specific

procedures and modules which will not become much

more complicated [4]. They need to keep up improving

the maintainability of each module by cleaning up

spaghetti codes, reconfiguring module structures,

redesigning functional logic and data handling, etc.

After all, the maintenance activities greatly

rely on individual engineer’s knowledge and experience

about how the software has been changed. Especially in

Japan, many software companies used to have a person

called walking dictionary – an expert engineer who

have been maintaining legacy software for more than a

decade and knows various features concerning to that

software, e.g., current specification of the software,

mapping between specification and actual source code,

how complicated each software module is, etc. Such a

maintainer can properly detect the software module that

should be reengineered, and can keep every module not

to become too much complicated through continuous

reengineering activities (sometimes such activities are

called refactoring) [1,5]. Till recent years, walking

dictionaries had stayed in one company until they

become the retirement age, and they took care of the

company’s software; and thus, the maintenance cost

was kept low for many years.

The approach of this project is to analyze a

large software system that has been successfully

developed and maintained. We always keep in mind

that the succeeded project is appropriately developed

and maintained, i.e., procedures in the development and

decisions have been made properly.

Context Documentation Regarding the Checklist

The checklist is structured in six different

context features, namely product, processes, practices

and techniques, people, organization, and market (see

http://www.saspublisher.com/

Sarker PK et al., Sch. J. Eng. Tech., January 2016; 4(1):40-48

 41

Figure 1). In the center of the context features the object

of the study is shown. The object of the study interacts

with the context. For example, when having an agile

process as the object of study, the process is used to

develop a product, is executed by people, interacts with

other processes, and is supported by practices, tools and

techniques. Furthermore, the object of study is

embedded in an organization. The organization is

operating within a market [6].

Fig-1: Context features

Each context features comprises a set of

context elements describing the context. In the

following this paper provides a description of the

features and examples of related elements.

Product:

The product is the software system developed with

the help of the object of study. Context elements:

 Maturity

The maturity of the product needs to be described.

For example, by saying how long it was on the market,

how many releases there were, etc.

 Quality:

The product development is driven by different

quality aspects (e.g. a development effort is undertaken

to increase maintainability of the product).

 Size:

Size of the product measured in, for example, lines

of code, or number of function points. The size is an

important indicator for product complexity.

 System type:

The system can be of different types, such as an

information system, embedded system, web application,

or distributed system.

 Customization:

This means that the product is either general or

customizable and can be tailored to different market

segments.

 Programming language:

This element describes the programming language

in which the system was developed.

PROCESSES

The process describes the work-flow of the

development. Context elements:

 Activities:

The activities are different steps in the development

process (e.g. specifying requirements).

 Work-flow:

The work-flow describes the order in which

activities are executed (including branching, merging,

iterations, etc.).

 Artifacts:

Artifacts are the results of the activities (e.g., the

requirements specification).

Practices, Tools, Techniques:

Practices, tools, and techniques describe systematic

approaches that are used in the organization, and are

interacting with the object of study. Context elements:

 CASE Tools

This element describes tools that are used to

support or automate software development (for

example, integrated development environments,

automated test tools, etc.).

 Practices and Techniques:

This can be systematic approaches interacting with

the object of study. For example, when studying an

agile process practices could be time-boxing, frequent

integration, or pair programming.

People

The human factor is very important when studying

software development, as it has a major impact on the

success of software development. Thus, the factor has

to be covered in the context. Context elements:

 Roles:

This element describes what type of roles is

involved in using the object of study. This includes a

description of the main responsibilities and authorities

associated with the roles.

 Experience:

Experience is concerned with the areas that people

affected by the object of study have worked in, and for

how long. Furthermore, education and trainings are of

interest.

Sarker PK et al., Sch. J. Eng. Tech., January 2016; 4(1):40-48

 42

Organization

The organization describes the company structure

in which the other context facts and the solution are

embedded in. Examples for elements are:

 Model of overall organization:

The organization model describes how the

company is organized, such as matrix-organization or

hierarchical organization. Furthermore, it could be

discussed whether the organization is flexible or strict.

 organizational unit:

The organizational unit is a part of the organization

closely interacting with the object of study. For

example, this can be a project (temporary existing unit)

or department (permanent unit). The organizational unit

can be complemented with management related

information such as responsibilities of the unit, and size

measured as number of persons involved.

 Certification:

This tells whether the organization is certified.

 Distribution:

The organizational units are either collocated or

distributed (nationally or internationally).

Market

The market represents the customers and

competitors. Elements describing the market are:

 Number of customers:

A contract is established already between developer

and customer. Market-driven development targets a

large and open market of potential customers that might

buy the product after release.

 Market segments:

The market segments describe groups of customers

that share a common need.

 Strategy:

The strategy describes how to address the market in

the long-term. For example, the company can run a

niche-strategy where they compete with a special

product (e.g. in terms of extremely high quality) or a

strategy to compete on a low price.

 Constraints:

The market can put constraints on software

development, such as a very short time-to-market, or

certifications.

Software product Selection metrics

 Software selection is an important and most

crucial activity in the development of software project.

The project team must set up yardstick for the selection.

In this phase this paper has described the following

feature for the selection.

Reliability

This feature ensures that the software will

execute for a specified time period without failure. It

also relates to the ease of recovery and ability to give

consistent and optimum results.

Functionality

Functionality defines the facilities,

performance and others factors that the users require in

the final product.

Capacity

Capacity planning is the process of

determining the production capacity needed by an

organization to meet changing demands for its products.

Flexibility

It is a measure of the effort required to modify

the operational program. One feature of flexibility is

adaptability, which is a measure of the ease of

extending the product.

Usability

Usability refers to that characteristics the

product is user friendly and ease of access.

Security

Software security assurance is a process that

helps design and implements software that protects the

data and resources contained in and controlled by that

software. Software is itself a resource and thus must be

afforded appropriate security.

Performance

Deliver robust, consistent service quality to

customers and business users, need effective ways to

monitor and optimize the performance of business-

critical workloads. Track performance and utilization

trends, discover potential issues before they occur,

minimize the mean time to recovery (MTTR), boost the

efficiency of our environment and deliver the

responsive experience users expect.

Serviceability

This feature focuses on the documentation.

The complete documentation is critical for software

enhancement.

Sarker PK et al., Sch. J. Eng. Tech., January 2016; 4(1):40-48

 43

1. Table-1: Software product Selection metrics- A Summary

2. Feature 3. What to mean

4. Reliability 5. Delivers optimum and consistent results.

6. Functionality 7. Functions to standards.

8. Capacity 9. Satisfied volume requirements.

10. Flexibility 11. Adapts to variable needs.

12. Usability 13. Easy to operate and understand.

14. Security 15. Prevent unauthorized access and maintains integrity.

16. Performance 17. Properly delivers as expected.

18. Serviceability 19. Well documentation.

20. Ownership 21. Right to modify.

Data for Analysis:

The traditional functional decomposition and data

analysis design approach measure the design structure

and/or data structure independently, object-oriented

metrics must be able to focus on the combination of

function and data as an integrated object [1]. The

evaluation of the utility of a metric as a quantitative

measure of software quality was based on the

measurement of a software quality attribute. The

metrics selected, however, are useful in a wide range of

models. The object-oriented metric criteria, therefore,

are to be used to evaluate the following attributes:

 Efficiency - Are the constructs efficiently

designed?

 Complexity - Could the constructs be used

more effectively to decrease the architectural

complexity?

 Understandability - Does the design increase

the psychological complexity?

 Clarity-Does the instruction is clear and lucid?

 Testability - Does the structure support ease of

testing and changes?

 Maintainability-Does the structure can easily

be maintained?

Software development

Software development is the process of

computer programming, documenting, testing, and bug

fixing involved in creating and maintaining applications

and frameworks involved in a software release life

cycle and resulting in a software product. It also refers

to a process of writing and maintaining the source code,

but in a broader sense of the term it includes all that is

involved between the conception of the desired

software through to the final manifestation of the

software, ideally in a planned and structured process

[1]. Therefore, software development may include

research, new development, prototyping, modification,

reuse, re-engineering, maintenance, or any other

activities that result in software products [2].

Software can be developed for a variety of

purposes, the three most common being to meet specific

needs of a specific client/business (the case with custom

software), to meet a perceived need of some set of

potential users (the case with commercial and open

source software), or for personal use (e.g. a scientist

may write software to automate a mundane task).

Embedded software development, that is, the

development of embedded software such as used for

controlling consumer products, requires the

development process to be integrated with the

development of the controlled physical product. System

software underlies applications and the programming

process itself, and is often developed separately.

The need for better quality control of the

software development process has given rise to the

discipline of software engineering, which aims to apply

the systematic approach exemplified in the engineering

paradigm to the process of software development.

A software development process (also known as a

software development methodology, model, or life

cycle) is a framework that is used to structure, plan, and

control the process of developing information systems.

A wide variety of such frameworks have evolved over

the years, each with its own recognized strengths and

weaknesses. There are several different approaches to

software development: some take a more structured,

engineering-based approach to developing business

solutions, whereas others may take a more incremental

approach, where software evolves as it is developed

piece-by-piece. In this paper most methodologies that

shares some combination of the following stages of

software development:

 Analyzing the problem

 Market research

 Gathering requirements for the proposed

business solution

 Devising a plan or design for the software-

based solution

 Implementation (coding) of the software

 Testing the software

 Deployment

 Maintenance and bug fixing

These stages are often referred to collectively as the

software development lifecycle, or SDLC. Different

approaches to software development may carry out

https://en.wikipedia.org/wiki/Structure
https://en.wikipedia.org/wiki/Information_system

Sarker PK et al., Sch. J. Eng. Tech., January 2016; 4(1):40-48

 44

these stages in different orders, or devote more or less

time to different stages. The level of detail of the

documentation produced at each stage of software

development may also vary.

Software Development Activities

To develop software the following activities

are necessary.

Identification need, Planning, Designing,

Implementation, Testing, and Documentation.

Fig-2: Software Development Activities

Context in Industrial Studies and Analysis

In the case of software industry, the context

selection is a very crucial and important key factor for

the improvement and for the successful project

development.

Context is time dependent i.e., it can be

changed in course of time. So in the beginning of the

project development it should be carefully select the

accurate and appropriate context that can suit for the

successful project development in the most part. In the

software industry, a special team is involved in

detecting the suitable context.

In this work, we have tried to give an effective and an

efficient methodology called CMS (Combined Method

Strategy) that address some skills in the software

system analysis and studies. The following are the most

important that are suggested to follow-

Teamwork

The process of working collaboratively with a

group of people in order to achieve a goal. Teamwork is

often a crucial part of a business, as it is often necessary

for colleagues to work well together, trying their best in

any circumstance. Teamwork means that people will try

to cooperate, using their individual skills providing

constructive feedback, despite any personal conflict

between individuals.

Communication

Communication is simply the act of

transferring information from one place to another.

Although this is a simple definition, when we think

about how we may communicate the subject becomes a

lot more complex. There are various categories of

communication and more than one may occur at any

time.

Mentoring

Mentoring is a process for the informal

transmission of knowledge, social capital, and the

psychosocial support perceived by the recipient as

relevant to work, career, or professional development;

mentoring entails informal communication, usually

face-to-face and during a sustained period of time,

between a person who is perceived to have greater

relevant knowledge, wisdom, or experience (the

mentor) and a person who is perceived to have less.

Decision making

Decision making is the process of making

choices by setting goals, gathering information, and

assessing alternative occupations.

Negotiating

Negotiation is a method by which people settle

differences. It is a process by which compromise or

agreement is reached while avoiding argument and

dispute.

Information gathering
Information gathering refers to gathering

information about the issue we’re facing and the ways

other organizations and communities have addressed it.

Resource managing
Resource management is the efficient and

effective development of an organization's resources

when they are needed. Such resources may include

financial resources, inventory, human skills, production

resources, or information technology (IT).

Sarker PK et al., Sch. J. Eng. Tech., January 2016; 4(1):40-48

 45

Defect detecting

Fig-3: Block diagram of Industrial Studies and Analysis.

Contextual design

Design describes a final system and the

process by which it is developed. In others words it can

be defined as a process of a developing the technical

and operational specification of a candidate system for

implementation. It is regarded as a blueprint for the

system development.

Definition of industrial design

Industrial design studies function and form—

and the connection between product, user, and

environment. Generally, industrial design professionals

work in small scale design, rather than overall design of

complex systems such as buildings or ships. Industrial

designers don't usually design motors, electrical

circuits, or gearing that make machines move, but they

may affect technical aspects through usability design

and form relationships.

A checklist for Context Documentation

A software project metric is a standard of

measure of a degree to which a software system or

process possesses some salient property. Even if a

metric is not a measurement (metrics are functions,

while measurements are the numbers obtained by the

application of metrics), often the two terms are used as

synonymous. Since quantitative measurements are

essential in all sciences, there is a continuous effort by

computer science practitioners and theoreticians to

bring similar approaches to software development. The

goal is obtaining objective, reproducible and

quantifiable measurements, which may have numerous

valuable applications in schedule and budget planning,

cost estimation, quality assurance testing, software

debugging, software performance optimization, and

optimal personnel task assignments.

 A metric can be directly collected through

observation, such as number of days late, or number of

software defects found; or the metric can

be derived from directly observable quantities, such as

defects per thousand lines of code, or a cost

performance index (CPI) [8]. When used in a

monitoring system to assess project or program health,

a metric is called an indicator, or a key performance

indicator (KPI).

In this paper a theoretical method named

MMM (Metric Management Means) which helps the

people specially the researchers in the most par to

identify and track the strategic objectives. Different

types of projects will require different types of

metrics—a software development project will call for

different measurements than, say, a merger and

acquisition transition project.

The following table defines the criteria of the

most common feasible strategic measures people want

to be updated about:

Table-2: The criteria for strategic measurement

Strategic measure Questions to be answered

Time How are we doing against the schedule?

Cost How are we doing against the budget?

Resource Are we within anticipated limits of staff-hours spent?

Scope Have the scope changes been more than expected?

Quality Are the quality problems being fixed?

Action Items Are we keeping up with our action item list?

A common saying about metrics is: ―If it

cannot be measured, it cannot be managed.‖ Clearly the

Sarker PK et al., Sch. J. Eng. Tech., January 2016; 4(1):40-48

 46

lack of metrics can make it harder for a project manager

to do the best job possible. At the same time, metrics

are useful only if they are just that – useful.

Software maintenance

Software maintenance in software engineering

is the modification and enhancement of a software

product after delivery to correct faults, to improve

performance or other attributes.

A common intuition of maintenance is that it

rather involves fixing up defects and deficiencies.

However, one study indicated that over 80% of

maintenance effort is used for non-corrective actions

[3].

The key software maintenance issues are both

managerial and technical. Key management issues are:

alignment with customer priorities, staffing, which

organization does maintenance, estimating costs. Key

technical issues are: limited understanding, impact

analysis, testing, and maintainability measurement.

Project Maintenance Tactics

The project maintenance task is so easy in

reality. Different software organizations follow

different strategy to maintain the project activity.

Project maintenance is an elegant task that ensures the

longevity of any system. The concepts and ideas can

change in course time but the maintenance techniques

can hold that product many years. So any work done to

change the software after it is in operation is considered

to be maintenance work. The purpose is to preserve the

value of software over the time. The value can be

enhanced by expanding the customer base, meeting

additional requirements, becoming easier to use, more

efficient and employing newer technology.

Maintenance may span for 20 years, whereas

development may be 1-2 years.

In this paper some of the effective maintenance

tactics that is directly benefitted to the software project

management system. As Software maintenance is a very

broad activity, the following tactics can be considered

in the maintenance phase that includes-

 Error correction,

 Review,

 Enhancements of capabilities,

 Deletion of obsolete capabilities,

 Optimization,

 Evaluation,

 Controlling,

 Making modifications.

Inspection and Investigation

An inspection is one of the most common sorts

of review practices found in software projects. The goal

of the inspection is for all of the inspectors to reach

consensus on a work product and approve it for use in

the project [7]. Commonly inspected work products

include software requirements specifications and test

plans. In an inspection, a work product is selected for

review and a team is gathered for an inspection meeting

to review the work product. A moderator is chosen to

moderate the meeting. Each inspector prepares for the

meeting by reading the work product and noting each

defect. The goal of the inspection is to identify defects.

In an inspection, a defect is any part of the work

product that will keep an inspector from approving it.

For example, if the team is inspecting a software

requirements specification, each defect will be text in

the document which an inspector disagrees with.

The Inspection process

The process should have entry criteria that

determine if the inspection process is ready to begin.

This prevents unfinished work products from entering

the inspection process. The entry criteria might be a

checklist including items such as "The document has

been spell-checked".

The stages in the inspections process are:

Planning, Overview meeting, Preparation, Inspection

meeting, Rework and Follow-up. The Preparation,

Inspection meeting and Rework stages might be-

 Planning: Planning is the most important step

in the system inspection. The inspection is

planned by the moderator. Actually, planning

propels the inspection commencement.

 Overview meeting: The key area under

inspection mainly describes the background of

the work project. The author describes the

background of the work product.

 Preparation: Each inspector actually who

conducts the inspection examines the work

product to identify possible defects.

 Inspection meeting: During this meeting the

reader reads through the work product, part by

part and the inspectors point out the defects for

every part.

 Rework: The author makes changes to the

work product according to the action plans

from the inspection meeting.

 Follow-up: The changes by the author are

checked to make sure everything is correct.

 The process is ended by the moderator when it

satisfies some predefined exit criteria.

Sarker PK et al., Sch. J. Eng. Tech., January 2016; 4(1):40-48

 47

Fig-3: The inspection process cycle

Inspection roles

 Inspection roles have an important aspect in the

software industry. Inspection is used for the purpose of

determining if a body is complying with regulations [7].

This process examines the criteria and talks with

involved individuals. A report and evaluation follows

such experiments.

During an inspection the following roles can be

used.

 Author: The person who created the work

product being inspected.

 Moderator: This is the leader of the

inspection. The moderator plans the inspection

and coordinates it.

 Reader: The person reading through the

documents, one item at a time. The other

inspectors then point out defects.

 Recorder/Scribe: The person that documents

the defects that are found during the

inspection.

 Inspector: The person that examines the work

product to identify possible defects.

Fig-4: Inspection roles flow diagram

Industrial Studies Context

Table-3: Report on Research aspect considering object of Investigation.

Aspect SR(8) SP(5) QA(5) SC(4) UML(2) RM(3) RES(2) AE(1) CS(3) Total(33)

Product 6 3 5 2 1 1 1 1 1 23

Process 3 2 3 1 1 0 0 1 2 13

Tool 4 2 4 3 0 3 2 1 1 20

People 0 1 1 0 2 0 0 1 0 5

Organization 0 5 3 4 2 1 0 1 3 19

Conclusion

This paper mainly highlights the product

matrices for the description of context design and

system development. In this paper there is also

described an efficient and effective methodology that

focuses the basic skills (Teamwork, Communication,

Sarker PK et al., Sch. J. Eng. Tech., January 2016; 4(1):40-48

 48

Leadership, Mentoring, Decision making, Negotiating,

Information gathering, Resource managing, Defect

detecting) for software analysis and studies. There is

also presented a theoretical review of industrial studies

that studies investigating a similar object do not agree

on which context facets are important to mention [7].

The checklist aims to help researchers to take informed

decisions on what to include and not to include. The

checklist also serves as a basis for discussion to reach a

consensus in different communities which context

elements are most important for their focus area. In

future work the checklist has to be further extended.

The viewpoint also plans to do in-depth analysis of a

selection of articles focusing on context facets as well

as elements.

REFERENCES

1. Kitchenham B, Pfleeger SL, Pickard LM,

Jones PW, Hoaglin DC, El Emam K,

Rosenberg J; Preliminary guidelines for

empirical research in software engineering.

Software Engineering, IEEE Transactions on,

2002; 28(8): 721-734.

2. Runeson P, Höst M; Guidelines for conducting

and reporting case study research in software

engineering. Empirical software engineering,

2009; 14(2): 131-164.

3. KitchenhamBA, Dyba T, Jorgensen M;

Evidence-based software engineering; in

proceedings of the software engineering (ICSE

2010), 2010; 273-281.

4. Glass RL, Vessey I, Ramesh V; Research in

software engineering: An analysis of the

literature, Information and Software

technology; 2002; 44(8): 491-506.

5. Barry B, Clark B, Horowitz H, Westland C,

Madachy R, Selby R; Cost models for future

software life cycle processes: COCOMO 2.0,

Annals of Software Engineering; 1995;

1(1):5794.

6. Runeson H, Höst M; Guidelines for

conducting and reporting case study research

in software engineering; Empirical Software

Engineering, 2009; 14(2): 131-164.

7. Petersen K, Wohlin C; Context in industrial

software engineering research; Proc. the 2009

3rd International Symposium on Empirical

Software Engineering and Measurement, IEEE

Computer Society, 2009; 401-404.

8. Paul C, Connor RVO’; The situational factors

that affect the software development process:

Towards a comprehensive reference

framework; Information and Software

Technology, 2012; 54(5): 433-447.

