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Abstract: Aerodynamic analysis is carried out using superimposition of uniform flow with doublet over a spinning 

sphere. Analytical solutions of the pressure distribution and lift force over the spinning sphere are obtained based on 

Kutta-Joukowski theorem with the assumption that flow field around the spinning sphere may not influence the 

synthesized flow. The theoretical aerodynamic analysis reveals that the lift force over the spinning sphere is directly 

proportional to circulation, which coincides with the experimental results of Bearman and Harvey. It is found that the lift 

force over the spinning sphere is less than the spinning circular cylinder. The tangential velocity component on the 

surface of the spinning sphere yields a cubic equation, which is having one real and two conjugate imaginary roots. 
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INTRODUCTION 

Air flow around a spinning sphere produces a normal force perpendicular to the ball and is having significant 

interest in many sports [1] such as golf, baseball, tennis, table tennis, soccer, volleyball and cricket ball, because the balls 

used in these sports are having translate and rotate motion simultaneously.  

 

Newton [2] noted that a spinning ball deviates in flight and explained that the surrounding air was responsible 

for the deviation of the flight path. Robins [3] has shown the deflection of musket balls in terms of their spin. Magnus [4] 

demonstrated that a rotating cylinder experienced a sideways force when mounted perpendicularly to a flow of air. The 

expression of the Magnus effect has credited from Lord Rayleigh [5]. Earlier explanation for the Magnus effect was 

based on Bernoulli’s theorem [6] corresponding to invscid and incompressible flow. The lift force acting is caused by a 

pressure differential between two sides of the sphere, resulting from the velocity difference due to the rotation. Later on 

discovery of boundary layer due to viscous flow by Prandtl provides another explanation of the Magnus effect attributed 

asymmetric and flow separation [7]. 

 

Maccoll [8] was first quantitatively measured the Magnus force on a smooth spinning sphere of 6 inch diameter 

in an air stream. Davies [9] has calculated the lift and drag coefficients from the drift of golf ball at translation velocity 

32 m/s and rotation speed less than 5000 rpm. Brigg [10] has carried out experiment in 6 ft wind tunnel using smooth ball 

of 3 inch diameter at spin rates up to 1800 rpm at freestream velocity of 125 ft/s at Reynolds number 2.4×10
5
. Pressure at 

the equatorial surface over the spinning sphere was measured by Briggs and found that the resultant pressures are 

consistently in accord with the Magnus effect. Briggs has calculated using the experimental data that the lateral 

deflection was proportional to 2
V .  Bearman and Harvey [11] have shown that the lift on a rotating sphere is directly 

proportional to ωV∞. Watts and Ferror [12] have found in the analysis of the aerodynamics of curve ball that the normal 

force over the spinning sphere is consistent with the Kutta-Joukowaski theorem [6, 13] that can be related a net 

circulation of an indeal flow over a two-dimensional object results in a lift force proportional to the product of the 

freestream velocity and circulation.  

 

Poon et al. [14] have carried out numerical simulation of viscous flow over a stationary and rotating sphere 

using Fourier-Chebyshev spectral collocation. Ou et al. [15] have investigated unsteady fluid dynamics of viscous flow 

over a spinning smooth sphere using high order numerical method. Numerical tests have been performed to validate the 

solver for spinning and non-spinning spheres at laminar Reynolds number. Numerical simulations of viscous flow over 

soccer balls have been carried out by Barber et al. [16] using FLUENT software to analyze the aerodynamic coefficients. 

Numerical simulations used to solve spinning sphere but does not exhibits generalized relation between lift to spinning 

rate. 
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The aim of the present paper is to derive an analytical solution for steady, inviscid, incompressible and 

axisymmetric flow past a spinning sphere. The analysis is based on the assumption that the flow field may not affect due 

to spinning of the sphere. The analysis includes superimpose of uniform flow with double that synthesis of lifting flow 

over spinning sphere.  

 

ANALYSIS 

Figure 1 shows r, ,  spherical polar coordinates. The freestream flow is along the z-axis and the sphere is 

constrained to rotate in between the y- and z- axis. The sphere is constrained to rotate at a constant angular velocity. 

  

 
Fig-1: Spherical polar coordinate system 

 

Figure 2 depicts systematic diagram represents superposition of uniform flow in the positive z-direction and 

with doublet. The doublet is so oriented that the source is placed upstream.  

 

 
Fig-2: Superposition of a uniform flow and a doublet 

 

It is important to mention here that source, sink and doublet represent three dimensional in nature of fluid 

mechanics.  Let us consider for a uniform flow and a doublet combination the constant streamline (ψ = ψ0) yields the 

following equation [13] as 
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where – μ is the doublet strength with source placed upstream. Equation (1) can be satisfied if either sinθ = 0 or 

the quantity inside the parenthesis is zero, that is, when  

θ = 0   or   π                                                                                                                                                (2a) 

and  
31

2 















V
r                                                                                                                                             (2b) 

 

But the value of r at points A and B as depicted in Fig. 2 on the z-axis is the radius of the sphere R as following  
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Thus, 0 represents the streamline for a sphere of radius R and the z-axis. The sphere of radius R may be taken 

as a solid boundary as there is no flow across a streamline.  Figure 2 shows two stagnation points on z-axis. They are 
































0
2

31

,
V

    and      































,
V

31

2
.  

 

The sphere of radius R may be considered as a solid boundary as there is no flow across the stream line. For r > 

R, equations for stream function and velocity potential can be written as  
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The velocity components in the radial and tangential directions are 
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The velocity components vr and vθ at the surface of a sphere, r = R, are 0 and     sinV23 , respectively. The 

stagnation points occur at θ = 0 and  and the maximum velocities occur at θ = /2 and θ = (3/2) with a value

    Vv
max

23 . The pressure at any point on the sphere can be calculated by employing Bernoulli’s equation. The 

pressure coefficient on the non-spinning sphere is 

 2

4

9
1 sinCp                                                                                                                                           (6) 

 

Figure 3 displays the pressure distribution over non spinning cylinder and sphere and experimental data over 

spinning sphere of Briggs [10]. Briggs carried out pressure measurement over a spinning sphere of radius 3 inch with a 

freestream velocity of 125 ft/s in a wind tunnel.  The experimental pressure distribution is quality identical trend as non-

spinning sphere but differ qualitatively due to viscous effect and spinning of the sphere. The absolute magnitude of the 

pressure coefficient on a sphere is less than that for a circular cylinder [6] which is due three-dimensional relieving 

effect.   

 
Fig-3: Pressure distribution over the non-spinning cylinder and sphere, and spinning sphere 

 

-3

-2

-1

0

1

2

0 30 60 90 120 150 180 210 240 270 300 330 360

Spinning sphere [Briggs]
Sphere
Cylinder

, deg

C
p



 

 

 

Mehta RC., Sch.  J. Eng. Tech., May 2016; 4(5):215-219 

    218 

    

 

 

We assume here that flow field around the spinning sphere will not affect synthesized flow. Figure 3 reveals that 

the profile of the pressure distribution over the spinning and non-spinning sphere remains same. Thus we superimpose 

the spinning sphere over the doublet with uniform velocity. The lift over the spinning sphere is obtained integrating over 

the equatorial plane of the spinning sphere can be written as  




 

































2

0

2
2

22

3

22
dsinR

R
sinVVL                                                                                          (7) 

The integration yields 

 VL 
4

3
                                                                                                                                              (8) 

 

The normal force over spinning cylinder per unit length [6] is  V . It reveals that the normal force over the 

spinning sphere is less than the spinning circular cylinder. 
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The above cubic equation can be written as   
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Three roots [15] of equation (10) are x1, x2, and x3 and written as  
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There is one real root and two conjugate complex root, when 

32
3

2
6














 

R
V  

CONCLUSIONS 

Theoretical aerodynamic is presented by superimposing of a uniform flow and doublet to compute the lift over a 

spinning sphere in ideal flow. Analytical is based on Kutta-Joukowski theorem with the assumption that flow field 

around the spinning sphere will not influence the synthesized flow. It is found that lift force over the spinning sphere is 

directly proportional to circulation which coincide experimental results of Bearman and Harvey, however, is less than 

spinning circular cylinder. The tangential velocity component on the surface of the spinning sphere yields a cubic 

equation which is having one real and two conjugate imaginary roots.  

 

NOMENCLATURE 

Cp =   pressure coefficient 

L =    normal force 

R  =    radius 

V∞ =    freestream velocity 

vr, vθ =    velocity gradient in r and θ directions, respectively 

r, ,    =   spherical polar coordinates 

x, y, z  =   Cartesian coordinates 
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α =    root of the cubic equation 

Γ =   circulation 

  =   doublet strength 

ρ∞ =   freestream density 

  =   velocity potential 

ψ =    stream function 

ω =    rotation rate  

 

REFERENCES  

1. Mehta RD, Pallis JM; Sports Ball Aerodynamics: Effects of Velocity, Spin and Surface Roughness, in Materials and 

Science Sports, Edited by: EH. (Sam) Froes and S.J. Haake, TIMIS 184 Thorn Hill Road Warrendale, PA, USA, 

2001; 185-197. 

2. Newton I; New Theory about Light and Colors, Philosophical Transactions of the Royal society, 1671; 6:3078. 

3. Robins B; New Principles of Gunnery, Hutton, London, 1742. 

4. Magnus G; Ueber die abweichung der geschosse, und: Ueber eine auffallende erscheinung bei rotirenden korpern, 

Annalen der Physik, 164 (1), 1853, pp. 1–29. 

5. Rayleigh L; On the Irregular Flight of a Tennis Ball, Messenger of Mathematics, Vol. 7(14), 1877, pp. 14-16. 

6. Anderson JD; Fundamentals of Aerodynamics, International Student Edition, McGraw-Hill Book Company, 

Singapore, 1985.  

7. Prandtl L; Essentials of Fluid Dynamics, Hafner Publishing Company, New York, 1952.  

8. Maccoll JW; Aerodynamics of a Spinning Sphere, The Journal of the Royal Aeronautical Society, 1928; 

32(213):777-798. 

9. Davies JM; The Aerodynamics of Golf balls, American Journal of Physics, 1949; 20(9):821 -828. 

10. Briggs LJ; Effect of Spin and Speed on the Lateral Deflection (Curve) of a baseball; and the Magnus effects for 

Smooth Spheres, American Journal of Physics, 1959; 27(8), 1959: 589 -596. 

11. Bearman PW, Harvey J K; Golf Ball Aerodynamics, Aeronautical Quarterly, 1976; 21:112 - 122.  

12. Watts RG, Ferrer R; The lateral force on a spinning sphere, American Journal of Physics, 1987; 55: 40–45. 

13. Yuan SW; Foundations of Fluid Mechanics, Prentice-Hall of India Private Limited, New Delhi, India, 1969. 

14. Poon KW,  Ooi A, Giacobello M, Peralta C,  Melatos A; Numerical Simulation of Flow Past a Stationary and 

Rotating Sphere, 16th Australasian Fluid Mechanics Conference,  Crown Plaza, Gold Coast, Australia, 2007; 870-

875. 

15. Ou K, Castonguay P, Jameson A; Computational Sports Aerodynamics of a Moving Sphere: Simulating a Ping Pong 

Ball in Free Flight, 29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, AIAA, 2011; 2011-3668. 

16. Barber S, Chin SB, Carré MJ; Sports ball aerodynamics: A numerical study of the erratic motion of soccer balls, 

Computers and Fluids, 2009; 38(6): 1091-1100. 

17. Grewal BS; Higher Engineering Mathematics, Khanna Publishers, 43
rd

 Edition, Delhi, India, 2014; 49 – 50. 


