
 249

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online)

Sch. J. Eng. Tech., 2016; 4(5):249-253 ISSN 2347-9523 (Print)
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)

www.saspublisher.com

Research Article

A Design Model for the General Evolutionary Algorithm
Nengfa Hu

Department of Computer Science and Engineering, Hanshan, Normal University, Chaozhou 521041, China

*Corresponding author

Nengfa Hu

Email: hunengfa326@sina.com

Abstract: The study aims to solve the universality of evolutionary computation for solving different optimization

problems, avoid the repeating design, and share codes, so as to improve the application efficiency of the algorithms. To

achieve this, the authors put forward a general evolutionary model based on object-oriented programming language (C#

language) in this paper. This model divides the problem domain, the fitness function, the algorithm and the parameter

control into different classes, which are encapsulated into different objects so as to enhance the independence of each

module. By utilizing the model, it is convenient to develop, reuse, extend and modify software while guaranteeing the

universality of the algorithm at the same time.

Keywords: evolutionary computation, model, genetic algorithm, object-oriented.

INTRODUCTION

Genetic algorithm which plays a key role in the

evolutionary computation is a global optimization

algorithm for simulating natural selection and natural

genetic mechanism in the process of biological

evolution. According to Darwin’s theory of evolution

and Mendel’s theory of heredity, John Holland of

Michigan University in America proposed genetic

algorithm in 1975, which has been developed rapidly

after being studied for more than forty years [1]. This

has been proved that it is a very effective method and

has been widely applied in various fields such as neural

networks, function optimization, image processing,

system identification and expert systems due to its high

efficiency and practicality [2-5]. In fact, the essence of

traditional genetic algorithms is to constantly evolve a

population using population search technique based on

the principle of “survival of the fittest” and finally to

obtain the optimal solution. The specific realization

method is as follows:

1) The feasible regions are determined according to

specific problems and their solutions can be expressed

by a coding scheme;

2) Each solution needs to be measured according to a

measurement basis, which is generally signified by a

nonnegative function, that is, fitness function;

3) The evolutionary parameters, namely, the

population size N , the crossover probability cp , the

mutation probability mp and the end conditions of

evolution, are determined;

4) An initial population containing a number of

individuals is generated, and each individual is a

feasible solution to problems;

5) The fitness values of each individual in the

population are calculated;

6) If the optimal solution is obtained, the loop stops.

7) According to the fitness values of each individual,

the genetic operations including selection, hybridization

and mutation are performed;

8) Going back to the fifth step.

Although genetic algorithms are very effective, they

present a prominent shortcoming while being used to

solve specific problems. That is, a problem can often be

solved by employing different evolutionary algorithms,

and an algorithm can also be used to solve different

problems. In this case, if an application program needs

to be designed for each problem and algorithm, it not

only reduces the efficiency of work, but also brings

difficulties in comparing various algorithms. Therefore,

it is necessary to design a kind of evolutionary

algorithm which has a high code reuse rate, preferable

universality and expansibility so that effectively solve

the above problems.

A DESIGN MODEL FOR EVOLUTIONARY

ALGORITHM

Characteristics of the object-oriented programming

C# language

C# language, as a comprehensive object-oriented

programming language [8-11], inherits the advantages

of C++ and Java languages and is characterized by

simplicity, flexibility and powerful functions. In

addition, it shows the most distinct characteristics such

http://www.saspublisher.com/
mailto:hunengfa326@sina.com

Nengfa Hu., Sch. J. Eng. Tech., May 2016; 4(5):249-253

 250

as encapsulation, inheritance and polymorphism. C#

language program which is composed of classes does

not contain functions and variables independent from

classes, and all attributes and methods are encapsulated

in classes. Moreover, the examples of classes, that is,

objects, are basic logic components of the

programming. The system shares the methods and

attributes of classes based on the inheritance

mechanism, while the communication among objects is

realized by delivering information. The objects mainly

consist of two parts, namely, attributes and methods,

and there into, the former is used to describe the interior

structures of objects, while the latter shows the

behaviors of objects. The principal-agent mechanism

provided by C# language can effectively realize the

polymorphism of classes so as to reuse the code and

improve the development efficiency of software.

Division of basic functions of evolutionary algorithm

Through analyzing the evolutionary algorithm, it is

found that evolutionary algorithm can be divided into

different modules, such as the problem domain, the

fitness function, the evolutionary algorithm and the

parameter control. Among them, the evolutionary

algorithm is composed of some genetic operators

including selection, hybridization and mutation. When

designing the general evolutionary algorithm, the

system can be divided into different function modules

to guarantee the independence of all parts. The function

figure (Figure 1) basically reflects the composition of

the overall system, and Figure 2 demonstrates the user

interface for realizing Figure 1. In the function figure,

the problem domain module mainly selects and

processes mathematical models concerning different

problems. While the fitness function module mainly

calculates the fitness values of selected problems

according to different coding schemes and rules to

provide services for all individuals in the population,

that is, calculating the fitness values of each individual.

The evolutionary operator module mainly conducts

genetic operations including selection, hybridization

and mutation to evolve the population module so as to

change the states of individuals in the population

constantly. All these operations performed by the

evolutionary operator module are based on the services

provided by the parameter setting module. The services

refer to parameters such as the crossover probability,

the mutation probability, the evolutionary generations

and the end condition. While, the population module

mainly computes the fitness values of all individuals in

the population according to the services supplied by the

fitness function module and marks the best and worst

individuals as well as their current states. Meanwhile,

external users can properly design, select, modify, set

and maintain the system by changing the contents of the

different modules including the problem domain, the

fitness function and the parameter setting to keep the

system more stable and efficient.

Fig-1: The functions of the system

problem domain

user

parameter setting

crossover operator mutation operator

fitness function
 multi-fitness function

population

 multi-group

<<extend>>

<<extend>>

<<include>>

<<include>>

evolutionary operator

selection operator

<<realize>>

<<realize>>

<<realize>>

<<include>>

Nengfa Hu., Sch. J. Eng. Tech., May 2016; 4(5):249-253

 251

Fig-2: The home page of the user interface

THE STATIC MODEL OF THE GENERAL

EVOLUTIONARY ALGORITHM

The static model of the general evolutionary

algorithm is shown as the class diagram in Figure 3.

The general evolutionary algorithm consists of many

classes, while the figure just presents the major ones.

Among them, the problem class is used to describe the

problem domain, in which the cause is the most

important attribute which is an irregular two-

dimensional (2D) array storing analytic expressions. An

analytic expression is a mathematical model which is

built after the abstraction of original problems and

generally exists in the form of a multi-objective

optimization problem with constraints. Analytic

expressions can be divided into two types, namely, the

objective ones and the constraint ones, both of which

are stored into an irregular 2D array. The former is

located in the elements on the first line, while the latter

is stored in the elements on the second line. Under

circumstances that there is no constraint or merely one

objective, the problem is supposed to be simplified as

an optimization problem with a single objective or

without constraints. Because the length of this irregular

array like C# language is variable, it preferably solves

problems in the case that the quantities of objective

functions and constraint functions are unknown so that

it is convenient to realize the software. Fit class is

mainly used to calculate the fitness values of functions

and can select different calculation schemas for class

objects by employing self its strategy method. While

when Compute method is adopted to calculate the

fitness values of functions, it sends information to

problem objects so as to call the corresponding

problems to solve. Population class encapsulates main

attributes and methods of an evolutionary population.

There into, the attribute N marks the total number of

individuals in the current population object; the

attribute P is an irregular 2D array storing all

individuals and contains N lines in total, while its

column number depends on the number of variables in

the solved problems; the attribute Fitness P is a one-

dimensional array belonging to double type and is

mainly used to store the fitness values of all individuals

in the population; while the attributes Best, Worst, Fit

Best and Fit worst are used to record the subscripts and

fitness values of the best and worst individuals,

respectively; the attribute T represents the evolutionary

generations. The sum of all attributes basically reflects

the current state of the population. When the state

satisfies certain conditions, the attribute Flag is set as 1.

Arithmetic method is mainly used to select individuals

from the population and applies these selected

individuals as parameters to perform genetic operations

by using the method of Evolve class. When the

algorithm ends, Best displays the evolutionary result.

The method of Evolve class is mainly used for

crossover and mutation operations to generate new

individuals. Then, these new individuals and their

Nengfa Hu., Sch. J. Eng. Tech., May 2016; 4(5):249-253

 252

fitness values are expected to return to the Population

object, which then determines the individuals of the

new population. Main Window class, as the entrance of

whole system, is used to sends all information including

the parameter setting, the selection of problems, the

calculation rules of fitness values, the selection of

genetic operators, and the start or stop of the algorithm.

Fig-3: The classes of the evolutionary algorithm

REALIZATION OF THE GENERAL

ALGORITHM

 )Dx()x(f)x(f),x(fmin K21 

C# language program is composed of the classes. On

the basis of the designed class diagram, algorithms are

designed and codes are programmed for each method in

the classes. Due to the limitation of length of the paper,

the authors only list a few main methods. In Fit class,

many Compute methods are reloaded to calculate the

fitness values of individuals. The mathematical model

corresponding to problems in the algorithm is

 )Dx()x(f)x(f),x(fmin K21 

Where, K, n and q signify the numbers of objective

functions, independent variables and inequality

constraints, respectively. Meanwhile,

} q,1,2,i 0;)(;{  xgRSxD i

n
.

Especially, when q = 0,  nRSxD  , which is

a problem without constraints. The following algorithm

is to solve multi-objective optimization problems

according to the weights. When a problem just has one

objective, the value of problem.cause [0]. length is set

as 1. Here, the algorithm is converted to that for solving

the optimization problem with a signal objective.

Public double compute () {

Problem problem=new Problem ();

double fit;

for(int i=0; i< problem.cause [0].length; i++)

fit+=w*problem.cause[0][i];

for(int i=0; i < problem.cause[1].length; i ++)

 if (problem.cause[1][i]>0)

fit+=Math.Abs(problem.cause[1][i]);

return fit; }

Arithmetic1 method and other methods of Evolve

class are sued for genetic operations such as

hybridization and mutation. Each method can be

reloaded by using a same function name, and can be

extended or modified as well. The algorithm is:

Public void Arithmetic1 () {

Problem problem=new Problem();

for(int i=0; i<variable_num; i++)

newp[i]=u*x[i]+(1-u)y[i]; }

EXPERIMENTAL ANALYSIS

In this paper, the authors select some examples to

test, and the results show that the algorithm has

favorable universality.

Nengfa Hu., Sch. J. Eng. Tech., May 2016; 4(5):249-253

 253

Example 1:

nixts

jxjjxfMin

i

n

i j

i

,,2,1 ,1010 ..

 ,])1cos[()(
1

5

1




 

Result: There are total 18 optimal solutions with the

best value being 831023936 186.730908- .

Example 2: Solving equation

09739626.0
2

1)30sin(














x
x .

Result: There are 2 solutions, namely,

18767711 0.05177940 and 67294474 0.05179980- .

Example 3: Solving equation

]2 ,2[,]2 ,2[

,09932.1)5cos()5sin(

,010000)7091.99(22











yx

yx

yx

.

Result: One optimal solution is obtained, that is,









467344881, 0.00190137

1923866, 0.29089998

y

x

Meanwhile, there are two suboptimal solutions,

namely,









356279 1.25652948

6657623 0.28300535

y

x
 and









5286324-1.2564576

20977180.28300626

y

x
.

CONCLUSIONS

Based on the object-oriented characteristic of C#

language, the modules including the problem

domain, the fitness value of individuals, the population,

the evolutionary operators and the parameters are

further divided into different classes. The purpose is to

strengthen the independence of all modules so that

make it convenient to develop, reuse, extend and

modify software. The experiment illustrates that the

algorithm is effective in improving the efficiency of

software and shows relatively high universality.

REFERENCES
1. Holland JH; Adaptation in natural and artificial

systems. Ann Arbor, MI: University of Michigan

Press, 1975.

2. Fogel LJ, Owens AJ, Walsh MJ; Artificial

Intelligence through Simulated Evolution. John

Wiley, New York. 1966.

3. Schwefel HP; Evolution and Optimum Seeking,

John Wiley & Sons, New York, 1995.

4. Koza JR; Genetic Programming. On the

Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, 1992.

5. Koza JR; Genetic Programming I: Automatic

Discovery of reusable programs. MIT Press,

Cambridge, 1994.

6. John GJ; Proceedings of an International

Conference on Genetic Algorithms and Their

Applications. Hillsdale, NJ: Lawrence Erlbaum

Associates, 1985

7. Schaffer JD; Proceedings of the Third International

Conference on Genetic Algorithms. San Mateo,

CA: Morgan Kaufmann Publishers Inc., 1989.

8. Ge Y, Liu Q, Xiong H, Tuzhilin A, Chen J; Cost-

aware travel tour recommendation. In Proceedings

of the 17th ACM SIGKDD international

conference on Knowledge discovery and data

mining, 2011; 983-991.

9. Liu Q, Ge Y, Li Z, Chen E, Xiong H; Personalized

travel package recommendation. In Data Mining

(ICDM), 2011 IEEE 11th International Conference

on, 2011; 407-416.

10. Zheng VW, Zheng Y, Xie X, Yang Q; Towards

mobile intelligence: Learning from GPS history

data for collaborative recommendation. Artificial

Intelligence, 2012; 184:17-37.

11. Tang J, Wu S, Sun J, Su H; Cross-domain

collaboration recommendation. In Proceedings of

the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining, 2012;

1285-1293.

