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Abstract: The study aims to solve the universality of evolutionary computation for solving different optimization 

problems, avoid the repeating design, and share codes, so as to improve the application efficiency of the algorithms. To 

achieve this, the authors put forward a general evolutionary model based on object-oriented programming language (C# 

language) in this paper. This model divides the problem domain, the fitness function, the algorithm and the parameter 

control into different classes, which are encapsulated into different objects so as to enhance the independence of each 

module. By utilizing the model, it is convenient to develop, reuse, extend and modify software while guaranteeing the 

universality of the algorithm at the same time. 
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INTRODUCTION 

Genetic algorithm which plays a key role in the 

evolutionary computation is a global optimization 

algorithm for simulating natural selection and natural 

genetic mechanism in the process of biological 

evolution. According to Darwin’s theory of evolution 

and Mendel’s theory of heredity, John Holland of 

Michigan University in America proposed genetic 

algorithm in 1975, which has been developed rapidly 

after being studied for more than forty years [1]. This 

has been proved that it is a very effective method and 

has been widely applied in various fields such as neural 

networks, function optimization, image processing, 

system identification and expert systems due to its high 

efficiency and practicality [2-5]. In fact, the essence of 

traditional genetic algorithms is to constantly evolve a 

population using population search technique based on 

the principle of “survival of the fittest” and finally to 

obtain the optimal solution. The specific realization 

method is as follows: 

1) The feasible regions are determined according to 

specific problems and their solutions can be expressed 

by a coding scheme; 

2) Each solution needs to be measured according to a 

measurement basis, which is generally signified by a 

nonnegative function, that is, fitness function;     

3) The evolutionary parameters, namely, the 

population size N , the crossover probability cp , the 

mutation probability mp  and the end conditions of 

evolution, are determined;  

4) An initial population containing a number of 

individuals is generated, and each individual is a 

feasible solution to problems; 

5) The fitness values of each individual in the 

population are calculated;  

6) If the optimal solution is obtained, the loop stops. 

7) According to the fitness values of each individual, 

the genetic operations including selection, hybridization 

and mutation are performed; 

8) Going back to the fifth step. 

Although genetic algorithms are very effective, they 

present a prominent shortcoming while being used to 

solve specific problems. That is, a problem can often be 

solved by employing different evolutionary algorithms, 

and an algorithm can also be used to solve different 

problems. In this case, if an application program needs 

to be designed for each problem and algorithm, it not 

only reduces the efficiency of work, but also brings 

difficulties in comparing various algorithms. Therefore, 

it is necessary to design a kind of evolutionary 

algorithm which has a high code reuse rate, preferable 

universality and expansibility so that effectively solve 

the above problems. 

 

A DESIGN MODEL FOR EVOLUTIONARY 

ALGORITHM 

Characteristics of the object-oriented programming 

C# language  

C# language, as a comprehensive object-oriented 

programming language [8-11], inherits the advantages 

of C++ and Java languages and is characterized by 

simplicity, flexibility and powerful functions. In 

addition, it shows the most distinct characteristics such 
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as encapsulation, inheritance and polymorphism. C# 

language program which is composed of classes does 

not contain functions and variables independent from 

classes, and all attributes and methods are encapsulated 

in classes. Moreover, the examples of classes, that is, 

objects, are basic logic components of the 

programming. The system shares the methods and 

attributes of classes based on the inheritance 

mechanism, while the communication among objects is 

realized by delivering information. The objects mainly 

consist of two parts, namely, attributes and methods, 

and there into, the former is used to describe the interior 

structures of objects, while the latter shows the 

behaviors of objects. The principal-agent mechanism 

provided by C# language can effectively realize the 

polymorphism of classes so as to reuse the code and 

improve the development efficiency of software. 

 

Division of basic functions of evolutionary algorithm 

Through analyzing the evolutionary algorithm, it is 

found that evolutionary algorithm can be divided into 

different modules, such as the problem domain, the 

fitness function, the evolutionary algorithm and the 

parameter control. Among them, the evolutionary 

algorithm is composed of some genetic operators 

including selection, hybridization and mutation. When 

designing the general evolutionary algorithm, the 

system can be divided into different function modules 

to guarantee the independence of all parts. The function 

figure (Figure 1) basically reflects the composition of 

the overall system, and Figure 2 demonstrates the user 

interface for realizing Figure 1. In the function figure, 

the problem domain module mainly selects and 

processes mathematical models concerning different 

problems. While the fitness function module mainly 

calculates the fitness values of selected problems 

according to different coding schemes and rules to 

provide services for all individuals in the population, 

that is, calculating the fitness values of each individual. 

The evolutionary operator module mainly conducts 

genetic operations including selection, hybridization 

and mutation to evolve the population module so as to 

change the states of individuals in the population 

constantly. All these operations performed by the 

evolutionary operator module are based on the services 

provided by the parameter setting module. The services 

refer to parameters such as the crossover probability, 

the mutation probability, the evolutionary generations 

and the end condition. While, the population module 

mainly computes the fitness values of all individuals in 

the population according to the services supplied by the 

fitness function module and marks the best and worst 

individuals as well as their current states. Meanwhile, 

external users can properly design, select, modify, set 

and maintain the system by changing the contents of the 

different modules including the problem domain, the 

fitness function and the parameter setting to keep the 

system more stable and efficient.    

 

 
Fig-1: The functions of the system 
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Fig-2: The home page of the user interface 

 

THE STATIC MODEL OF THE GENERAL 

EVOLUTIONARY ALGORITHM 

The static model of the general evolutionary 

algorithm is shown as the class diagram in Figure 3. 

The general evolutionary algorithm consists of many 

classes, while the figure just presents the major ones. 

Among them, the problem class is used to describe the 

problem domain, in which the cause is the most 

important attribute which is an irregular two-

dimensional (2D) array storing analytic expressions. An 

analytic expression is a mathematical model which is 

built after the abstraction of original problems and 

generally exists in the form of a multi-objective 

optimization problem with constraints. Analytic 

expressions can be divided into two types, namely, the 

objective ones and the constraint ones, both of which 

are stored into an irregular 2D array. The former is 

located in the elements on the first line, while the latter 

is stored in the elements on the second line. Under 

circumstances that there is no constraint or merely one 

objective, the problem is supposed to be simplified as 

an optimization problem with a single objective or 

without constraints. Because the length of this irregular 

array like C# language is variable, it preferably solves 

problems in the case that the quantities of objective 

functions and constraint functions are unknown so that 

it is convenient to realize the software. Fit class is 

mainly used to calculate the fitness values of functions 

and can select different calculation schemas for class 

objects by employing self its strategy method. While 

when Compute method is adopted to calculate the 

fitness values of functions, it sends information to 

problem objects so as to call the corresponding 

problems to solve. Population class encapsulates main 

attributes and methods of an evolutionary population. 

There into, the attribute N marks the total number of 

individuals in the current population object; the 

attribute P is an irregular 2D array storing all 

individuals and contains N lines in total, while its 

column number depends on the number of variables in 

the solved problems; the attribute Fitness P is a one-

dimensional array belonging to double type and is 

mainly used to store the fitness values of all individuals 

in the population; while the attributes Best, Worst, Fit 

Best and Fit worst are used to record the subscripts and 

fitness values of the best and worst individuals, 

respectively; the attribute T represents the evolutionary 

generations. The sum of all attributes basically reflects 

the current state of the population. When the state 

satisfies certain conditions, the attribute Flag is set as 1. 

Arithmetic method is mainly used to select individuals 

from the population and applies these selected 

individuals as parameters to perform genetic operations 

by using the method of Evolve class. When the 

algorithm ends, Best displays the evolutionary result. 

The method of Evolve class is mainly used for 

crossover and mutation operations to generate new 

individuals. Then, these new individuals and their 
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fitness values are expected to return to the Population 

object, which then determines the individuals of the 

new population. Main Window class, as the entrance of 

whole system, is used to sends all information including 

the parameter setting, the selection of problems, the 

calculation rules of fitness values, the selection of 

genetic operators, and the start or stop of the algorithm.  

 

 
Fig-3: The classes of the evolutionary algorithm 

 

REALIZATION OF THE GENERAL 

ALGORITHM  

  )Dx( )x(f)x(f),x(fmin K21   

C# language program is composed of the classes. On 

the basis of the designed class diagram, algorithms are 

designed and codes are programmed for each method in 

the classes. Due to the limitation of length of the paper, 

the authors only list a few main methods. In Fit class, 

many Compute methods are reloaded to calculate the 

fitness values of individuals. The mathematical model 

corresponding to problems in the algorithm is 

  )Dx( )x(f)x(f),x(fmin K21   

 

Where, K, n and q signify the numbers of objective 

functions, independent variables and inequality 

constraints, respectively. Meanwhile, 

} q,1,2,i 0;)(;{  xgRSxD i

n
. 

Especially, when q = 0,  nRSxD  , which is 

a problem without constraints. The following algorithm 

is to solve multi-objective optimization problems 

according to the weights. When a problem just has one 

objective, the value of problem.cause [0]. length is set 

as 1. Here, the algorithm is converted to that for solving 

the optimization problem with a signal objective. 

Public double compute () { 

Problem problem=new Problem ( ); 

double fit; 

for(int i=0; i< problem.cause [0].length; i++) 

fit+=w*problem.cause[0][i];  

for(int i=0; i < problem.cause[1].length; i ++)  

   if (problem.cause[1][i]>0) 

fit+=Math.Abs(problem.cause[1][i]);  

return fit; } 

Arithmetic1 method and other methods of Evolve 

class are sued for genetic operations such as 

hybridization and mutation. Each method can be 

reloaded by using a same function name, and can be 

extended or modified as well. The algorithm is: 

Public void Arithmetic1 () { 

Problem problem=new Problem( ); 

for(int i=0; i<variable_num; i++) 

newp[i]=u*x[i]+(1-u)y[i]; }   

 

EXPERIMENTAL ANALYSIS  

In this paper, the authors select some examples to 

test, and the results show that the algorithm has 

favorable universality. 
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Example 1:
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Result: There are total 18 optimal solutions with the 

best value being 831023936 186.730908- . 

Example 2: Solving equation
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Result: There are 2 solutions, namely, 

18767711  0.05177940   and 67294474 0.05179980- . 

Example 3: Solving equation
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Result: One optimal solution is obtained, that is, 
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467344881, 0.00190137

1923866,  0.29089998

y
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Meanwhile, there are two suboptimal solutions, 

namely,  
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356279 1.25652948

6657623 0.28300535

y

x
 and 






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5286324-1.2564576

20977180.28300626

y

x
. 

 

CONCLUSIONS 

Based on the object-oriented characteristic of C# 

language, the modules including the problem 

domain, the fitness value of individuals, the population, 

the evolutionary operators and the parameters are 

further divided into different classes. The purpose is to 

strengthen the independence of all modules so that 

make it convenient to develop, reuse, extend and 

modify software. The experiment illustrates that the 

algorithm is effective in improving the efficiency of 

software and shows relatively high universality.   
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