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Abstract: The analysis of the effectiveness of Leakage Power Analysis (LPA) attacks to cryptographic VLSI circuits on 

which circuit level countermeasures against Differential Power Analysis (DPA) are adopted. Security metrics used for 

assessing the DPA-resistance of crypto core implementations is AES encipher and decipher operations and masking is a 

common method used to prevent differential power analysis (DPA) attack. First, reordering the execution sequence of 

SubBytes and ShiftRows and partition new critical path of the masked SubBytes followed by the masked MixColumns, 

and transform computations from GF (2
8
) to GF (2

4
)

2
 that efficiently reduces the area. Second, developing an algorithm 

to search for an optimal transformation matrix of the map function to reduce the critical path of the masked Mix 

Columns. Third, reusing first order masked SubBytes for higher order masked SubBytes to optimize area without 

compromising performance. The LPA attacks can be successfully carried out on Higher Order DPA-Resistant AES in 

presence of process variations. 

Keywords: Leakage Power Analysis (LPA), Differential Power Analysis (DPA), SubBytes, ShiftRows. 

HISTORICAL REVIEW 
In the nanometer regime, the power 

contribution due to leakage is increasing faster than the 

dynamic power at each technology node; hence chip 

power consumption is no longer dominated by the 

dynamic power. In fact, for a typical 65 nm CMOS 

chip, leakage power is in the order of half the total 

power consumption, and it is expected to be an even 

greater fraction in future technologies. Under these 

conditions, the leakage power can be easily measured in 

the same way as the dynamic power is measured in 

traditional Power Analysis attacks [2]. One Side 

Channel Attack in particular, namely the Differential 

Power Analysis (DPA), is of great concern. Side 

channel attacks can reveal confidential data (i.e. 

cryptographic keys and user PIN‟s) exploiting the 

information leaked by the hardware implementation of 

cryptographic algorithms. In particular, power analysis 

attacks, simple and differential, are based on the fact 

that logic operations feature a power consumption 

profile dependent on the processed data: with simple 

statistical analyses of a sufficient number of power 

traces, the correlation between the circuit switching 

activity and the key material can be revealed [3]. 

 

The logic styles to make devices resistant 

against SCA attacks are dual-rail pre-charge (DRP) 

logic styles that consume an equal amount of power and 

its power consumption is constant or independent of the 

processed data. In a dual rail precharge (DRP) logic 

style (e.g., sense amplifier based logic (SABL), wave 

dynamic differential logic (WDDL), dual spacer (DRP), 

signals are spatially encoded as two complementary 

wires and power consumption is constant under the 

assumption that the differential outputs of each gate 

drive the same capacitive load. 

 

The delay based Dual Rail Precharge Logic 

(DDPL) which exploits the time domain data encoding. 

During the prechargeV phase both differential lines are 

charged to DD and, V in the evaluation phase, are both 

discharged to SS. The information is encoded in the 

order with which the lines are discharged. For logic‟1‟, 

the negated line is discharged after a delay with respect 

to the asserted one. Conversely, for logic‟0‟, the 

negated line is discharged first. Since over the operating 

cycles both lines are charged and discharged once, the 

total current consumption is data-independent. 

 

The proposed architecture to protect “data” in 

storage area networks from the risk of differential 

power analysis attacks without degrading performance 

is a high-throughput masked advanced encryption 

standard (AES) engine. Masking is a common method 

used in embedded systems to prevent differential power 

analysis (DPA) attack. It will mask the plaintext and the 
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private key at the beginning of the AES computation, 

and remove redundant masks to recover the cipher text 

at the end of this computation. In the Boolean masking 

implementation, the intermediate value x is concealed 

by exclusive-ORing it with the random mask m. In the 

round function of the AES, ShiftRows, MixColumns, 

and AddRound Key are linear transformations, while 

SubBytes is the only nonlinear transformation of the 

AES. 

 

LITERATURE REVIEW 

A. ANALYSIS OF LPA ATTACKS 
Encryption algorithms have been designed to 

be secure against cryptanalysis that has access to 

plaintext and cipher text. The physical implementation 

however, provides the attacker with important 

information. Numerous attacks have been presented that 

use „side channels‟, such as time delay and power 

consumption, as an extra source of information to find 

the secret key. 

 

B. SENSE AMPLIFIER BASED LOGIC 
 

Sense Amplifier Based Logic is a logic style 

that uses a fixed amount of charge for every transition, 

including the degenerated events in which a gate does 

not change state. In every cycle, a SABL gate charges a 

total capacitance with a constant value. SABL is based 

on two principles. First, it is a Dynamic and Differential 

Logic (DDL) and therefore has exactly one switching 

event per cycle and this independently of the input 

value and sequence. Second, during a switching event, 

it discharges and charges the sum of all the internal 

node capacitances together with one of the balanced 

output 

 

C. WAVE DYNAMIC DIFFERENTIAL LOGIC 

(WDDL) 
The input signals, which are the outputs of 

dynamic gates, precharge to „0‟. Whenever the inputs of 

an input AND or OR gate are precharged to „0‟, the 

outputs are automatically at „0‟. There is no need to 

force them to 0. Consequently, performing the 

precharge operation inside the SDDL any input AND 

gate and the SDDL any input OR gate can be omitted. 

The dynamic differential cells are now implemented 

with half the resources required previously. WDDL 

gates are freely interconnected. Every compound 

standard cell has only one switching event per cycle. As 

a result, the differential gates at logic depth „1‟ switch 

once per cycle. Differences in input arrival time are not 

of any influence and do not cause glitch. 

 

 
Fig. 1 WDDL INVERTER 

 

D. THREE PHASE DUAL-RAIL PRECHARGE 

LOGIC 
A three phase dual rail pre-charge logic (TDPL) 

where, during the first phase (pre-charge), the output 

lines of a generic logic gate are both charged to VDD, 

then (second phase-evaluation) the proper line is 

discharged to VSS according to the input data, thus 

generating a new output data. Finally, during the last 

phase (discharge), the other line is discharged too [7]. 

As a consequence, since both wires are pre-charged to 

VDD and discharged to VSS, a TDPL logic gate shows 

constant energy consumption over its operating cycle 

(independent of the input data), even if unbalanced 

capacitive loads to VDD and/or VSS are taken into 

account. An inverter is shown in Fig 2, where two 

additional pull-down NMOS transistors (N1, N4) and a 

PMOS switch (P1) have been added to the SABL 

inverter in order to implement the discharge phase. 

 

 
Fig. 2 TDPL INVERTER 

 

E. DELAY BASED DUAL-RAIL PRECHARGE 

LOGIC 
Delay Based Dual Rail Precharge Logic 

(DDPL) which exploits the time domain data encoding 

shown in Fig. 3 during the precharge phase both 

differential lines are charged to VDD and, in the 

evaluation phase, are both discharged to VSS . The 

information is encoded in the order with which the lines 

are discharged. For ∆logic „1‟, the negated line is 

discharged after a delay with respect to the asserted one. 

Conversely, for logic „0‟, the negated line is discharged 

first. Since over the operating cycles both lines are 

charged and discharged once, the total current 

consumption is data-independent [8]. 
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Fig. 3 Time domain data encoding (A) Logic ‘1’; 

(B) Logic ‘0’ 
 

 
Fig. 4 DDPL INVERTER 

 

F. RIJNDAEL ALGORITHM 
With the development of information technology, 

protecting sensitive information via encryption is 

becoming more and more important to daily life. In 

2001, the National Institute of Standards and 

Technology (NIST) selected the Rijndael algorithm as 

the Advanced Encryption Standard (AES), which 

replaced the Data Encryption Standard (DES) [8]. Since 

then, AES has been widely used in a variety of 

applications, such as secure communication systems, 

high-performance database servers, digital video/ audio 

recorders, RFID tags, and smart cards [4]. To satisfy 

different applications requirements, numerous hardware 

implementations of AES have been reported. 

Verbauwhede et al described the first AES 

implementation on silicon, which can provide a 2.29 

Gbps throughput with non pipeline architecture. 

Mukhopadhyay and Roy- Chowdhury improved their 

AES system to 8 Gbps with pipelining which is a 

common technique used to enhance the performance of 

a system. The first AES implementation with a 

throughput over 10 Gbps was proposed by applying T-

box, which is a combination of the SubBytes, 

ShiftRows, and MixColumns phases in the AES 

algorithm. Furthermore, the area-throughput tradeoffs 

of fully pipelined AES processors with throughputs 

between 30 and 70 Gbps have been presented 

 

III. IMPACT OF PROCESS VARIATIONS ON 

LPA ATTACKS EFFECTIVENESS 

A. LPA ATTACKS AND PROCESS VARIATIONS 
In well-defined five steps procedure for LPA 

attacks has been presented and is summarized in the 

following. The attack aims to recover the secret key k 

of a cryptographic device where the processed data X 

under attack are a function (or a portion) of k. In the 

first step of LPA attacks, the adversary chooses an 

internal m-bit signal X that is physically generated 

within the cryptographic circuit under attack. In the 

second step, the adversary applies two different input 

values and measures the corresponding leakage current 

I of the cryptographic chip at the point of time in which 

X is physically evaluated. In the third step, the physical 

value of X within the chip is estimated for each input. 

For each possible guess k of the secret key, the resulting 

value of X under the generic input is found. As a result 

of this step, correct guess can be found. 

 

On the other hand, if the key guess is wrong 

(i.e., kj is not equal t ok), the measured leakage is no 

longer linearly related to the estimated H(X), hence the 

measured leakage and H(X) are loosely correlated and 

the correlation coefficient (Ileak,i,Hij) is lower. This 

means that the correct guess of k leading to the highest 

value of (Ileak,i,Hij) among all possible guesses kj. 

Hence, the adversary must identify the value j*of j that 

maximizes j and the secret key is simply equal to k=kj, 

and ΡJ=maxΡJ. 

 

 
Fig. 5 LPA attack procedure 

 

IV. PROPOSED EFFICIENT 

IMPLEMENTATIONS FOR DPA-RESISTANT 

AES 
In this section, we propose a novel instruction 

extension for DPA-resistant AES designs. We detailed 

the design flow for the first-order masked AES. In order 

to shorten the critical path, we move the map and the 

inverse map functions outside AES iterative rounds. An 

optimization has been done on the masked Sub- Bytes 
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followed by the MixColumns. This method can also be 

extended to support second-order and third-order 

masked AES designs. 

 

A. Proposed First-Order Masked AES 
In order to resist against DPA attacks, we need 

to remove the correlation between intermediate results 

and the secret key. Unlike the extension for the AES 

design, the masked AES is more complicated due to 

extra area required to perform masking functions. In the 

masked implementation, the intermediate value X is 

concealed by exclusive-oring (XOR) it with the random 

mask. In the round function of the AES design, 

ShiftRows,MixColumns and AddRound Key are linear 

transformations, while SubBytes is the only nonlinear 

transformation. We define the linear transformation as 

Linear_Op, therefore, masking Linear_Op with m is 

shown as follows: 

 

Linear_Op(x xor m) =Linear_Op(x) xor Oper(m) 

 

The nonlinear operation SubBytes is defined as S-box, 

which should have the following character: 

 

S-box(x xor m) = S-box(x) xorS-box (m) 

 

In order to mask the nonlinear transformation, a new S-

box, denoted as S-box
‟
, is recomputed as follows: 

 

S-box
‟
(x xor m) =S-box(x) xor m

‟
 

 

Where m and m
‟
 are the input and the output masks of 

the Sub- Bytes. It holds 

 

m
‟
=S-box(m) 

 

Generally, to mask a 128-bit AES, it needs 6 

byte random values. This masking method is called 

first-order masking. It can be broken by higher-order 

DPA attacks. It has been pointed out that every AES S-

box with 1<j<16 should use a different set of d-1 input 

masks and output masks for each round to thwart DPA 

attacks of orders < d. This requires having enough mask 

sets to properly conceal sensitive information. These 

refreshing processes of mask sets are very costly when 

implementing them on software platform. In order to 

have a trade-off  between area and performance, the 

required mask sets are generated and maintained within 

the hardware domain, which avoids information leakage 

from software and only the masked intermediate results 

are sent to software for computations. In the proposed 

design, we use 16 different masks for 16 S-boxes for 

one round. Mj and M
‟
j represent the input and the output 

masks for the SubBytes transformation at the j
th

round j 

ε (0, 1, 2…10), respectively. Mxj and Mxj represent the 

input and the output masks for the MixColumns 

transformation, respectively. These masks are refreshed 

at each round. However, masking the SubBytes over GF 

(2
8
) is area consuming. We will transform this operation 

from GF (2
8
) to GF (2

4
)

2
 to optimize area. 

 

The field GF (2
8
) is an extension of the field 

GF (2
4
)

2
, over which to perform modular reduction 

needs an irreducible polynomial of degree 2 and another 

irreducible polynomial of degree 4. In order to reduce 

the hardware resources, we calculate the masked AES 

engine mainly over GF (2
4
)

2
. Fig. 6 shows the 

architecture of the proposed first order masked 128-bit 

AES, which moves the map and the inverse map 

functions outside the AES iterative round. The plaintext 

and masks are mapped once from GF (2
8
) to GF (2

4
)

2
 at 

the beginning of the computation 

 

All intermediate operations are computed over 

GF (2
4
)

2
. Finally, the cipher text is mapped back from 

GF (2
8
) to GF (2

4
)

2
. All masks need to be mapped from 

GF (2
8
) to GF (2

4
) 

2
, and we denote that mj=map (Mj 

and mxj=map(Mxj), where represents the AES round. 

Similar to the above instruction extension example for 

the AES, we partition into hardware the critical part of 

first-order masked AES, the masked SubBytes followed 

by the masked MixColumns. Therefore, the ShiftRows 

transformation is moved before the SubBytes 

transformation and it is kept at the software level. In 

this particular design, two new instructions are required: 

 

 Computing the masked SubBytes followed 

by the masked MixColumns; Computing the 

masked SubBytes only (the last round of 

AES computation does not need the 

MixColumns transformation).  
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Fig. 6 Structure of the proposed first-order masked AES design 

 

Fig.7 shows the architecture of the proposed 

instruction extension for the first-order masked AES. It 

could also be extended to support the second-order AES 

and the third-order AES designs. Note here, the masked 

SubBytes and the masked MixColumns are computed 

over GF (2
4
)

2
. The proposed architecture consists of 

four parts: the masked SubBytes, the masked 

MixColumns, random number generator (RNG) and 

masks. RNG is designed to generate the corresponding 

mask sets for the masked AES. In order not to affect the 

original data path, an optimization has been done on the 

masked SubBytes followed by the masked 

MixColumns, which will be detailed in the following 

section. 

 

 
Fig. 7 Structure of the proposed extension in the  

 

AES-M1 design 
Fig. 8 shows the execution flow of the 

proposed first-order masked AES. In order to be 

compatible with the original C program and properly 

generate mask sets, three extra instructions are 

developed. They are: 1) generating mask sets for the 

proposed design; 2) masking plaintext with mx
‟
j;     3) 

generating the sub_key‟s mask (mxj+mx
‟
j). 

 

The procedure of the proposed first-order 

masked AES design is shown as follows, where SW 

represents software and HW represents hardware. 

 

1. SW requests HW to generate the mask sets and 

maps these sets from GF (2
8
) to GF (2

4
)

2
.  

2. SW requests HW to generate the sub_keys and 

maps them from GF (2
8
) to GF (2

4
)

2
.  

3. SW maps plaintext from GF (2
8
) to GF (2

4
)

2
 

and sends it to HW.  

4. HW masks plaintext and sends back to SW.  

5. SW requests the sub_keys  mask sets from 

HW.  

6. SW masks sub_keys with the received mask 

sets and performs AddRound Key.  

7. SW sends the intermediate result to HW after 

ShiftRows.  

8. HW performs the masked SubBytes and the 

masked MixColumns and sends the results 

back to SW.  

9. SW performs AddRound Key.  

10. At the last round, HW only performs the 

masked SubBytes followed by correction of 

the results.  

11. After AddRound Key, SW maps the result at 

Step 11back from GF (2
4
)

2
 to GF (2

8
) to 

retrieve the correct cipher text.  


