

DOI: 10.21276/sjet.2016.4.6.5

 284

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online)

Sch. J. Eng. Tech., 2016; 4(6):284-288 ISSN 2347-9523 (Print)
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)

www.saspublisher.com

Research Article

Overcoming the Leakage Power Analysis Attack Using Higher Order DPA-

Resistant AES-Masking
Malini S, Manju Priya K, Shiney Immaculate S

SVS College of Engineering, Coimbatore, Tamilnadu, India

*Corresponding author

Manju Priya K

Email: priyamanju79@gmail.com

Abstract: The analysis of the effectiveness of Leakage Power Analysis (LPA) attacks to cryptographic VLSI circuits on

which circuit level countermeasures against Differential Power Analysis (DPA) are adopted. Security metrics used for

assessing the DPA-resistance of crypto core implementations is AES encipher and decipher operations and masking is a

common method used to prevent differential power analysis (DPA) attack. First, reordering the execution sequence of

SubBytes and ShiftRows and partition new critical path of the masked SubBytes followed by the masked MixColumns,

and transform computations from GF (2
8
) to GF (2

4
)

2
 that efficiently reduces the area. Second, developing an algorithm

to search for an optimal transformation matrix of the map function to reduce the critical path of the masked Mix

Columns. Third, reusing first order masked SubBytes for higher order masked SubBytes to optimize area without

compromising performance. The LPA attacks can be successfully carried out on Higher Order DPA-Resistant AES in

presence of process variations.

Keywords: Leakage Power Analysis (LPA), Differential Power Analysis (DPA), SubBytes, ShiftRows.

HISTORICAL REVIEW
In the nanometer regime, the power

contribution due to leakage is increasing faster than the

dynamic power at each technology node; hence chip

power consumption is no longer dominated by the

dynamic power. In fact, for a typical 65 nm CMOS

chip, leakage power is in the order of half the total

power consumption, and it is expected to be an even

greater fraction in future technologies. Under these

conditions, the leakage power can be easily measured in

the same way as the dynamic power is measured in

traditional Power Analysis attacks [2]. One Side

Channel Attack in particular, namely the Differential

Power Analysis (DPA), is of great concern. Side

channel attacks can reveal confidential data (i.e.

cryptographic keys and user PIN‟s) exploiting the

information leaked by the hardware implementation of

cryptographic algorithms. In particular, power analysis

attacks, simple and differential, are based on the fact

that logic operations feature a power consumption

profile dependent on the processed data: with simple

statistical analyses of a sufficient number of power

traces, the correlation between the circuit switching

activity and the key material can be revealed [3].

The logic styles to make devices resistant

against SCA attacks are dual-rail pre-charge (DRP)

logic styles that consume an equal amount of power and

its power consumption is constant or independent of the

processed data. In a dual rail precharge (DRP) logic

style (e.g., sense amplifier based logic (SABL), wave

dynamic differential logic (WDDL), dual spacer (DRP),

signals are spatially encoded as two complementary

wires and power consumption is constant under the

assumption that the differential outputs of each gate

drive the same capacitive load.

The delay based Dual Rail Precharge Logic

(DDPL) which exploits the time domain data encoding.

During the prechargeV phase both differential lines are

charged to DD and, V in the evaluation phase, are both

discharged to SS. The information is encoded in the

order with which the lines are discharged. For logic‟1‟,

the negated line is discharged after a delay with respect

to the asserted one. Conversely, for logic‟0‟, the

negated line is discharged first. Since over the operating

cycles both lines are charged and discharged once, the

total current consumption is data-independent.

The proposed architecture to protect “data” in

storage area networks from the risk of differential

power analysis attacks without degrading performance

is a high-throughput masked advanced encryption

standard (AES) engine. Masking is a common method

used in embedded systems to prevent differential power

analysis (DPA) attack. It will mask the plaintext and the

http://www.saspublisher.com/
mailto:priyamanju79@gmail.com

Malini S et al., Sch. J. Eng. Tech., Jun 2016; 4(6):284-288

 285

private key at the beginning of the AES computation,

and remove redundant masks to recover the cipher text

at the end of this computation. In the Boolean masking

implementation, the intermediate value x is concealed

by exclusive-ORing it with the random mask m. In the

round function of the AES, ShiftRows, MixColumns,

and AddRound Key are linear transformations, while

SubBytes is the only nonlinear transformation of the

AES.

LITERATURE REVIEW

A. ANALYSIS OF LPA ATTACKS
Encryption algorithms have been designed to

be secure against cryptanalysis that has access to

plaintext and cipher text. The physical implementation

however, provides the attacker with important

information. Numerous attacks have been presented that

use „side channels‟, such as time delay and power

consumption, as an extra source of information to find

the secret key.

B. SENSE AMPLIFIER BASED LOGIC

Sense Amplifier Based Logic is a logic style

that uses a fixed amount of charge for every transition,

including the degenerated events in which a gate does

not change state. In every cycle, a SABL gate charges a

total capacitance with a constant value. SABL is based

on two principles. First, it is a Dynamic and Differential

Logic (DDL) and therefore has exactly one switching

event per cycle and this independently of the input

value and sequence. Second, during a switching event,

it discharges and charges the sum of all the internal

node capacitances together with one of the balanced

output

C. WAVE DYNAMIC DIFFERENTIAL LOGIC

(WDDL)
The input signals, which are the outputs of

dynamic gates, precharge to „0‟. Whenever the inputs of

an input AND or OR gate are precharged to „0‟, the

outputs are automatically at „0‟. There is no need to

force them to 0. Consequently, performing the

precharge operation inside the SDDL any input AND

gate and the SDDL any input OR gate can be omitted.

The dynamic differential cells are now implemented

with half the resources required previously. WDDL

gates are freely interconnected. Every compound

standard cell has only one switching event per cycle. As

a result, the differential gates at logic depth „1‟ switch

once per cycle. Differences in input arrival time are not

of any influence and do not cause glitch.

Fig. 1 WDDL INVERTER

D. THREE PHASE DUAL-RAIL PRECHARGE

LOGIC
A three phase dual rail pre-charge logic (TDPL)

where, during the first phase (pre-charge), the output

lines of a generic logic gate are both charged to VDD,

then (second phase-evaluation) the proper line is

discharged to VSS according to the input data, thus

generating a new output data. Finally, during the last

phase (discharge), the other line is discharged too [7].

As a consequence, since both wires are pre-charged to

VDD and discharged to VSS, a TDPL logic gate shows

constant energy consumption over its operating cycle

(independent of the input data), even if unbalanced

capacitive loads to VDD and/or VSS are taken into

account. An inverter is shown in Fig 2, where two

additional pull-down NMOS transistors (N1, N4) and a

PMOS switch (P1) have been added to the SABL

inverter in order to implement the discharge phase.

Fig. 2 TDPL INVERTER

E. DELAY BASED DUAL-RAIL PRECHARGE

LOGIC
Delay Based Dual Rail Precharge Logic

(DDPL) which exploits the time domain data encoding

shown in Fig. 3 during the precharge phase both

differential lines are charged to VDD and, in the

evaluation phase, are both discharged to VSS . The

information is encoded in the order with which the lines

are discharged. For ∆logic „1‟, the negated line is

discharged after a delay with respect to the asserted one.

Conversely, for logic „0‟, the negated line is discharged

first. Since over the operating cycles both lines are

charged and discharged once, the total current

consumption is data-independent [8].

Malini S et al., Sch. J. Eng. Tech., Jun 2016; 4(6):284-288

 286

Fig. 3 Time domain data encoding (A) Logic ‘1’;

(B) Logic ‘0’

Fig. 4 DDPL INVERTER

F. RIJNDAEL ALGORITHM
With the development of information technology,

protecting sensitive information via encryption is

becoming more and more important to daily life. In

2001, the National Institute of Standards and

Technology (NIST) selected the Rijndael algorithm as

the Advanced Encryption Standard (AES), which

replaced the Data Encryption Standard (DES) [8]. Since

then, AES has been widely used in a variety of

applications, such as secure communication systems,

high-performance database servers, digital video/ audio

recorders, RFID tags, and smart cards [4]. To satisfy

different applications requirements, numerous hardware

implementations of AES have been reported.

Verbauwhede et al described the first AES

implementation on silicon, which can provide a 2.29

Gbps throughput with non pipeline architecture.

Mukhopadhyay and Roy- Chowdhury improved their

AES system to 8 Gbps with pipelining which is a

common technique used to enhance the performance of

a system. The first AES implementation with a

throughput over 10 Gbps was proposed by applying T-

box, which is a combination of the SubBytes,

ShiftRows, and MixColumns phases in the AES

algorithm. Furthermore, the area-throughput tradeoffs

of fully pipelined AES processors with throughputs

between 30 and 70 Gbps have been presented

III. IMPACT OF PROCESS VARIATIONS ON

LPA ATTACKS EFFECTIVENESS

A. LPA ATTACKS AND PROCESS VARIATIONS
In well-defined five steps procedure for LPA

attacks has been presented and is summarized in the

following. The attack aims to recover the secret key k

of a cryptographic device where the processed data X

under attack are a function (or a portion) of k. In the

first step of LPA attacks, the adversary chooses an

internal m-bit signal X that is physically generated

within the cryptographic circuit under attack. In the

second step, the adversary applies two different input

values and measures the corresponding leakage current

I of the cryptographic chip at the point of time in which

X is physically evaluated. In the third step, the physical

value of X within the chip is estimated for each input.

For each possible guess k of the secret key, the resulting

value of X under the generic input is found. As a result

of this step, correct guess can be found.

On the other hand, if the key guess is wrong

(i.e., kj is not equal t ok), the measured leakage is no

longer linearly related to the estimated H(X), hence the

measured leakage and H(X) are loosely correlated and

the correlation coefficient (Ileak,i,Hij) is lower. This

means that the correct guess of k leading to the highest

value of (Ileak,i,Hij) among all possible guesses kj.

Hence, the adversary must identify the value j*of j that

maximizes j and the secret key is simply equal to k=kj,

and ΡJ=maxΡJ.

Fig. 5 LPA attack procedure

IV. PROPOSED EFFICIENT

IMPLEMENTATIONS FOR DPA-RESISTANT

AES
In this section, we propose a novel instruction

extension for DPA-resistant AES designs. We detailed

the design flow for the first-order masked AES. In order

to shorten the critical path, we move the map and the

inverse map functions outside AES iterative rounds. An

optimization has been done on the masked Sub- Bytes

Malini S et al., Sch. J. Eng. Tech., Jun 2016; 4(6):284-288

 287

followed by the MixColumns. This method can also be

extended to support second-order and third-order

masked AES designs.

A. Proposed First-Order Masked AES
In order to resist against DPA attacks, we need

to remove the correlation between intermediate results

and the secret key. Unlike the extension for the AES

design, the masked AES is more complicated due to

extra area required to perform masking functions. In the

masked implementation, the intermediate value X is

concealed by exclusive-oring (XOR) it with the random

mask. In the round function of the AES design,

ShiftRows,MixColumns and AddRound Key are linear

transformations, while SubBytes is the only nonlinear

transformation. We define the linear transformation as

Linear_Op, therefore, masking Linear_Op with m is

shown as follows:

Linear_Op(x xor m) =Linear_Op(x) xor Oper(m)

The nonlinear operation SubBytes is defined as S-box,

which should have the following character:

S-box(x xor m) = S-box(x) xorS-box (m)

In order to mask the nonlinear transformation, a new S-

box, denoted as S-box
‟
, is recomputed as follows:

S-box
‟
(x xor m) =S-box(x) xor m

‟

Where m and m
‟
 are the input and the output masks of

the Sub- Bytes. It holds

m
‟
=S-box(m)

Generally, to mask a 128-bit AES, it needs 6

byte random values. This masking method is called

first-order masking. It can be broken by higher-order

DPA attacks. It has been pointed out that every AES S-

box with 1<j<16 should use a different set of d-1 input

masks and output masks for each round to thwart DPA

attacks of orders < d. This requires having enough mask

sets to properly conceal sensitive information. These

refreshing processes of mask sets are very costly when

implementing them on software platform. In order to

have a trade-off between area and performance, the

required mask sets are generated and maintained within

the hardware domain, which avoids information leakage

from software and only the masked intermediate results

are sent to software for computations. In the proposed

design, we use 16 different masks for 16 S-boxes for

one round. Mj and M
‟
j represent the input and the output

masks for the SubBytes transformation at the j
th

round j

ε (0, 1, 2…10), respectively. Mxj and Mxj represent the

input and the output masks for the MixColumns

transformation, respectively. These masks are refreshed

at each round. However, masking the SubBytes over GF

(2
8
) is area consuming. We will transform this operation

from GF (2
8
) to GF (2

4
)

2
 to optimize area.

The field GF (2
8
) is an extension of the field

GF (2
4
)

2
, over which to perform modular reduction

needs an irreducible polynomial of degree 2 and another

irreducible polynomial of degree 4. In order to reduce

the hardware resources, we calculate the masked AES

engine mainly over GF (2
4
)

2
. Fig. 6 shows the

architecture of the proposed first order masked 128-bit

AES, which moves the map and the inverse map

functions outside the AES iterative round. The plaintext

and masks are mapped once from GF (2
8
) to GF (2

4
)

2
 at

the beginning of the computation

All intermediate operations are computed over

GF (2
4
)

2
. Finally, the cipher text is mapped back from

GF (2
8
) to GF (2

4
)

2
. All masks need to be mapped from

GF (2
8
) to GF (2

4
)

2
, and we denote that mj=map (Mj

and mxj=map(Mxj), where represents the AES round.

Similar to the above instruction extension example for

the AES, we partition into hardware the critical part of

first-order masked AES, the masked SubBytes followed

by the masked MixColumns. Therefore, the ShiftRows

transformation is moved before the SubBytes

transformation and it is kept at the software level. In

this particular design, two new instructions are required:

 Computing the masked SubBytes followed

by the masked MixColumns; Computing the

masked SubBytes only (the last round of

AES computation does not need the

MixColumns transformation).

Malini S et al., Sch. J. Eng. Tech., Jun 2016; 4(6):284-288

 288

Fig. 6 Structure of the proposed first-order masked AES design

Fig.7 shows the architecture of the proposed

instruction extension for the first-order masked AES. It

could also be extended to support the second-order AES

and the third-order AES designs. Note here, the masked

SubBytes and the masked MixColumns are computed

over GF (2
4
)

2
. The proposed architecture consists of

four parts: the masked SubBytes, the masked

MixColumns, random number generator (RNG) and

masks. RNG is designed to generate the corresponding

mask sets for the masked AES. In order not to affect the

original data path, an optimization has been done on the

masked SubBytes followed by the masked

MixColumns, which will be detailed in the following

section.

Fig. 7 Structure of the proposed extension in the

AES-M1 design
Fig. 8 shows the execution flow of the

proposed first-order masked AES. In order to be

compatible with the original C program and properly

generate mask sets, three extra instructions are

developed. They are: 1) generating mask sets for the

proposed design; 2) masking plaintext with mx
‟
j; 3)

generating the sub_key‟s mask (mxj+mx
‟
j).

The procedure of the proposed first-order

masked AES design is shown as follows, where SW

represents software and HW represents hardware.

1. SW requests HW to generate the mask sets and

maps these sets from GF (2
8
) to GF (2

4
)

2
.

2. SW requests HW to generate the sub_keys and

maps them from GF (2
8
) to GF (2

4
)

2
.

3. SW maps plaintext from GF (2
8
) to GF (2

4
)

2

and sends it to HW.

4. HW masks plaintext and sends back to SW.

5. SW requests the sub_keys mask sets from

HW.

6. SW masks sub_keys with the received mask

sets and performs AddRound Key.

7. SW sends the intermediate result to HW after

ShiftRows.

8. HW performs the masked SubBytes and the

masked MixColumns and sends the results

back to SW.

9. SW performs AddRound Key.

10. At the last round, HW only performs the

masked SubBytes followed by correction of

the results.

11. After AddRound Key, SW maps the result at

Step 11back from GF (2
4
)

2
 to GF (2

8
) to

retrieve the correct cipher text.

