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Abstract: This paper proposes a robust automatic phoneme recognizer for Japanese language in noise corrupted acoustic 

environments. From the previous studies it is found that some hidden factors such as speaking style, gender effects, and 

noisy acoustic environments degrade the performance of automatic phoneme recognizers (APRs). In this study, an APR 

is designed in noise corrupted acoustic environments resolving the noise effect. The proposed system comprises three 

stages. At first stage, a multilayer neural network (MLN) that outputs Distinctive Phonetic Features (DPFs) from the 

input acoustic features is incorporated, and then the Karhunen-Loeve Transformation (KLT) and the Gram-Schmidt (GS) 

algorithms are used at second stage to extract reduced feature vector. Finally, the output phoneme strings are generated 

by inserting the reduced features into a hidden Markov model (HMM) based classifier. It is observed from the 

experiments in clean and noisy acoustic environments that the proposed method provides higher recognition accuracy at 

lower Signal-to-Noise Ratios (SNRs). 

Keywords: automatic speech recognition; local features; gender factor; phoneme recognizer; hidden Markov model. 

INTRODUCTION  
 Various methods had been proposed to find an 

automatic phoneme recognizer [1-5]. However, most of 

these proposed methods embed only hidden Markov 

models (HMMs) in its architecture and need a higher 

computational cost to get a large scale performance. 

Besides, some of them incorporate acoustic features, 

which produce a narrow acoustic likelihood between 

two phonemes in noisy acoustic environments and then 

generate misclassifications.  

 

 Therefore, a more accurate phoneme recognizer 

needs a hybrid classifier with low computation, which 

incorporates distinctive phonetic features (DPFs) 

instead of acoustic features. A distinctive phonetic 

feature (DPF)-based system can model coarticulatory 

phenomena more easily [6]. In a previous work, a DPF-

based feature extraction method was introduced [7], 

where a multi-layer neural network (MLN) was used to 

extract DPFs. In [7], a clean acoustic environment was 

considered for experiments, but no experiments were 

done in real environments.  

 

 This paper proposes an automatic phoneme 

recognizer in clean and noisy [8, 9] acoustic 

environments. The proposed system comprises three 

stages. Firstly, Distinctive Phonetic Features (DPFs) 

from acoustic features are extracted using a multilayer 

neural network (MLN). Secondly, a reduced 

decorrelated feature vector is obtained using the 

Karhunen-Loeve Transformation (KLT) and Gram-

Schmidt (GS) algorithms. Finally, an HMM-based 

classifier is added at the end of the system to generate 

phoneme strings for each input speech. It is observed 

that the proposed phoneme recognition system 

incorporating KLT provides higher recognition 

accuracy at lower Signal-to-Noise Ratios (SNRs) on 

Japanese Newspaper Article Sentences (JNAS) in noisy 

and clean acoustic conditions. 

 

 This paper is organized as follows. Section II 

discusses the Japanese articulatory features and Section 

III outlines KLT procedure. Section IV explains the 

proposed KLT-based technique. Section V describes an 

experimental setup, and section VI analyzes 

experimental results. Finally, section VII concludes the 

paper with some future remarks. 

 

DISTINCTIVE PHONETIC FEATURES 
 A phoneme can easily be identified by using its 

unique Distinctive Phonetic Features (DPFs) set [10, 
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11].  The paper [7] discusses the DPFs set for the 

Japanese language.. 

 

KURHONEN-LOEVE TRANSFORMATION  
 The KLT, which is closely related to the Principal 

Component Analysis (PCA) [16], is used here for 

reducing the dimensionality. The orthogonal basis using 

the KLT is calculated using the 15 dimensional DPF 

vector. Then the reduced feature vector with lower 

dimensionality is obtained by multiplying the input data 

matrix of size (total number of frames * 15) with 

orthogonal basis of size 15*11   dimensions.  As a 

result, the size of feature vector is total number of data 

frames*11, which reduces the total feature vector 

dimensionality of total number of data frames*15.    

 

PROPOSED KLT-BASED PHONEME 

RECOGNIZER 
 The KLT-based phoneme recognition method is 

proposed in Figure 1. For obtaining LFs as acoustic 

feature, we convert the input speech into time and 

frequency domain features [12]. Two LFs extracted by 

the procedure described in Section IV are used here. 

LFs are then entered into an MLN with four layers 

including two hidden layers after combining a current 

frame xt with the other two frames that are three points 

before and after the current frame (xt-3, xt+3). The 

MLN has 45 output units (15×3) corresponding to a set 

of triphones, or to a context-dependent DPF vector that 

comprises three DPF vectors (a preceding context DPF, 

a current DPF, and a following context DPF) with 15 

dimensions each. The two hidden layers comprise 256 

and 96 units, respectively. The MLN is trained using 

the standard back-propagation algorithm. This DPF 

extractor takes 75 (=25x3) LFs as input and outputs a 

45-dimensional context-dependent DPF vector. After 

including KLT and GS algorithm, the system generates 

a 33-dimensional decorrelated DPF vector for the 

HMM-based classifier. 

 

 
Fig-1: The proposed KLT-based Phoneme 

Recognizer 

 

EXPERIMENTS 

Experimental Database 

 The following three speech data sets are used in 

our experiments. 

 

Training data set: A subset of the Acoustic Society of 

Japan (ASJ) Continuous Speech Database comprising 

4503 sentences uttered by 30 different male speakers 

(16 kHz, 16 bit) is used [13].  

 

Test data set: This test data set comprises 2379 JNAS 

[14] sentences uttered by 16 different male speakers (16 

kHz, 16 bit). 

 

Noisy test data set: Two thousand three hundred 

seventy nine utterances from JNAS [14] continuous 

speech sentences uttered by 16 male speakers are used 

as test data. Test utterances are noise corrupted (car 

noise) speech. Noise from Japan Electronic Industries 

Development Association (JEIDA) Noise Database [15] 

is added to the clean JNAS dataset D2 at different SNR 

(0 dB, 5 dB, 10 dB, 20 dB) conditions. For each SNR (0 

dB, 5 dB, 10 dB and 20 dB), there are 2379 utterances. 

Sampling rate is 16 kHz. 

 

Experimental Setup 

 LFs comprised of 25 dimensional (12 Δt, 12 Δf, 

and ΔP, where P stands for the log power of a raw 

speech signal) feature vectors.  

 

 Since our goal is to design a more accurate 

phoneme recognizer, phoneme correct rate (PCR) for 

D2 and D3 data set are evaluated using an HMM-based 

classifier. The D1 data set is used to design 38 Japanese 

mono-phoneme HMMs with five states, three loops, 

and left-to-right models. Input features for the classifier 

are orthogonalized DPFs. In the HMMs, the output 

probabilities are represented in the form of Gaussian 

mixtures, and diagonal matrices are used.  

 

 The mixture components are set to 1, 2, 4, 8, and 

16. The experiments in clean acoustic environments are 

given below 

   (i) DPF(MLN+GS,dim:45) 

   (ii) DPF(MLN+KLT+GS,dim:33) 

 

 To observe PCR in car-noisy environment for 

different signal-to-noise ratios (SNR=0 dB, 5 dB, 10 

dB, 20 dB), we have carried out some experiments 

using the D3 test data set for the following methods  

   (i) Car.DPF(MLN+GS,dim:45) 

   (ii) Car.DPF(MLN+KLT+GS, dim:33) 

 

EXPERIMENTAL RESULT AND ANALYSIS  
 

Table 1: phoneme correct rates in clean acoustic 

Methods 

Phoneme Correct Rate (%) 

Mix

1 

Mix

2 

Mix

4 

Mix

8 

Mix

16 

DPF(MLN+GS, 

dim:45) 

77.8

0 

78.0

6 

78.3

0 

78.7

0 

79.1

9 

DPF(MLN+KLT+

GS, dim: 33) 

79.4

8 

79.1

2 

78.2

7 

78.7

1 

79.2

9 
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 The phoneme recognition performance in clean 

environment after applying the GS orthogonalization 

using the methods DPF(MLN+GS,dim:45) and 

DPF(MLN+KLT+GS,dim:33) are given in Table 1. 

From the table it is observed that the phoneme correct 

rate is increased by the proposed method at mixture 

components 1 and 2.  

 

 Figures 2, 3, 4, and 5 exhibit the phoneme 

recognition performance in car-noisy environment for 

the methods DPF(MLN+KLT+GS, dim:33) and 

DPF(MLN+GS, dim:45) using the SNRs 0dB, 5dB, 

10dB, and 20dB, respectively. For 0dB in the Fig. 2, the 

DPF(MLN+KLT+GS, dim:33) provides a higher 

recognition performance for all mixture components 

over the other investigated methods. For example, at 

mixture component one, the DPF(MLN+KLT+GS, 

dim:33) gives 46.03% phoneme recognition 

performance, while the corresponding performance for 

the method DPF(MLN+GS, dim:45) is 43.42%. For the 

remaining investigated SNRs (5 dB, 10 dB, and 20 dB), 

the DPF(MLN+KLT+GS, dim:33) shows a 

significantly higher phoneme correct rate for lower 

mixture components with lower SNRs. These 

improving results are obtained due to the KLT 

procedure. 

 

 The SNR-wise phoneme correct rate for the methods 

DPF(MLN+KLT+GS, dim:33) and DPF(MLN+GS, 

dim:45) is shown in Fig. 6 using the mixture component 

one.  For all the investigated SNRs, the method 

DPF(MLN+KLT+GS, dim:33) shows a higher 

recognition performance. For example, at SNR 20 dB 

and clean, the DPF(MLN+KLT+GS, dim:33) gives 

79.08% and 79.48% respectively, while  78.06% and 

77.80% are shown by the methods  DPF(MLN+GS, 

dim:45). 

 

 
Fig-2: Phoneme recognition performance at 0 dB 

(car noise) 

 

 
Fig-3: Phoneme recognition performance at 5 dB 

(car noise) 

 

 
Fig-4: Phoneme recognition performance at 10 dB 

(car noise) 

 

 
Fig-5: Phoneme recognition performance at 20 dB 

(car noise) 

 

 
Fig-6: Phoneme recognition performance for 

different SNRs (car noise, 1 mix.) 
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CONCLUSIONS 
 This paper has designed a phoneme recognizer in 

noisy acoustic environments incorporating Karhunen-

Loeve Transformation. The following information 

concludes the paper. 

 

1) For the KLT-based method, the mixture component 

two generates the highest level improvement for all 

SNRs. 

 

2) The proposed KLT-based method has showed the 

significant improvement of phoneme correct rate in 

comparison with the method that did not incorporate 

KLT procedure. 

 

In future, the authors would like to incorporate 

Recurrent Neural Network (RNN) in KLT-based system 

for evaluating the performance. 
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