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Abstract: In this paper, a modified hybrid conjugate gradient algorithm is proposed for solving unconstrained 

optimization problems, which avoid the drawbacks of PRP and FR. The global convergence of this method is established 

under strong Wolfe line search conditions. The numerical results show that the proposed method is effective. 
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INTRODUCTION 

It is well known that the conjugate gradient method is an effective method to solve largescale minimization 

problems. In this paper, we consider the following unconstrained optimization problem 

 ( )min
nx R

f x


                                                              (1) 

where nR
 denotes an n-dimensional Euclidean space and ( ) : nf x R R  is a continuously differentiable function. In 

usual, the iterative formula of the conjugate gradient method is given as follows:  

1 ,          0,1,2 ,k k kkx x d k                                              (2) 

where 0k  is obtained by line search and the directions kd  are generated as 
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where ( )kk f xg  , and k  is a scalar. The search direction kd is generally required to satisfy 0T

k kg d  , which 

guarantees that kd is a descent direction of  ( )f x  at kx . The step length k  usually is chosen by the Wolfe line search 

or Armijo-type linear search. Here, we use the strong Wolf line search condition, i.e., the step size k  satisfies 
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where 
1

0 , 1.
2

and                                 

 

As you know, different choices of k  result in different nonlinear conjugate gradient methods. Some famous 

formulae for k  are defined as follows: 
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              (5)            

      

where 11   kkk ggy , the symbol  be the Euclidean norm. As is well known, the CG methods FR

k
 , CD

k
and 

DY

k
possess strong global convergence properties, but have less computational performance. On the other hand, the 

PRP

k
, LS

k
 and HS

k
methods have been shown that although they may not always converge, they often offer better 

computational performance. In most cases, hybrid conjugate gradient methods are more efficient than basic conjugate 

gradient methods. Recently, Dai ＆ Yuan [8] combined the DY algorithm with the HS algorithm, proposing the following 

two hybrid methods 

max{ c ,  min{ , }},

max{0,  min{ , }},

hDY DY DY HS

hDY z DY HS

b b b b

b b b

= -

=
 

where c is a scalar. They established the global convergence of these hybrid computational schemes under the weak 

Wolfe conditions. N. Andrei [9] Combined between PRP and DY conjugate gradient methods, proposed the following 

hybrid method: 

(1 ) ,PRP DYb q b qb= - +  

where the parameter in the convex combination is computed in such a way that the conjugacy condition is satisfied, 

independently of the line search. some kinds of new hybrid conjugate gradient methods are given in [10, 11]. 

 

In this paper, we propose another hybrid conjugate gradient as a convex combination of PRP and FR conjugate 

gradient algorithms. By this method, we hope to obtain a more efficient conjugate gradient algorithm. The rest of this 

paper is organized as follows. The algorithm is presented in Section 2. In Sections 3 the global convergence is analyzed. 

We give the numerical experiments in Section 4. 

 

DESCRIPTION OF ALGORITHM 

Based on the ideas of N. Andrei [9], we propose another hybrid of 
PRP and 

FR  as following:  

(1 ) , 0 1,FR PRPu u ub b b= + - £ £                              (6) 
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where u  is a scalar parameter. Obviously, if 1u , then 
PRP  , and if 0u = ,then FRb b= . On the other hand, 

if 0 1,u< < then, b is a convex combination of PRPb and FRb . Hence, from 01  k

T

k dy ( the conjugacy condition), 

after some algebra, we get 

             

2
1 1 1 1

1 1 1

( )(| | | | )
.

( )( )

T T
k k k k k

k T T
k k k k

y g g y d
u

g g y d

- - - -

- - -

-
=                               (7) 

Further, when one of the following two groups of inequality holds, 

 

                    
1 1

1 1

0 0
  or  ,

0 0

T T

k k k k

T T

k k k k

g g g g

y g g d

 

 

   
 

   

                                  (8) 

it holds that )1,0[u . Hence, we constructed the following parameters 
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       (9) 

 

Now we state our algorithm as follows. 

Algorithm PRPFR:  

Step 0:  Initialization:  Given a starting point
nRx 0 , choose parameters 

0 0

1
0 1,0 , 1, , : 0

2
d g k             

Step 1:  If |||| kg , STOP, else go to Step 2; 

Step 2： Let kkkk dxx 1 ,  

0 0

1

  

, 1,        (9). k k k k k

d g

d g d k where is followed by 

 


   
 

k is defined by the strong Wolf line search (4). 

 

Step 3：Let : 1.k k  , and go to Step 2. 

 

GLOBAL CONVERGENCE OF ALGORITHM 

At first, the following basic assumptions on the objective function are assumed, which have been widely used in the 

literature to analyze the global convergence of the conjugate gradient methods.  

H3.1 

 i) The objective function ( )f x  is continuously differentiable and has a lower bound on the level set 

0 0{ | ( ) ( )}nL x R f x f x   , where 0x  is the starting point. 

ii)  The gradient ( )g x  of ( )f x  is Lipschitz continuous in some neighborhood U of L0, namely, there exists a constant L 

> 0 such that 

, ,( ) ( ) .    x g y L x y x y Ug
 

 

Lemma 3.1[7] Suppose that Assumption H3.1 holds. If the conjugate method satisfies  0k

T

k dg , then we have that 

.
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d
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Theorem 3.1 Suppose that Assumption H3.1 holds and the sequence }{ kx is generated by Algorithm PRPFR, then

0k

T

k dg . 
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Proof:   For 0n , 0|||| 2

000  gdg T
. 

Suppose the assertion has been proved for order 1 kn , i.e. 011  k

T

k dg . 

We shall show that it is then valid for order kn  , 

)( 1 kkk

T

kk

T

k dggdg  . 

If 0k , then 0k

T

k dg .   satisfies (8),kIf g then  
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By (4) shows，if the first group inequality holds of (8) , then there  
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Thus, to sum up, 01 k

T

k dg  holds for all 1k  . i.e. the theorem is proved. 

 

In view of Theorem 3.1 and[12], we may obtain the following results. 

 

Theorem 3.2 Suppose that Assumption H3.1 holds and the sequence }{ kx is generated by Algorithm PRPFR. Then  

.0||||inflim 
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NUMERICAL EXPERIMENTS 

In this section, we give some numerical results of Algorithm A to show that the method is efficient for 

unconstrained optimization problems. The problems that we tested are from [13] and [14]. Table 1 show the computation 

results, where the columns have the following meanings: 

kx —the final point； 

*f —the final value of the objective function; 

 

 

Table 1:  Comparative numerical results of Algorithm A 

 Problem kx  *f  

Rosen (1.00091143028257, 1.00182635749054) 8.314160330210927e-007 

Freud (11.41271934114850, -0.89680858859295) 48.98425368072392 

Beale (3.00323465930368, 0.50080623002464) 1.669350396112912e-006 

Trigonometric (0.24215550125275, 0.61293925994241) 3.566294149196800e-007 

Brown (0.99832798989672, 1.00265604787958) 1.432915886552999e-006 

 

 

Fig-1: Performance profiles the number of function evaluations 

 

 
Fig-2: Performance profiles the number of iterations 

 

Fig1-2 show the performance of the three methods relative to the function evaluations and iterations. All the 

methods successfully solved all the problems. From the figure, we see that the new method is very much competitive 

with the other methods.  
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