Scholars Journal of Engineering and Technology (SJET)

Sch. J. Eng. Tech., 2017; 5(1):22-26 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

Research Article

Classification of All Single Travelling Wave Atom Solutions to the (2 +1)-Dimensional Nonlinear KdV System

Ye Na, Dong-yan Dai*, Ling-kun Meng

School of Science, Heilongjiang Bayi Agriculture University, Daqing 163319, China

*Corresponding author

Dong-yan Dai Email: <u>crystal_ddy@1</u>26.com

Abstract: By the polynomial complete discrimination system, we give the classification of all single travelling wave atom solutions to the (2 + 1)-dimensional nonlinear KdV system. **Keywords:** travelling wave solution; complete discrimination system; the (2 + 1)-dimensional nonlinear KdV system.

INTRODUCTION

Nonlinear partial differential equations play an important role in applied mathematics, physics and engineering. A lot of methods, such as the tanh method [1-2], the bifurcation theory and the method of phase portraits analysis [3], qualitative theory of polynomial differential system [4-5], Exp-Function method [6] and so on, have been proposed to solve these equations. Recently, Liu [7-9] introduced a simple and efficient method to give the classification of all single travelling wave atom solutions to some equations. If a nonlinear equation can be directly reduced to the integral form as follows:

$$\pm \left(\xi - \xi_0\right) = \int \frac{\mathrm{d}u}{P_n(u)} \tag{1}$$

where is $p_n(u)$ an n-th order polynomial, we can derive the classification of all solutions to the right integral in Eq.(1) using complete discrimination system for the n-th order polynomial.

In this paper, we consider the following the (2 +1)-dimensional nonlinear KdV system:

 $q_t + q_{xxx} - 3(qr)_x = 0$, (2)

$$q_x = r_y ag{3}$$

We reduce the (2 +1)-dimensional nonlinear KdV system to an integrable ODE, and furthermore use complete discrimination system for polynomial to obtain the classification of all single travelling wave atom solutions.

CLASSIFICATIONS

Taking the travelling wave transformation $q = q(\xi)$, $r = r(\xi)$, $\xi = kx + ly + \omega t$ the system is reduced to the following ordinary differential form :

k

$$\omega q' + k^3 q''' - 3k(qr)' = 0 , \qquad (4)$$

$$q' = lr'.$$
 (5)

By integrating Eq.(4) and Eq.(5) once, we have

$$\omega q + k^3 q'' - 3kqr = c_1, \tag{6}$$

$$kq = lr + c_2, \tag{7}$$

Where c_1 and c_2 are two arbitrary constants.

Available online at http://saspublisher.com/sjet/

ISSN 2321-435X (Online) ISSN 2347-9523 (Print) Moreover from Eq.(7) we can obtain

$$r = \frac{kq - c_2}{l} \,. \tag{8}$$

Substituting the expression of r into Eq.(6), we have

$$q'' = \frac{3}{kl}q^2 - (\frac{\omega}{k^3} + \frac{3c_2}{k^2l})q + c_1, \qquad (9)$$

and integrating Eq.(9) once, then it is

$$\pm (\xi - \xi_0) = \int \frac{\mathrm{d}q}{\sqrt{a_3 q^3 + a_2 q^2 + a_1 q + a_0}} , \qquad (10)$$

where
$$a_3 = \frac{2}{kl}, a_2 = -(\frac{\omega}{k^3} + \frac{3c_2}{k^2l}), a_1 = 2c_2, a_0 = c_0.$$

The corresponding integral form becomes

$$\pm (a_3)^{\frac{1}{3}} (\xi - \xi_0) = \int \frac{\mathrm{d}w}{\sqrt{w^3 + d_2 w^2 + d_1 w + d_0}},$$
(11)

where $d_2 = a_2(a_3)^{-\frac{2}{3}}$, $d_1 = a_1(a_3)^{-\frac{1}{3}}$, $d_0 = a_0$, ξ_0 is an integral constant.

Denote
$$F(w) = w^3 + d_2 w^2 + d_1 w + d_0$$
, the complete discrimination system for $F(w)$ is

$$\Delta = -27 \left(\frac{2d_2^3}{27} + d_0 - \frac{d_1 d_2}{3} \right)^2 - 4 \left(d_1 - \frac{d_2^2}{3} \right)^3, \quad D_1 = d_1 - \frac{d_2^2}{3}.$$

By the complete discrimination system for polynomial, the classifications of all the single traveling wave solutions to the integral formula (11) can be given as follows:

Case 1 : If $\Delta = 0$, $D_1 < 0$, then we have $F(w) = (w - \alpha)^2 (w - \beta)$, $\alpha \neq \beta$. The Solutions to q and r can be given by

$$q_{1} = \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left\{ (\alpha - \beta) \tanh^{2} \left[\frac{\sqrt{\alpha - \beta}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0})\right] + \beta \right\} \quad (\alpha > \beta)$$

$$(12)$$

$$r_{1} = \frac{k}{l} \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left\{ (\alpha - \beta) \tanh^{2} \left[\frac{\sqrt{\alpha - \beta}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0})\right] + \beta \right\} - \frac{c_{2}}{l} \ (\alpha > \beta)$$
(13)

$$q_{2} = \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left\{ (\alpha - \beta) \operatorname{coth}^{2} \left[\frac{\sqrt{\alpha - \beta}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0})\right] + \beta \right\} \quad (\alpha > \beta)$$
(14)

$$r_{2} = \frac{k}{l} \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left\{ (\alpha - \beta) \coth^{2}\left[\frac{\sqrt{\alpha - \beta}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0})\right] + \beta \right\} - \frac{c_{2}}{l} \quad (\alpha > \beta)$$
(15)

$$q_{3} = \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left\{ (\beta - \alpha) \tan^{2}\left[\frac{\sqrt{\beta - \alpha}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0})\right] + \beta \right\} \quad (\alpha < \beta)$$
(16)

Available online at http://saspublisher.com/sjet/

$$r_{3} = \frac{k}{l} \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left\{ (\beta - \alpha) \tan^{2} \left[\frac{\sqrt{\beta - \alpha}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0})\right] + \beta \right\} - \frac{c_{2}}{l} \quad (\alpha < \beta)$$
(17)

Case 2: If $\Delta = 0$, $D_1 = 0$, then we have $F(w) = (w - \alpha)^3$. The solutions to q and r are

$$q_{4} = \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left[\left(\frac{2}{kl}\right)^{-\frac{2}{3}} \frac{4}{\left(kx + ly + \omega t - \xi_{0}\right)^{2}} + \alpha \right] , \qquad (18)$$

$$r_{4} = \frac{k}{l} \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left[\left(\frac{2}{kl}\right)^{-\frac{2}{3}} \frac{4}{(kx+ly+\omega t - \xi_{0})^{2}} + \alpha \right] - \frac{c_{2}}{l} \quad .$$
(19)

Case 3: If $\Delta > 0$, $D_1 < 0$, then $F(w) = (w - \alpha)(w - \beta)(w - \gamma)$. Suppose $\alpha < \beta < \gamma$, when $\alpha < w < \beta$, we have the solutions to q and r

$$q_{5} = \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left[\alpha + (\beta - \alpha)\operatorname{sn}^{2} \left(\frac{\sqrt{\gamma - \alpha}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0}), k\right)\right],$$
(20)

$$r_{5} = \frac{k}{l} \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left[\alpha + (\beta - \alpha) \operatorname{sn}^{2} \left(\frac{\sqrt{\gamma - \alpha}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0}), k \right) \right] - \frac{c_{2}}{l}.$$
(21)

When $w > \gamma$, the solutions are

$$q_{6} = \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \frac{\left[-\beta \operatorname{sn}^{2} \left(\frac{\sqrt{\gamma - \alpha}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0}), k\right] + \gamma\right]}{\operatorname{cn}^{2} \left[\frac{\sqrt{\gamma - \alpha}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0}), k\right]}, \qquad (22)$$

$$r_{6} = \frac{k}{l} \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \frac{\left[-\beta \operatorname{sn}^{2} \left(\frac{\sqrt{\gamma - \alpha}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0}), k\right] + \gamma\right]}{\operatorname{cn}^{2} \left[\frac{\sqrt{\gamma - \alpha}}{2} \left(\frac{2}{kl}\right)^{\frac{1}{3}} (kx + ly + \omega t - \xi_{0}), k\right]} - \frac{c_{2}}{l}, \qquad (23)$$
here $k^{2} = \frac{\beta - \alpha}{\gamma - \alpha}.$

Case 4. If $\Delta < 0$, then we have $F(w) = (w - \alpha)(w^2 + pw + q)$, and $p^2 - 4q < 0$. when $w > \alpha$, the solutions can be given by ſ

$$q_{7} = \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \begin{cases} \alpha + \frac{2\sqrt{\alpha^{2} + p\alpha + q}}{1 + cn\left[\left(\alpha^{2} + p\alpha + q\right)^{\frac{1}{4}}\left(\frac{2}{kl}\right)^{-\frac{1}{3}}(kx + ly + \omega t - \xi_{0}), k\right]} \\ -\sqrt{\alpha^{2} + p\alpha + q} \end{cases}$$

$$(24)$$

$$k\left(2\right)^{-\frac{1}{3}} \int_{\alpha} dx = \frac{2\sqrt{\alpha^{2} + p\alpha + q}}{1 + cn\left[\left(\alpha^{2} + p\alpha + q\right)^{\frac{1}{4}}\left(\frac{2}{kl}\right)^{-\frac{1}{3}}(kx + ly + \omega t - \xi_{0}), k\right]}$$

$$r_{7} = \frac{k}{l} \left(\frac{2}{kl}\right)^{-\frac{1}{3}} \left\{ \alpha + \frac{2\sqrt{\alpha^{2} + p\alpha + q}}{1 + cn \left[(\alpha^{2} + p\alpha + q)^{\frac{1}{4}} \left(\frac{2}{kl}\right)^{-\frac{1}{3}} (kx + ly + \omega t - \xi_{0}), k \right] - \sqrt{\alpha^{2} + p\alpha + q} \right\} - \frac{c_{2}}{l}$$

$$\left. -\sqrt{\alpha^{2} + p\alpha + q} \right\} - \frac{c_{2}}{l}$$

$$\left. + ere^{-\frac{1}{2}kl} \left(1 - \frac{\alpha + \frac{p}{2}}{\sqrt{\alpha^{2} + p\alpha + q}}\right) \right\}.$$

$$(25)$$

CONCLUSION

By means of the complete discrimination system for polynomial, we obtain the classifications of all single travelling wave atom solutions to the (2 + 1)-dimensional nonlinear KdV system. The solutions are very rich.

ACKNOWLEDGEMENTS

We are grateful to the reviewers for the helpful suggestions. This work was supported by Research Fund (Grant No. 201510223045).

REFERENCES

- 1. Wazwaz AM. The tanh method for traveling wave solutions of nonlinear equations, Applied Mathematics and Computation. 2004;154(3):713-723.
- 2. Wazwaz. M. The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equations, Communications in Nonlinear Science and Numerical Simulation. 2008;13(3):584-592.
- 3. He B, Long Y, Rui W. New exact bounded travelling wave solutions for the Zhiber–Shabat equation. Nonlinear Analysis: Theory, Methods & Applications. 2009 Sep 15;71(5):1636-48.
- 4. Chen A, Huang W, Li J. Qualitative behavior and exact travelling wave solutions of the Zhiber-Shabat equation.

Journal of computational and applied mathematics. 2009 Aug 15;230(2):559-69.

- 5. Chen A, Huang W, Tang S. Bifurcations of travelling wave solutions for the Gilson–Pickering equation. Nonlinear Analysis: Real World Applications. 2009 Oct 31;10(5):2659-65.
- 6. Ganji ZZ, Ganji DD, Asgari A. Finding general and explicit solutions of high nonlinear equations by the Exp-Function method. Computers & Mathematics with Applications. 2009 Dec 31;58(11):2124-30.
- 7. Cheng-Shi L. Classification of all single travelling wave solutions to Calogero–Degasperis–Focas equation. Communications in Theoretical Physics. 2007 Oct;48(4):601.
- 8. Liu CS. Solution of ODE u00+p(u)(u0)2+q(u) = 0 and application Classifications of All Single Travelling wave Solutions to Some Nonlinear Mathematical Physics Equations, Commun. Theor. Phys. (Beijing). 2008;49:291-296.
- 9. Liu CS. New exact solutions of coupled Klein-Gordon-Schr dinger equations, Acta Physica Sinica (Beijing). 2005;54(3):1039-1043.