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Abstract: The paper considers  inner and outer join of  relation operations, as well as set-theoretical operations on 

relations. Unlike join operations in Codd’s relational algebra  the join operations under consideration are based on Kleene 

and Priest three-valued logic used in SQL, that allows to give the semantics of join operations more precisely. In 

relational algebra, any relation that does not contain tuples is represented as an empty set. It is impossible to define outer 

joins for such relations  provided we do not know what columns contain an empty relation. In the paper relations with 

schemas are introduced. That allows the operations to be defined even if one or both operands are empty relations unlike 

classical relational algebra. 
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INTRODUCTION 

Join operations play  an important role in 

relational algebra as they allow to restore complex 

objects, joining many tables. Initially Codd introduced 

set-theoretic operations on relation and relation join 

operation in his article [1]. Then relational algebra was 

extended with operations of outer join. Now there exists 

a big set of join operations. See, for example, [2-4].   

 

In [5, 6] another approach to SQL algebra was 

presented. In these works programming algebra of 

higher-order functions called operators in other 

programming languages was built for SQL. We 

describe the improved version of join operations of this 

program algebra. To avoid column name collision the 

join operators that are introduced in this article make 

renaming automatically. The relation definition was 

extended  to schemes as well. 

 

BASIC OPERATIONS ON RELATIONS 

Let us clarify relations in terms of nominative 

sets. Fix two following sets: Atr, whose elements are 

called attribute names, and Dom - a universal domain of 

primitive data. We suppose that the special element null 

belongs to  universal domain and is called an undefined 

value. Thus, we call an arbitrary finite attribute set 

      a scheme. The tuple of scheme S is called a set 

of pairs (   ) where      ,       (i.e. a set of 

pairs (attribute, value)), whose projection by the first 

component  is equal  to S. Let’s denote operation of  

tuple projection of    by first component as    ( ) and 

scheme of tuple   as  ( ). For given tuple   it is easy to 

calculate its scheme making projection by  the first 

component  ( )     ( ). Tuples  can also be defined 

as finite mapping from attribute names to universal 

domain.  

 

The relation of the scheme S is called pair 

(   ),  where   is finite set of tuples of scheme S which 

is called a relation state or state. Note, that in the most 

cases a relation scheme can be obtained from schemes 

of its tuples. But for an empty state it is impossible. The 

set of all tuples (relations) of scheme S  is denoted by 

   ( ) (respectively    ( )), and set of all tuples 

(relations) - Tup (respectively Rel). Thus    ( )  

*     ( )   +,    ( )  *(   )       ( )+, 
    ⋃    ( )     ,     ⋃    ( )         

 

The scheme may be empty  . For such scheme 

there exists exactly one tuple denoted by   and two 

states - * + and  . The tuples will be denoted by  

         , relations by –         , relation’s states by 

          , and  schemes by            
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 Two relations    and    are supposed to be 

consistent by scheme if their schemes are equal. We will 

denote such relation by      .  Similarly,:       
 (  )   (  ) is defined to be consistent by  scheme 

tuples. 

 

The binary relation of tuple compatibility 

      is defined as   (   (  )    (  )  
  ( )    ( )).  In other words, two tuples are 

compatible if their attributes with the equal names have 

equal values. Tuples without equal attribute name are 

always compatible. The binary operation  ̅     
        of the compatible tuple union is defined as 

follows:    ̅    *(   ) (   )       (   )    +. 
Its definition domain is     ̅ *(     )       
          + 

 

Along with elementary attribute names we will 

consider complex names such as      . These names 

will be used to avoid name ambiguity in tuples. Let’s 

introduce special function            that is 

parametrized by attribute name  . It is defined by 

formula   ( )  *(       ) (     )   +. This 

function will be called  the prefixation.    

 

The operation of total union of tuples 

      
             is total function 

parametrized by attribute names    and   . It is defined 

as follows:         
   *  

    
    

  (   

  )   
  (     )+  

 

For schemes the prefixation is defined as 

follows:         
      (  )     (  ), where 

  ( )  *         +  
 

We will write  ( ) to receive the value of   

 

We will say that a tuple belongs to a relation if it 

belongs to the relation’ state         (  
(   )      ).      

 

SET-THEORETIC RELATION OPERATIONS 

Let’s    be a relation (     ) and    be a relation 

(     ) where        . 

Union of relations       (       ) 

Intersection of relations       (       ) 

Difference of relations        (       ).  

 

The domain of   these operation definition is a 

set of consistent pairs of relations *(     )      +. 
The resulting relation state is calculated, respectively, 

as  theoretical-set union, intersection and the difference 

of arguments states. Obviously, the scheme of resulting 

relation coincides with input relation schemes. We can 

say that these operations are restriction of the 

theoretical-set operation on pairs of consistent relations. 

 

INNER JOIN OPERATIONS  

We define cross join operation       
 as total 

binary function of a type       
             

parametrized by attribute names   ,   ,      .  

 

Let    be relation (     ) and    be relation 

(     ). Then, cross join is defined by formula 

      
(     )  (           

  ), where    

*        
              + 

 

Natural join operation       
 or equijoin is 

total function of a type       
            . Let 

   be relation (     ) and    be relation (     ). Then, 

natural join is defined by formula       
(     )  

(           
  ), where    *        

      

              +,   
 

Next operation is join by attributes       
 of a 

type            , where   is  a set of attribute 

names and       are names such that      . This is 

partial parametric function with domain of definition 

          
  *(     )    (  )   (  )+ 

 

It is defined by formula       
 (     )  

(           
  ), where    *        

      

           ( )    ( )+ 
 

Let            be,  as generally  accepted, 

a partial binary predicate. Under join on predicate   we 

understand a partial operation       

 
of a type     

       , where   is a  predicate and        such that 

      are attribute names. Let       be domain of 

definition of a predicate  . The domain of definition of 

operation join on a predicate is          

 
 *    

(   )          +.  The operation is defined by 

formula       

 (     )  (           
  ), where 

   *            
                ( )  

    + 
 

Given above-mentioned join operation 

specification, we can see that cross-join, natural-join 

and equijoin are derived from join on predicate 

operation.  

 

Let   be always true predicate       , then 

      
(     )        

    (     ) 

 

Let   be set of attribute names (          ) 

and    and   ,       be attribute prefixes. Then, 

predicate       
  is defined as follows 

      
 ( )  {

         (     )   (     )       
                

 

 

For given relations    (     ),     
(     ) and attribute prefixes   ,    let’s designate 
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        and           
 . Then ,natural join is 

defined as        
(     )        

  (     )  

 

For given relations    (     ), and    
(     ), attribute prefixes   , and    let’s denote 

        and           
 . Then, equijoin is defined 

as follows :      

 (     )        

  (     )  

 

OUTER JOIN OPERATIONS 

All outer join operations are subordinate to 

their inner join operations and are defined by  the same 

logic scheme. We’ll describe this scheme. 

 

Let       
         ̃     be a partial 

operation on a set of relations, the inclusion 

      
(     )          

   being performed for all 

           .  Recall that the operations of inner join  

satisfy this inclusion. 

 

Suppose    (     ) and    (     ) are 

relations from domain of definition of operation       
. 

Then, relation    assumes the following breaking: 

   (        

 
  )  (        

 
  ). The intersection 

      
 

   (     ) is defined as follows:    

*            (      (        
  )  

      
(     ))+, and      . The difference 

        

 
   (       ) is defined as follows:      

*            (      (        
  )  

      
(     ))+ 

 

Without the loss of generality it can be 

assumed that the tuples from a relation         

 
   are 

used in forming join result, there being no continuation 

in join result, and the tuples from relation         

 
   

are not used, there being no continuation in join results. 

The operations of left, right and full outer join are just 

designed to consider relations-arguments tuples, that 

were not included in the results of input outer join.  But 

here the question arises how to expand the tuples to 

upperschemes, To do this, SQL uses a special element 

of universal domain     . 
 

Below by   
      we’ll define the following 

constant tuple   
       *    +. Given directly outer 

join operations are induced by an inner join operation 

      
.  This will require the following natural joins, 

where    (     ) and    (     ): 

(        

 
  )       

({   
    }   ), 

({   
    }   )       

(        

 
  ). Resulting relations 

states are calculated by expressions: 

 *        
   
                

 
  +, and 

*   
          

              

 
  + 

 

Results schemes are obtained by input relation 

schemes union         
  . 

 

Under outer left join induced by operation  , 

we understand the operation of a type        
    ̃    , where                  

,  that is 

calculated by a formula   (     )        
(     )  

(        

 
  )       

({   
    }   ). 

 

Under outer right join we consider the 

operation of a type             ̃    , where 

                 
,  that is calculated by a formula 

  (     )  

      
(     )  ({   

    }   )       
(        

 
  )  

 

Under outer full join we consider the operation 

of a type            ̃    , where        

          
, that is calculated by a formula  

  (     )  

      
(     )  (        

 
  )       

({   
    }   )  

({   
    }   )       

(        

 
  ). 

 

Under union  join we consider the operation of 

a type            ̃    , where        

          
, that is calculated by a formula 

  (     )  (        

 
  )       

({   
    }   )  

({   
    }   )       

(        

 
  ). 

 

Resulting relation schemes are still being built 

by input relation schemes union. 

 

Thus, the left join is designed to consider the 

first(left) relation tuples that do not participate in inner join, 

the right join – to consider the tuples of the second right 

relation that do not participate in inner join, full join - to 

consider for both arguments not being involved in  inner join. 

Finally, union join, unlike previous operations do not 

replenish the result of inner union and only builds  

appropriately extended tuples of both arguments that are not 

involved in  union join.  

 

JOIN OPERATION STRUCTURE 

Let us return to the inner join operation SQL. 

For cross join there is no sense in introducing outer join 

because the left, right and full joins coincide with it, and 

union join will always be an empty table (because all 

table-arguments strings are involved in forming the 

results of cross join,. Moreover, in modern SQL, 

including the latest versions, outer union join is 

supported only for natural join. Family operation 

structure of SQL-like languages is given. 

 

Note, that a preliminary design should be 

modified to consider the special element null role while 

determining  compatible tuples:  the tuples are 
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compatible if common attributes have the same values 

in tuples,  the values differing from null. 

 

The same objective can be achieved by 

considering the following clarification in three-valued 

logic.    

  

       {

                                 
                               

                           
 

 

Where all d d D
1 2
,  ; here unknown  –  

an undefined Boolean value. Then, the compatibility 

relation that already meets the three-valued predicate is 

modified as follows:       

        
  ( )     ( ), where    is a scheme of   , 

i  1 2, .  Note, that in SQL-like languages the equality 

is specified as a predicate   .  In addition, a given 

definition is the manifestation of the overall situation in 

extending predicates on     - values: predicates keep 

     values, i.e. if at least one argument is equal to 

    ,  the result is  Boolean value unknown . 

 

In the same way, functions in extending on 

    -value keep it: if, at least, one argument coincides 

with      then the result is     . Thus, the situation is 

similar to natural extension of partial functions but in 

SQL extended functions are considered as the partial 

(i.e, division). 

 

Table 1: Operation join structure 

Inner join Join operation predicate 

by predicate 

Outer join 

left right full  union 

Cross join      – – – – 

Natural  join    ( ) + + + + 

Join by attribute    ( ) + + + – 

Join on predicate  ( ) + + + – 

 

CONCLUSION 

The join operations can be considered as a 

special type of Cartesian product on the case when 

arguments are set of tuples called relations. We want 

the result of the operation to be a relation too. To 

achieve this, an operation of join must concatenate two 

tuples into new tuple. It is easy to do when names of 

tuple attributes are not intersected. Otherwise we will 

have the ambiguity of names. To avoid this the join 

operations introduced in the paper make attributes 

renaming automatically.  
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