

DOI: 10.21276/sjet

Available online at http://saspublisher.com/sjet/ 254

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online)

Sch. J. Eng. Tech., 2017; 5(6):254-257 ISSN 2347-9523 (Print)
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)

www.saspublisher.com

Join Operations in Relational Databases with Automatic Attributes Renaming
Poliakov S

1
, Buy D

1
, Mohmmed Karam

1
, Israa Jasim AL.kalafa

2

1
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

2
Ministry of Science and technology, Ukraine

*Corresponding author

Poliakov S

Email: sergey.a.polyakov@gmail.com

Abstract: The paper considers inner and outer join of relation operations, as well as set-theoretical operations on

relations. Unlike join operations in Codd’s relational algebra the join operations under consideration are based on Kleene

and Priest three-valued logic used in SQL, that allows to give the semantics of join operations more precisely. In

relational algebra, any relation that does not contain tuples is represented as an empty set. It is impossible to define outer

joins for such relations provided we do not know what columns contain an empty relation. In the paper relations with

schemas are introduced. That allows the operations to be defined even if one or both operands are empty relations unlike

classical relational algebra.

Keywords: relational algebra, relational databases, program theory, programming language semantics, SQL, table join

operations.

INTRODUCTION

Join operations play an important role in

relational algebra as they allow to restore complex

objects, joining many tables. Initially Codd introduced

set-theoretic operations on relation and relation join

operation in his article [1]. Then relational algebra was

extended with operations of outer join. Now there exists

a big set of join operations. See, for example, [2-4].

In [5, 6] another approach to SQL algebra was

presented. In these works programming algebra of

higher-order functions called operators in other

programming languages was built for SQL. We

describe the improved version of join operations of this

program algebra. To avoid column name collision the

join operators that are introduced in this article make

renaming automatically. The relation definition was

extended to schemes as well.

BASIC OPERATIONS ON RELATIONS

Let us clarify relations in terms of nominative

sets. Fix two following sets: Atr, whose elements are

called attribute names, and Dom - a universal domain of

primitive data. We suppose that the special element null

belongs to universal domain and is called an undefined

value. Thus, we call an arbitrary finite attribute set

 a scheme. The tuple of scheme S is called a set

of pairs () where , (i.e. a set of

pairs (attribute, value)), whose projection by the first

component is equal to S. Let’s denote operation of

tuple projection of by first component as () and

scheme of tuple as (). For given tuple it is easy to

calculate its scheme making projection by the first

component () (). Tuples can also be defined

as finite mapping from attribute names to universal

domain.

The relation of the scheme S is called pair

(), where is finite set of tuples of scheme S which

is called a relation state or state. Note, that in the most

cases a relation scheme can be obtained from schemes

of its tuples. But for an empty state it is impossible. The

set of all tuples (relations) of scheme S is denoted by

 () (respectively ()), and set of all tuples

(relations) - Tup (respectively Rel). Thus ()

* () +, () *() ()+,
 ⋃ () , ⋃ ()

The scheme may be empty . For such scheme

there exists exactly one tuple denoted by and two

states - * + and . The tuples will be denoted by

 , relations by – , relation’s states by

 , and schemes by

Research Article

http://saspublisher.com/sjet/
http://www.saspublisher.com/
mailto:sergey.a.polyakov@gmail.com

Poliakov S et al., Sch. J. Eng. Tech., Jun 2017; 5(6):254-257

Available online at http://saspublisher.com/sjet/ 255

 Two relations and are supposed to be

consistent by scheme if their schemes are equal. We will

denote such relation by . Similarly,:
 () () is defined to be consistent by scheme

tuples.

The binary relation of tuple compatibility

 is defined as (() ()
 () ()). In other words, two tuples are

compatible if their attributes with the equal names have

equal values. Tuples without equal attribute name are

always compatible. The binary operation ̅
 of the compatible tuple union is defined as

follows: ̅ *() () () +.
Its definition domain is ̅ *()
 +

Along with elementary attribute names we will

consider complex names such as . These names

will be used to avoid name ambiguity in tuples. Let’s

introduce special function that is

parametrized by attribute name . It is defined by

formula () *() () +. This

function will be called the prefixation.

The operation of total union of tuples

 is total function

parametrized by attribute names and . It is defined

as follows:
 *

 (

)
 ()+

For schemes the prefixation is defined as

follows:
 () (), where

 () * +

We will write () to receive the value of

We will say that a tuple belongs to a relation if it

belongs to the relation’ state (
()).

SET-THEORETIC RELATION OPERATIONS

Let’s be a relation () and be a relation

() where .

Union of relations ()

Intersection of relations ()

Difference of relations ().

The domain of these operation definition is a

set of consistent pairs of relations *() +.
The resulting relation state is calculated, respectively,

as theoretical-set union, intersection and the difference

of arguments states. Obviously, the scheme of resulting

relation coincides with input relation schemes. We can

say that these operations are restriction of the

theoretical-set operation on pairs of consistent relations.

INNER JOIN OPERATIONS

We define cross join operation
 as total

binary function of a type

parametrized by attribute names , , .

Let be relation () and be relation

(). Then, cross join is defined by formula

() (

), where

*
 +

Natural join operation
 or equijoin is

total function of a type
 . Let

 be relation () and be relation (). Then,

natural join is defined by formula
()

(
), where *

 +,

Next operation is join by attributes
 of a

type , where is a set of attribute

names and are names such that . This is

partial parametric function with domain of definition

 *() () ()+

It is defined by formula
 ()

(
), where *

 () ()+

Let be, as generally accepted,

a partial binary predicate. Under join on predicate we

understand a partial operation

of a type

 , where is a predicate and such that

 are attribute names. Let be domain of

definition of a predicate . The domain of definition of

operation join on a predicate is

 *

() +. The operation is defined by

formula

 () (
), where

 *
 ()

 +

Given above-mentioned join operation

specification, we can see that cross-join, natural-join

and equijoin are derived from join on predicate

operation.

Let be always true predicate , then

()

 ()

Let be set of attribute names ()

and and , be attribute prefixes. Then,

predicate
 is defined as follows

 () {

 () ()

For given relations (),
() and attribute prefixes , let’s designate

http://saspublisher.com/sjet/

Poliakov S et al., Sch. J. Eng. Tech., Jun 2017; 5(6):254-257

Available online at http://saspublisher.com/sjet/ 256

 and
 . Then ,natural join is

defined as
()

 ()

For given relations (), and
(), attribute prefixes , and let’s denote

 and
 . Then, equijoin is defined

as follows :

 ()

 ()

OUTER JOIN OPERATIONS

All outer join operations are subordinate to

their inner join operations and are defined by the same

logic scheme. We’ll describe this scheme.

Let
 ̃ be a partial

operation on a set of relations, the inclusion

()

 being performed for all

 . Recall that the operations of inner join

satisfy this inclusion.

Suppose () and () are

relations from domain of definition of operation
.

Then, relation assumes the following breaking:

 (

) (

). The intersection

 () is defined as follows:

* ((
)

())+, and . The difference

 () is defined as follows:

* ((
)

())+

Without the loss of generality it can be

assumed that the tuples from a relation

 are

used in forming join result, there being no continuation

in join result, and the tuples from relation

are not used, there being no continuation in join results.

The operations of left, right and full outer join are just

designed to consider relations-arguments tuples, that

were not included in the results of input outer join. But

here the question arises how to expand the tuples to

upperschemes, To do this, SQL uses a special element

of universal domain .

Below by
 we’ll define the following

constant tuple
 * +. Given directly outer

join operations are induced by an inner join operation

. This will require the following natural joins,

where () and ():

(

)

({
 }),

({
 })

(

). Resulting relations

states are calculated by expressions:

 *

 +, and

*

 +

Results schemes are obtained by input relation

schemes union
 .

Under outer left join induced by operation ,

we understand the operation of a type
 ̃ , where

, that is

calculated by a formula ()
()

(

)

({
 }).

Under outer right join we consider the

operation of a type ̃ , where

, that is calculated by a formula

 ()

() ({

 })
(

)

Under outer full join we consider the operation

of a type ̃ , where

, that is calculated by a formula

 ()

() (

)

({
 })

({
 })

(

).

Under union join we consider the operation of

a type ̃ , where

, that is calculated by a formula

 () (

)

({
 })

({
 })

(

).

Resulting relation schemes are still being built

by input relation schemes union.

Thus, the left join is designed to consider the

first(left) relation tuples that do not participate in inner join,

the right join – to consider the tuples of the second right

relation that do not participate in inner join, full join - to

consider for both arguments not being involved in inner join.

Finally, union join, unlike previous operations do not

replenish the result of inner union and only builds

appropriately extended tuples of both arguments that are not

involved in union join.

JOIN OPERATION STRUCTURE

Let us return to the inner join operation SQL.

For cross join there is no sense in introducing outer join

because the left, right and full joins coincide with it, and

union join will always be an empty table (because all

table-arguments strings are involved in forming the

results of cross join,. Moreover, in modern SQL,

including the latest versions, outer union join is

supported only for natural join. Family operation

structure of SQL-like languages is given.

Note, that a preliminary design should be

modified to consider the special element null role while

determining compatible tuples: the tuples are

http://saspublisher.com/sjet/

Poliakov S et al., Sch. J. Eng. Tech., Jun 2017; 5(6):254-257

Available online at http://saspublisher.com/sjet/ 257

compatible if common attributes have the same values

in tuples, the values differing from null.

The same objective can be achieved by

considering the following clarification in three-valued

logic.

 {

Where all d d D
1 2
,  ; here unknown –

an undefined Boolean value. Then, the compatibility

relation that already meets the three-valued predicate is

modified as follows:

 () (), where is a scheme of ,

i  1 2, . Note, that in SQL-like languages the equality

is specified as a predicate . In addition, a given

definition is the manifestation of the overall situation in

extending predicates on - values: predicates keep

 values, i.e. if at least one argument is equal to

 , the result is Boolean value unknown .

In the same way, functions in extending on

 -value keep it: if, at least, one argument coincides

with then the result is . Thus, the situation is

similar to natural extension of partial functions but in

SQL extended functions are considered as the partial

(i.e, division).

Table 1: Operation join structure

Inner join Join operation predicate

by predicate

Outer join

left right full union

Cross join – – – –

Natural join () + + + +

Join by attribute () + + + –

Join on predicate () + + + –

CONCLUSION

The join operations can be considered as a

special type of Cartesian product on the case when

arguments are set of tuples called relations. We want

the result of the operation to be a relation too. To

achieve this, an operation of join must concatenate two

tuples into new tuple. It is easy to do when names of

tuple attributes are not intersected. Otherwise we will

have the ambiguity of names. To avoid this the join

operations introduced in the paper make attributes

renaming automatically.

REFERENCES

1. Codd EF. A Relational Model of Data for Large

Shared Data Banks. Communications of the ACM.

1970; 13 (6): 377–387.

2. Maier D. The Theory of Relational Databases.

Computer Press, Rockville, Md., 1983.

3. Date CJ. SQL and Relational Theory. O’Reilly

Media, Inc.,, 3
rd

 edition, 2015.

4. Garcia-Molina H, Ullman JD, Widom J. Database

Systems. Pearson Education Inc., 2
nd

 edition, 2009.

5. Brona J, Buy D, Zagorsky S, Poliakov S.

Compositional Semantisc of SQL. Proc. of the

Fourth International Scientific Conference.

Electronic Computers and Informations’2000.

Kosice. 2000; 287-292.

6. Редько ВН, Брона ЮЙ, Буй ДБ, Поляков СА.

Реляційні бази даних: табличні алгебри та SQL-

подібні мови. Київ: Видавничий дім

"Академперіодика"; 2001.

http://saspublisher.com/sjet/

