

Available online at http://saspublisher.com/sjet/ 508

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online)

Sch. J. Eng. Tech., 2017; 5(9):508-512 ISSN 2347-9523 (Print)
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)

www.saspublisher.com

Time Based Random Encryption for Inter apps Communication in Enterprise

Mobile Application
M.M.F. Naja

1
, M.I.I. Mohamed

2

1
Department of Information and Communication Technology, South Eastern University of Sri Lanka

Oluvil, Sri Lanka
2
IFS R&D Private Limited, Colombo 06, Sri Lamka

*Corresponding author

M.I.I. Mohamed

Article History

Received: 03.09.2017

Accepted: 09.09.2017

Published: 30.09.2017

DOI:

10.21276/sjet.2017.5.9.10

Abstract: The penetration of smartphones within enterprises is rapidly increasing, so as

the usage of it. Nowadays, Android applications are used widely in enterprise software to

support their system. Software systems like SAP and IFS has their own mobile apps as a

part of their software solutions, especially in field service domain. These enterprise mobile

applications are not usually one single application. Rather it might be several apps that are

inter related and communicate with each other. A number of ways are available which aids

inter application communication. One way of such inter app communication is using

"intents". Intents are simple message objects that are used to communicate from one

activity to another. Intents could be also defined as the intention of an application.

Although the intents are used in inter apps communication, the problem with intents is that

they are not secure. Even Android Operating System doesn’t claim that these intents are

secure. Therefore our research aims at finding how intents messages could be encrypted

for enterprise systems considering high security, light weight ness and fast processing such

that it would not be easy to crack. Throughout this research we are proposing a new

algorithm called Time Based Random Encryption Key algorithm which would be a most

efficient encryption algorithm for the inter apps communication in Enterprise Mobile

Apps.

Keywords: android security, intent message passing, enterprise application inter

communication

INTRODUCTION

Enterprise mobile security is one of the topics

with prime importance in today's industry. Due to the

technical advancements in mobile industry, it has

resulted in the increasing of security threats and attacks.

Usually Enterprise Applications use several

apps on smartphone devices that work together to

achieve a single call. For example, think about an

enterprise application for stock management, which was

implemented to scan barcodes and send the data to the

online service, but on the other hand the same data can

be processed by another application in the device which

was developed by the same vendor [1].

Above mentioned implementation is a best

practice when it comes to ‘Component Based’

development that will give least coupling and strong

cohesion. So, both apps are not depending on each

other, both of them were implemented to do their own

functionality but still both are inter-operable [2].

Android Operation system provides such

possibility through a concept called Broadcast

receivers, which allows an application to respond to

messages which is an Android Intent that is broadcasted

by either Android OS of any other app. So, as we

mentioned above, an application can listen to a message

intent) which is totally not related to it. This is a well-

known approach in Android development.

Problem in this approach is, these messages

are listenable by any other application, and thus there is

a risk of security breach when it comes to Enterprise

level applications. Also these messages can be

manipulated by other processes in a man in the middle

manner [3].

For example, think of app A and app B from

an enterprise software vendor where app A broadcasts

an intent which is received and processed by app B,

also it does mean any other apps, know the intent action

from app A can receive the message and alter it and

broadcast it back to the system with the same intent

action identification, later app B will receive the

manipulated message and start processing it. Knowing

intent action is a very simple procedure, it’s all about

get the .apk file and reverse engineer it.

http://saspublisher.com/sjet/
http://www.saspublisher.com/

Naja MMF & Mohamed MMI ., Sch. J. Eng. Tech., Sep 2017; 5(9):508-512

Available online at http://saspublisher.com/sjet/ 509

In this research paper, we are going to discuss

our finding based on our research work on intent

message encryption. Usually encryption and decryption

is an overhead but when it comes to traditional

enterprise applications we can eliminate the overhead

time. Since IoT is emerging with Big data and real-time

processing, huge amount of data encryption/decryption

will also make the entire system meaningless, since we

need data to be processed on time. So we will be

discussing on how this encryption and decryption can

be done very strongly and also with less time overhead.

INTER APPLICATION COMMUNICATION IN

ANDROID

A. Intents

Android provides a sophisticated message

passing system, in which Intents are used to link

applications [2]. Intent is a message that declares a

recipient and optionally includes data; An Intent can be

thought of as a standalone object that specifies a remote

procedure to invoke and includes the associated

arguments. The applications use Intentions for both

communication between applications and for intra-

application communication. In addition, the operating

system sends Intents to applications as event

notifications. Some of these event notifications are

system-wide events that can only be sent by the

operating system. We call these messages the attempts

to spread the system. Attempts can be used for explicit

or implicit communication. An explicit intent specifies

that it must be delivered to a specific application

specified by the attempt, while an implicit attempt

requests delivery to any application that supports a

desired operation. In other words, an explicit attempt

identifies the recipient by its name, while an implicit

attempt leaves it to the Android platform to determine

which application (s) should receive the attempt. For

example, consider an application that stores contact

information. When the user clicks on the address of a

contact, the contacts application must ask another

application to display a map of that location. To do this,

the contacts application could send an explicit attempt

directly to Google Maps or send an implicit attempt to

be delivered to any application that indicates that it

provides mapping functionality [4] (for example,

Yahoo! Maps or Bing Maps). The use of an explicit

intent ensures that the intent is delivered to the intended

recipient, while the implicit attempts allow late-

execution binding between different applications.

B. Android Components

Intents are delivered to the building blocks of

logical application which are said to be the components

of Android. There are four types of components which

are defined by Android.

Fig-1: Android Components

Activity provides an interface for users to

interact with the application and perform an action (for

example: Login to a website). The different screens /

windows of an application are the different activities.

Usually, an application has multiple activities.

Activities are like pages on a website. For example, in a

Facebook application, the login screen is an activity and

the news of your friends after logging in will be

different.

A service is a component that runs in the

background to perform long-term operations or to

perform jobs in remote processes. A service does not

provide a user interface. For example, a service can

http://saspublisher.com/sjet/

Naja MMF & Mohamed MMI ., Sch. J. Eng. Tech., Sep 2017; 5(9):508-512

Available online at http://saspublisher.com/sjet/ 510

play music in the background while the user is in a

different application or can get data through the

network without blocking user interaction with an

activity. Another component, as an activity, can start

the service and let it run or link with it to interact with

it.

A service is implemented as a subclass of

Service and you can obtain more information about it in

the Services Developers Guide [5].

A content provider manages a shared set of

application data. You can store the data in the file

system, in a SQLite database, on the Web, or in any

other permanent storage location that your application

can access. Through the content provider, other

applications can query or even modify the data (if the

content provider allows it). For example, the Android

system provides a content provider that manages the

contact information of the user. Therefore, any

application that has the appropriate permissions can

query a part of the content provider (such as

ContactsContract.Data) to read and write information

about a particular person.

Content providers are also useful for reading

and writing private data for your application and not

shared. For example, the sample application Note Pad

uses a content provider to save notes [6].

A content provider is implemented as a

ContentProvider subclass and must implement a

standard set of APIs that allow other applications to

perform transactions

A broadcast receiver is a component that

responds to system-wide broadcast prompts. Many

programs come from the system - for example, a

program that announces that the screen is off, the

battery is empty, or a picture has been taken.

Applications can also trigger broadcasts - for example,

to allow other applications to know that some data has

been downloaded to and available for the device.

Although broadcast receivers do not display a user

interface, they can create a status bar notification to

notify the user when a broadcast event occurs. More

frequently, however, a radio receiver is only a "gate" to

other components and is said to perform a very small

amount of work [4]. For example, it could initiate a

service to performsome work based on the event.

METHODOLOGY

Usually intents are broadcasted via the following call.

// Create the text message with a string

Intent sendIntent = new Intent();

sendIntent.setAction(“com.ApplicationPackage.TEST”)

;

sendIntent.putExtra(“companyId”, “199898”);

sendIntent.setType("text/plain");

Above code was implemented to broadcast a

text with value 199898 to the system and could be

received by a broadcast received with intent filter

“com.ApplicationPackage.TEST”.

Now our approach is to encrypt the message using a key

that is generated in parallel to the time.

A. Encryption

Intents are not encrypted from Android

system; they are readable by the Android OS itself or

other applications. So our first goal is to encrypt the

message that is being passed via the intent. Our

encryption algorithm is based on four steps:

1) Get a token

a. If login supported system – Get a token from

login mechanism

b. If non-login system – Get any data from the

device and tokenize it.

2) Encrypt the token obtained in Step (1) against

current timestamp and get the Encrypted token.

3) Encrypt the intent communication message against

the encrypted token obtained in Step (2).

4) Broadcast the Intent with the encrypted message

obtained in Step (3).

Thus, the encryption token, which will be

calculated in Step (2) of the algorithm dependents on

two factors.

1. Current time stamp.

2. A unique token specific to user.

When it comes to timestamp, we can use

Epoch timestamp of Unix systems, which is a string

with 10 chars. Using a timestamp that supports

milliseconds can be potentially make this system fail

due to delays in the intent communication. If the

message failed to be received in a given time, it will

become useless.

The token can be calculated form the login

mechanism. Login mechanisms like OAuth and Active

Directory provide a user specific token which can be

stored and usually being stored in AppSettings.

However, if system does not provide login

functionality, even though they are less secure, this

methodology could be applied via any static string that

is shared among the packages from the application

vendor. In this case, the token needs to be a package

specific one and we should not use device specific

http://saspublisher.com/sjet/

Naja MMF & Mohamed MMI ., Sch. J. Eng. Tech., Sep 2017; 5(9):508-512

Available online at http://saspublisher.com/sjet/ 511

tokens such as IMEI, MAC address, etc. Because, it

could be determined by attackers very easily.

Encryption can be done with the following

formula where the user token is the text to be encrypted

against the timestamp key. Any existing encryption

methodology can be used for the process.

EnceryptedTokenPerTime = Encrypt (user token,

timestamp)

Now the message should be encrypted that is being

broadcasted with the generated encrypted key.

EncryptedMessage=Encrypt(Message,EnceryptedToken

PerTime)

So the encrypted message will give you digests per

time. Now the message could be broadcasted.

B. Decryption

Form the listener app B, again

EncryptedToken needs to be generated. This will be

same as the EncryptedToken by app A since user token

is same and can be generated in same time. Now the

message could be decrypted using,

Message = Decrypt (EncryptedMessage,

EnceryptedTokenPerTime)

It is a must to use same encryption methodology in the

entire process. Also it has to be a symmetric one.

C. Gaining performance in the Encryption and

Decryption process

Since this the research work is targeting

towards enterprise applications with real-time message

passing it is really important to consider the encryption

time overhead as well. Also we have notice that the

length of encryption keys contributes to the time.

Since the key to obtain

EncryptedTokenPerTime is fixed to 10 char size, we

have experimented using AES encryption and found the

below time taken to compute the algorithm against

varying length of user tokens. The device used in this

experiment featured is OnePlus 3 which has

Snapdragon 820.

Table 1: Time Takento Compute Encrypted User Token Changes Against User Token String Length

User Token Size Time taken in milliseconds

8 0.0678

9 0.0686

10 0.0694

11 0.0702

12 0.0711

13 0.0718

14 0.0726

15 0.0735

16 0.0742

17 0.0751

18 0.0757

Fig-2: A graph showing how Time taken to compute Encrypted User Token changes against User Token string

length

http://saspublisher.com/sjet/

Naja MMF & Mohamed MMI ., Sch. J. Eng. Tech., Sep 2017; 5(9):508-512

Available online at http://saspublisher.com/sjet/ 512

This chart shows us clearly that the time is

growing uniformly against the length of token size.

Also since we need to consider the time to encrypt the

intent message which will be larger, we need to choose

an optimal token size.

We need to maintain the balance between

secure system and a system that can perform both

encryption and decryption with in one second. Thus, we

can choose 10 as the optimal char size for the user

token. So we will get an encrypted token with char size

of 24.

D. Avoid mal-formed messages

Our algorithm provides an encrypted digest

that is valid only for one second. So the communication

needed to be initiated, processed and completed before

a new second is initiated from the system.

Fig-3: Timeline of the process, showing when process is being initiated and completed with the indication of new

second

In Fig2, the process initiation is denoted with

blue bar and the completion of entire process

(encryption, decryption and successful intent receive

event) is denoted by red bar, while the green bar

indicated the new second. The decryption has to be

done before the new second is initiated, else, the intent

communication will give a mal-formed message, which

is not meaningful.

To avoid this, the intent communication needs

to be initiated at the beginning of a given second [5]. So

the thread needs to wait until it hits the beginning of a

new second. Following code snippet can be used for

this purpose.

longwaitTime = 1000-System.currentTimeMillis() %

1000;

newjava.util.Timer().schedule(

newjava.util.TimerTask() {

@Override

public void run() {

// Call the Intent.

}

},

waitTime

);

CONCLUSIONS

The emergence of mobile applications in

enterprise has increased a lot during the past years.

Normally, these types of enterprise mobile applications

are a collective number of applications that

communicate with each other and sometimes depend on

each other. A very common issue in the inter

application communication is the security problems that

arise during intents message passing, which is one

mode of inter application communication. Due to this

reason, the message passing mode needs to be much

secure since sensitive data are transmitted during the

inter application communication in mobile enterprise

applications. This could be achieved by implementing

encryption techniques during message passing.

Therefore, for this purpose, we are proposing a time

based encryption algorithm which could ensure secure

inter application communication. Since this the research

work is targeting towards enterprise applications with

real-time message passing it is really important to

consider the encryption time overhead as well. Also we

have notice that the length of encryption keys

contributes to the time.

REFERENCES

1. Chen H, Pan L. Android Application Visual Safety

Analysis Based On Component Relations,

International Journal of Computer Science and

Artificial Intelligence. 2015; 5(1): 26-32.

2. Zhang M. Identifying and Analyzing Security

Risks in Android Application Components,

International Journal of Security and Its

Applications 2016; 10(9): 165-174.

3. Komninos N, Vergados D, Douligeris C.

Authentication in a layered security approach for

mobile ad hoc networks, Computers & Security.

2007; 26(5): 373-380.

4. Liu Z, Han D. Dynamic Encryption Algorithm

Based on Rijndael, Advanced Materials Research.

2012; 490-495; 339-342.

5. Jo M, Shin J. Study on Security Vulnerabilities of

Implicit Intents in Android, Journal of the Korea

Institute of Information Security and Cryptology.

2014; 24(6): 1175-1184.

6. Zhang M. Identifying and Analyzing Security

Risks in Android Application Components,

International Journal of Security and Its

Applications. 2016; 10(9): 165-174.

http://saspublisher.com/sjet/

