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Abstract  Review Article 
 

The Hochschild cohomology of associative algebra is closely related to its algebraic structure. According to the 

characteristics of double modules in directed tree-path algebra and Hochschild's theory, the Hochschild cohomology 

groups of some finite dimensional algebras have been studied deeply. In this paper, we calculate the Hochschild 

cohomology groups of a directed tree-path algebra with and without branches. 
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INTRODUCTION 
The homology group theory of associative algebra is very rich [1, 2], before the homology group theory of 

associative algebra was defined, people only studied some special theories of derivatives and extensions. Since 

Hochschild proposed the Hochschild group theory of finite dimensional associative algebra in 1945, it becomes a 

meaningful subject to use the Hochschild group theory to study finite dimensional algebra [3-5]. The low order 

Hochschild cohomology groups are closely related to the algebraic structure. Therefore, the calculation of Hochschild 

cohomology groups of various algebras is of great significance in algebraic representation theory. This paper mainly 

studies a class of Hochschild cohomology groups of directed tree-path algebra. 

 

Preparative knowledge 

Definition 1 [6]
 
Assume CBAAi ,,, are R modules, Ii , then the following R modules are isomorphic: 
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Definition 2 [7]
 
Assume k is a domain, Q  is a directed graph, kQA   is a   vector space based on the path of Q . 

For mp  1  and nq  1 , define multiplication: 










)()(,0

)()(,11

qspt

qspt
pq

nm  
 

 

In this case, kQA   is an   algebra, we called it path algebra of Q, path algebra for short. 
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Definition 3
 
[8] Assume A is a finite dimensional   algebra, M  is a finite dimensional -- AA  bimodule.

))(,( ZidCC ii   
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Is called Hochschild complex, where 0iC , 0id , 0i , MC 0
, ),(Hom MAC i

k

i  , 0i . 

iA
 Represents that A makes i-th tensor product with itself on the field k. 
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With ),(Hom MAf i

k

 . Denote ZidKerdCHMAH iiii   ,Im/)(),( 1
, it is called the i-th 

Hochschild cohomology group of the coefficient of A in M . 

 

In particular, when we take AM  , ),()( AAHAH ii   is called the i-th Hochschild cohomology group of algebra A. 

 

The Hochschild Cohomology Group of a Directed Tree-path Algebras without branches 

Proposition 2.1 Assume D is a finite dimensional directed tree graph without branches, },{ 100 eeD  is a Vertex set, 

}{ 11 aD  is a set of directed edges with length 1, C  is a Path algebra of D over K , then KKCH )(0
,

0)(1 CH . 

 

Proof According to the known conditions, the directed tree graph is 10
1 ee a . 

For 1Kerdx , 0)(1 xd . Assume 131201 aKeKeKx  , we have 

0)()()()()( 1031312011312011  eeKaKeKeKaKeKeKd , 

 

Therefore 03 K , so 1201 eKeKx  , Hence  

KKCH )(0
. 

 

In the following, we calculate )(1 CH . 

For )( 2dKerx , 0)(2 xd . Let 102101 eeKaeKx  , according to iii eea  1)( , 0 ie , we 

can derive that 

xIIxd )()(2   
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Therefore 031  KK , so 122102 Im)()( daKeeKx  , Hence 12 ImdKerd  . And because 012 dd , 

we can obtain 21Im Kerdd  , so 12 ImdKerd  , hence 0)(1 CH . 

 

Proposition 2.2 Assume D is a finite dimensional directed tree graph without branches， },,{ 2100 eeeD   is a Vertex 

set, },{ 211 aaD   is a set of directed edges with length 1, C  is a Path algebra of D over K , then 

KKKCH )(0
, 0)(1 CH . 

 

 

 

Proof According to the known conditions, the directed tree graph is 210
21 eee aa  . 
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                For
1Kerdx , 0)(1 xd . Let 2162514231201 aaKaKaKeKeKeKx  , we have 

)()()()()()()()( 21625142312011 aaKaKaKeKeKeKxxd   

 0)()()( 20216215104  aeeaKeeKeeK , 

Then 0654  KKK , therefore 231201 eKeKeKx  , hence KKKCH )(0
. 

 

In the following, we calculate )(1 CH . 

        For )( 2dKerx , let 

)()()()()( 115204203102101 eaKeeKaeKeeKaeKx   

)()()()()( 2210219218217216 eaKeeKaeKeaKaaK  , 

 

According to 0)()(2  xIIxd , we obtain 

01086541  KKKKKK , 73 KK  , 92 , KK are free variables. 

 

Then we have 

12912213

21910221203

Im)()()(
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eeKeeKeaaeKx
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
 

Therefor 12 ImdKerd  . And because 012 dd , thus 21Im Kerdd  , we derive that 12 ImdKerd  , hence

0)(1 CH . 

 

Proposition 2.3 Assume D is a finite dimensional directed tree graph without branches, },,,,{ 2100 neeeeD   is a 

Vertex set, },,,{ 21 naaaD   is a set of directed edges with length 1, C  is a Path algebra of D over K ,then  

  

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0 )(


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Proof By n
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321  , we structure complex 

1321   ndddd CCCCCCC n . 

For 1Kerdx , let 
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By 0)()(  xxd , we obtain ),,2,1(0 nili  , )(0  Niti , thus 

nn eKeKeKx 11201    
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In the following, we prove 0)(1 CH . 

For )( 2dKerx , we have 0)(2 xd . Because 
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Therefore 
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We obtain 12 ImdKerd  , and because 012 dd , so 21Im Kerdd  , hence 0)(1 CH . 
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The Hochschild Cohomology Group of a Directed Tree-path Algebras with branches 

Proposition 3.1 Assume D is a finite dimensional directed tree graph with branches, },,,{ 32100 eeeeD   is a Vertex 

set, },,{ 3211 aaaD   is a set of directed edges with length 1, C  is a Path algebra of D over K , then 

KKKCH )(0
, 0)(1 CH . 

 

Proof According to the known conditions, the directed tree graph is  

 

Let )( 1dKerx , then 0)(1 xd . Assume 

31921837261534231201 aaKaaKaKaKaKeKeKeKeKx   

 

According to  

0)()()()()()()( 3192183726151  aaKaaKaKaKaKxxd  

We obtain 098765  KKKKK , so 34231201 eKeKeKeKx  , hence we derive that 

KKKCH )(0
. 

 

In the following, we calculate )(1 CH . 

For )( 2dKerx , we have 0)(2 xd . 
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)()()()()( 2210219218217216 eaKeeKaeKeaKaaK   

By 0)()(2  xIIxd , we obtain 1511 KK  , 73 KK  ， 1792 ,, KKK  are free variables, the others are 

both zero. Then 

)()(

)()()(
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eeKeaaeK
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
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Thus we obtain 12 ImdKerd  , and because 012 dd , so 21Im Kerdd  , hence 0)(1 CH . 

 

Proposition 3.2 Assume D is a finite dimensional directed tree graph with branches, },,,{ 100 neeeD   is a Vertex 

set, },,,{ 211 naaaD   is a set of directed edges with length 1, C  is a Path algebra of D over K ,then

  


个1

0 )(





n

KKKCH , 0)(1 CH . 

 

Proof Firstly we calculate )(0 CH . 

For 1Kerdx , let iniilnn aaaKeKeKeKx  2111201   , by 0)(  x , we obtain 0lK . 

 

Thus 

nn eKeKeKx 11201     

So
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n
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In the following, we calculate )(1 CH . 

For )( 2dKerx , we have 0)(2 xd . let 

)()()(
333222111 tjitjitji eeKeaKaeKx    
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By computing 

0))(())((

)()(

111222

2





 tjitji aeKeaK

xIIxd
 

We obtain 1321 Im)( daaaaLx n   , therefor
12 ImdKerd  . And because 012 dd , we have

21Im Kerdd  , hence 0)(1 CH . 

 

CONCLUSIONS 
In this paper, the Hochschild cohomology groups of a directed tree-path algebra with and without branches are 

calculated separately. We conclude that the zero-order Hochschild Homology results of directed tree-path algebra are not 

related to branches, but are related to the vertex set 0D of the directed graph. Simultaneously we derive that the First 

Cohomology Group is trivial. 
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