Scholars Academic Journal of Biosciences

Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Journal homepage: <u>https://saspublishers.com</u> OPEN ACCESS

Original Research Article

Evaluation of Yield Performance and Molecular Diversity in F₂ Population of Soybean, *Glycine Max*, (L.) Merrill Genotypes

Adewusi, O. F^{1*}

¹Department of Biotechnology, Federal University of Technology, Akure, Ondo – State, Nigeria

DOI: <u>10.36347/sajb.2021.v09i05.003</u>

| Received: 21.03.2021 | Accepted: 28.04.2021 | Published: 30.05.2021

*Corresponding author: Adewusi, O. F

Abstract

This study was carried out on the evaluation of yield performance and molecular diversity in F_2 population of soybean genotypes using SNP markers. The aim of the study was to assess the growth performance of the F_2 soybean population and to also assess the genetic diversity among the soybean genotypes based on SNP markers with a view of devising a breeding strategy for selection for further improvement. The field experiment was laid out in a randomized complete block design with three replications. The result showed that mean square due to genotypes were highly significant for all the characters except number of branches per plant. Genotypes and year of planting interacted significantly (P \leq 0.05 and P \leq 0.01) for plant height at flowering, plant height at harvesting, number of pods, total pod weight and seed yield. The genotypes recorded higher mean values of all the characters in the second year than the first year indicating that variation in environmental conditions influenced the performance of the genotypes. At the molecular level, SNP markers were used to assess the extent of polymorphism among the F_2 populations and the markers showed remarkable genetic diversity among the soybean genotypes.

Keywords: Yield performance, molecular diversity, soybean genotypes, SNP markers.

Copyright © 2021 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Soybean, Glycine max (L.) Merrill belongs to the family Fabaceae [1]. It is the most important leguminous seed crop among the oil crop plants, which accounted for 56% of global oil production in the international market in 2011 [2]. In the international trade markets, it is ranked number one in world oil production among the major crops such as cotton seed, peanut, sunflower seed, rape seed, coconut and palm kernel. Presently, soybean is a world crop, cultivated widely in the United States of America, Brazil, Argentina, China and India [3]. Soybean, grown primarily for the production of seed, has several uses in the food and industrial sectors, it represents one of the major sources of edible vegetable oil and proteins for livestock feed [4]. Among the grain legumes, soybean currently ranks third after groundnut and cowpea in terms of production and utilization [5]. Soybean seed contains about 38.50 - 45.80 % protein, 15.84 - 30.00 % carbohydrate and 17.40 - 24.00% oil [6]. It is also rich in minerals particularly calcium, phosphorus, iron and vitamins (thiamin, riboflavin and niacin) [7]. Currently, it is used in preparing weaning foods for infants to prevent kwashiorkor (protein malnutrition) in children [8]. It is used to fortify various traditional foods such as gari, stew, sauces, banku, and kenkey to improve their

nutritional levels without changing their taste or cooking time [9]. Consumption of foods containing soybean and soybean constituents has been associated with reduced heart disease risk factors, reduced osteoporosis, alleviation of menopausal symptoms, reduced cancer risk and reduced diabetes. Soybean works in the prevention of heart problems and stroke by lowering cholesterol [10, 11].

Crop improvement through successful selection programme is only achieved using valid information about the correlation and genetic variability of traits of interest knowing fully well that improvement in any crop is dependent on the amount of genetic variability in the population [12]. Duzyaman and Vural [13], reported that, phenotypically varied genotypes most probably of diverse source are often regarded as more effective in obtaining capable crosses. Collection of germplasm and assessment of genetic variability is a basic step in any crop improvement program [14]. Plant breeders often look for desirable genes and gene complexes [15]; Identification of promising individuals is very important in any breeding program and great efforts have been directed to improve yield level and quality properties in crop plants [16].

Citation: Adewusi, O. F. Evaluation of Yield Performance and Molecular Diversity in F₂ Population of Soybean, *Glycine Max*, (L.) Merrill Genotypes. Sch Acad J Biosci, 2021 May 9(5): 130-138.

The conventional method used by plant breeders for selection is the phenotypic selection where morphological/phenotypic agronomic traits such as plant height; seed yields, etc are taken into account [17]. These can be called as phenotypic markers or morphological markers. In phenotypic markers, the extent of variation available is also limited [18]. Moreover, use of morphological markers excludes the analysis of noncoding sequences of genomes, which in higher plants often account for more than 95% of the total genome [19]. In the field they are subjected to environmental hazards also. In some cases, a trait may not express if suitable environmental condition is not available particularly in the case of stress related genes; These constraints make the use of phenotypic markers limited [20].

A molecular marker is a DNA sequence that is readily detected and whose inheritance can be easily monitored [21]. The uses of molecular markers are based on the naturally occurring DNA polymorphism, which forms basis for designing strategies to exploit for applied purposes [22]. Molecular markers as new tools in crop improvement have demonstrated usefulness especially with genes controlling quantitative traits [23]. It is also evident that molecular markers offer several advantages over the morphological markers as they provide data that can be analyzed objectively given new dimension to breeding especially with respect to the time required for developing new improved crop varieties [24]. Molecular Marker has proven to be powerful tools in the assessment of genetic variation and in elucidation of genetic relationship within and among species [25]. Such markers have been used to improve quantitative traits in plant breeding via Marker assisted selection [26]. Molecular markers have been extensively used for the identification and authentication of plant taxonomy and these markers are not influenced by age, physiological condition of sample and environmental factors [27]. The development of molecular techniques for genetic analysis has led to a great argumentation in our knowledge of crop genetics and our understanding of the structure and behavior of various genomes [28]. These molecular techniques in particular, the applications of molecular marker have been used to scrutinize DNA sequence variation in and among the crop species and create new sources of genetic variation by introducing new and favourable traits from landraces and related crop species [29]. Molecular markers allow a breeder for rapid screening of large number of line to select the promising ones [30].

In recent years, a novel class of markers named SNP has emerged as an important tool in genomics and are increasingly being used as molecular marker in various laboratory for different applications. Markers based on SNPs have rapidly gained the centre stage of molecular genetics during the recent years due to their abundance in the genomes and their amenability for high throughput detection formats and platforms [31]. Millions of SNPs have been generated in Soybean [32], Arabidopsis [33] and Rice [34, 35] in order to enhance studies on marker assisted breeding or selection. The present study was aimed to assess the growth performance of F_2 population of soybean genotypes with a view to devising a breeding strategy for selection for further improvement and to also assess the genetic diversity among the soybean genotypes based on SNP markers.

MATERIALS AND METHODS

The experimental materials for the present study consisted of seven genotypes collected from the soybean germplasm collection of the international institute of tropical agriculture, Ibadan, Oyo - State, Nigeria. The experiment was carried out in phases. The first phase was the generation of the F₁s from the crossing of the parental lines. The F₁ seeds were later planted to generate the F_2 generations through self-pollination. The second phase of the experiment was the molecular analysis using SNP markers. The field experiment was carried out on the Teaching and Research Farm of the Federal University of Technology, Akure, Ondo - State, Nigeria in year 2014 and 2015 respectively. The experiment was laid out in a randomized complete block design (RCBD) with three replications. A single row plot was adopted. Fifteen plants were maintained per plot with an inter and intra row spacing of 60cm and 20cm respectively. Standard agronomic and plant protection treatment were carried out uniformly across the plots for the duration of the experiment. Standard agronomic and plant protection treatment were carried out uniformly across the plots for the duration of the experiment. Data were collected on ten competitive mid – plants on the following agronomic characters: days to flowering (DTF), plant height at flowering (PHTF), days to maturity (DTM), plant height at maturity (PHTM), number of branches per plant (NBP), number of pods per plant (NPP), number of seeds per pod (NSP), pod length per plant (PL), total pod weight (TPW) and seed yield per plant (SYP).

DNA EXTRACTION

Total genomic DNA was extracted using the modified mini preparation protocol described by Dellaporta et al., [34] as follows:

Approximately 200mg (0.2g) of lyophilized leaf sample was ground into fine powder. To each tube 700ul of hot $(65^{\circ}C)$ plant extraction buffer (PEB) [containing 637.5ml of double distilled water (ddH₂0), 100ml of 1M Tris-HCl (pH 8.0), 100ml of 0.5M ethylene diamine tetraacetic acid (EDTA) (pH 8.0), 100ml of 5M Nacl₂ and 62.5ml of 20% sodium dodecyl sulphate (SDS)] was added. One percent b-mercaptoethanol was added to the pre- warmed PEB just before use. The tubes were capped and inverted gently 6-7 times to mix the sample with buffer.

The solution was incubated at 65°C in water bath for 20 mins with occasional mixing to homogenize

© 2021 Scholars Academic Journal of Biosciences Published by SAS Publishers, India	131

the samples. After 20 mins, samples were removed from the water bath and uncapped. The tubes were allowed to cool at room temperature for 2 minutes after which 500ul of 5M of potassium acetate (CH₃COOK) was added to each tube and recapped. The tubes were then mixed by gently inverting 6-7 times and incubated on ice for 20 minutes.

After 20 minutes of incubation on ice tubes were spun at 12,000 rpm for10 minutes at 4°C. The supernatant was transferred into new 1.5ml eppendorf tubes using wider bore pipette tips (1000 μ l) and making sure debris were not taken along with the supernatant. 700 μ l chloroform isoamylalcohol was added to the supernatant and spun at 10,000 rpm for 10 minutes.

The supernatant was transferred again into a new correspondingly labeled tubes and 700μ l ice-cold isopropanol was added to each tube and mixed by gently inverting the tubes 6-10 times. The tubes were allowed to stand undisturbed in a rack and stored in a freezer (-20°C) for at least 1 hour or overnight to precipitate the DNA.

After 1-hour precipitation in the freezer, the tubes were centrifuged at 12,000 rpm for 10 minutes at 4°C. The supernatant was carefully discarded with great care to disallow the pellet from dislodging from the bottom of the tube. The tubes were allowed to drain inverted on clean paper towels for 1 hour or more. The DNA pellets were washed twice in 100µl, cold 70% ethanol for 20 minutes and air dried completely. After drying, 60µl of 1×TE [10mM Tris-HCL (pH 8.0), 1mM EDTA (pH8.0)] was added to the pellets, followed by 2µl of 10ng/ml Rnase to remove the RNA. The solution was incubated for 40 minutes at 37°C with gentle mix at 10 minutes intervals.

SNP ANALYSIS

SNP genotyping was done at Inqaba Biotechnical Industries (Pty) Ltd Pretoria, South Africa on the MassARRAY system from Agena Biosciences using the iPLEX reagents which included the iPLEX PCR, SAP, and iPLEX Extend following the iPLEX Gold Application Guide from Agena Biosciences (http://www.sequenom.com/Files/Genetic-Analysis-G raphics/iPLEXApplication/iPLEX-Gold-Application-G uide-v2r1) [37-39]. The procedure of iPLEX PCR is the same as the normal PCR. Briefly, 10 ng genomic DNA was amplified in a 5µl reaction containing 1 x HotStar Taq PCR buffer (Qiagen), 1.625 mM MgCl₂, 0.5 mM each dNTP, 0.1µM each PCR primer, and 0.5 U Hot Star Taq DNA polymerase (Qiagen). The reaction was incubated at 94°C for 4 min followed by 45 cycles of 94°C for 20 s, 56°C for 30 s, 72°C for 1 min, and then followed by 3 min at 72°C. After iPLEX, excess dNTPs were removed from the reaction by adding 2 µl shrimp alkaline phosphatase (SAP) enzyme solution (1.53 µl water (HPLC grade), 0.17 µl SAP buffer (10x), 0.30 µl SAP enzyme (1.7 U/ μ l)) into each sample well and mixed, and then incubated at 37° C for 20 minutes followed by 5 minutes at 85° C to deactivate the enzyme – called SAP procedure in iPLEX.

Extension Reaction

Extension Primers were synthesized at Inqaba Biotechnical Industries Pty Ltd. Pretoria South Africa. They were diluted to a stock concentration of 500 μ M. This stock was split into a four-tier concentration grouping of 7μ M, 9μ M, 11μ M and 14μ M according to extension primer mass from smallest to largest. This four-tier system was used for Oligovalidation and peak optimisation on the Maldi-Tof Then, the iPLEX extend was carried out with a final concentration of between 0.625 and 1.51 uM for each extension primer, depending on the mass of the probe, iPLEX termination mix (Agena Biosciences) and 1.35µM iPLEX enzyme (Agena Biosciences) and conducted a two-step cycles program; 94°C for 30 s followed by 40 cycles of 94°C for 5 s, then followed 5 cycles of 52°C for 5 s, and 80°C for 5 s within the 40 cycles, then 72°C for 3 min in the 40 cycles. The reaction was then desalted by addition of 6 mg resin to each well followed by mixing and centrifugation to settle the contents of the tube. The extension product was spotted onto a 96- well spectrochip before being flown in the MALDI-TOF (Matrix - Assisted Laser Desorption Ionisation Time of Flight) mass spectrometer (Agena Biosciences).

STATISTICAL ANALYSIS

Analysis of variance was conducted using individual plot means for each year and combined across years. Statistical analysis was computed using the GLM (General linear model of Plant Breeding tools software). The presence and absence of bands were scored 1 or 0 respectively.

RESULTS

The result of the mean square estimates of all the characters studied is presented in Table-2. The two years of study differed significantly with respect to all the characters studied with the exception of pod length. The results showed highly significant differences (≤ 0.01) for genotypes in all the characters studied with the exception of number of branches per plant. Highly significant differences were observed for genotype x year interaction for plant height at flowering, plant height at harvesting, number of pods per plant, seed yield per plant and total pod weight.

The mean performance of the F_2 population for the characters under study is presented in Table-3. The result revealed that the estimates of the characters were higher in the second year than the first year. In the first year, DTF ranged from 40.41days to 44.94days for TGx1835 – 40E x TGx1989 – 21F C and TGx1835 – 40E x TGx1989 – 21F B respectively. The shortest day to flowering (37.55days) was recorded in TGx1830 – 20 E x TGx1990 – 57F B while the longest day (44.94days) was recorded in TGx1835 – 40E x TGx1989 – 21F B. In the second year, the shortest day to flowering (45.39days) was recorded in TGx1990 – 37F x TGx1830 -20E A while the longest day to flowering (64.80days) was recorded in TGx1990 - 37F x TGx1989 - 21F B. In the first year, the highest number of pods (177.90) was recorded in TGx1989 - 21F x TGx1830 - 20 E C while the lowest (103.96) was recorded in TGx1835 - 40E x TGx1990 - 3F C. In the second year, the highest number of pods (251.68) was recorded in TGx1990 - 55F x TGx1830 - 20E C while the lowest (134.78) was recorded in TGx1990 - 55F x TGx1990 - 37F B. For seed yield, the mean value ranged from 12.21g (TGx1990 - 37F x TGx1990 - 57F C) to 38.17g $(TGx1990 - 55F \times TGx1830 - 20E A)$ in the first year whereas in the second year, the highest seed yield was recorded in TGx1835 - 40E x TGx1830 - 20 E B (85.95g) while the lowest was recorded in TGx1990 -55F x TGx1990 - 37F B (24.57g). As regards total pod weight, in the first year, the highest value was recorded in TGx1989 - 21F x TGx1830 - 20E B (63.27g) while the lowest was recorded in TGx1990 - 37F x TGx1990 -57F C (22.59g) whereas in the second year, the highest total pod weight was recorded in TGx1835 - 40E x TGx1830 - 20E B (98.51g) while the lowest was recorded in TGx1990 - 55F x TGx1990 - 37F B (35.26g).

The levels of polymorphism for the F_2 population of Soybean by SNP markers are presented in Table-4. 32 SNP primers were used to differentiate among the F_2 population. A total of 322 bands were recorded. 214 of them were polymorphic (66.45%) and 108 were monomorphic (33.55%). the number of amplified band per primer ranged from 3 to 15 bands a maximum number 15 bands were amplified by BARC – 030337- 06857, BARC –040459 – 07745 and BARC – 041267- 07957 while a minimum number of 3 bands was amplified by the primer BARC –018933 – 03040. The highest polymorphism % (100%) was recorded by primer BARC – 014847 – 01910 and BARC –030337 – 06857 and lowest (0%) was recorded in BARC –018933 – 03040 and BARC –041819 – 08107.

The distribution of the polymorphic SNPs across the soybean genotypes is shown in Figure-1. From the figure, the highest number of markers were found to be associated with 41 and 42 polymorphic soybean genotypes respectively. 2 of the markers recorded no polymorphism with the soybean genotypes while 2 markers recorded 100% polymorphism with the genotypes. 25% of the markers recorded polymorphism with 62 out of the 63 Soybean genotypes. (BARC 021831-04219, BARC 024333-04850, BARC 040459-07745 and BARC 041267-07957).

Table-1: Th	e Names and	Source of So	vbeans, Glvcine	e max Genotypes
I WOLC IT IN	e i taines and	bource of bo	j seams, orgenne	man Genergres

Parental No	Genotype Name	Source
1	TGx 1835 – 40E	International Institute
2	TGx 1990 – 55F	of Tropical Agriculture
3	TGx 1990 – 3F	(IITA) Ibadan, Oyo, State Nigeria
4	TGx 1990 – 37F	
5	TGx 1989 – 21F	
6	TGx 1830 – 20 E	
7	TGx 1990 – 57F	

Table-2: Analysis of Variance for Characters under Study in 1	F ₂ population of Soybean, Glycine max Across Two Cropping
Va	arc.

						I cai s					
SOV	Df	DTF	PHTF (cm)	NBP	DTM	PHTH	NPP	NSP	PL	TPW (g)	SYP (g)
		(days)			(days)	(cm)			(cm)		
Year	1	12630.9	6093.09**	160.74	124579.	108102.30*	200137.40*	5.12*	3.78	42194.04*	24544.38*
		0**		*	40**	*	*	*		*	*
Block	4	4.72	281.52**	35.10*	4.61	171.10**	6826.95**	0.65*	1.32*	2735.13**	697.70**
(Year)				*				*	*		
Genotype	62	32.75**	147.34**	1.65	33.05**	357.84**	682.05**	0.10*	0.26*	279.86**	194.34**
								*	*		
Genotype x	62	6.58	78.53**	2.14	6.45	42.27**	369.68*	0.06	0.13	156.36**	124.04**
Year											
Error	24	5.48	14.42	1.63	5.44	19.49	279.55	0.05	0.12	90.95	62.00
	8										

*,** significance at 5% and 1% level of probability respectively

SOV= Source of Variation; DTF= Days to flowering (days); PHTF= Plant Height at Flowering (cm); NBP= Number of Branches per Plant; DTM = Days to Maturity (days); PHTH = Plant Height at Harvesting (cm); NPP = Number of Pods per Plant; NSP = Number of Seeds per Plant; PL=Pod Length per Plant (cm); SYP = Seed Yield per Plant (g);

Adewusi, O	. F.,	Sch	Acad	J	Biosci	, Ma	y,	202	21	; !	9(5	5):	130)-	13	38	3
------------	-------	-----	------	---	--------	------	----	-----	----	-----	-----	-----	-----	----	----	----	---

GENO	YEAR	DTF	PHTF	NBP	DTM	PHTM	NPP	NSP	P.L	SYD	TPW
1 X 2A	1	44.36 k-t	27.46k	9.03abc	87.03gh	57.61c	115.57hij	2.08ab	2.46ab	22.89g-k	31.62g-l
	2	57.86 a-f	32.79g-k	10.41abc	127.89a-f	84.13ab	165.82d	2.34ab	2.65ab	34.71d-k	43.92c-1
1 X 2B	1	39.39t	33.41g-k	8.71bc	81.72h	68.76bc	142.49g	2.18ab	2.92a	29.26d-k	39.92d-1
	2	50.86f-r	35.06f-k	9.37abc	120.85f	89.03ab	213.38a	2.49ab	3.02a	63.03abc	76.14a-d
1 X 2C	1	39.21t	32.53g-k	10.21abc	81.04h	67.30bc	143.53g	2.28ab	2.76a	27.50f-k	44.47c-1
	2	51.64c-k	40.34d-k	10.98abc	121.64c-f	87.07ab	194.67b	2.49ab	2.99a	47.49a-j	66.16a-h
1 X 3A	1	41.54st	30.32ijk	9.37abc	83.75h	77.72b	134.39gh	2.38ab	2.28b	27.02f-k	37.27d-1
	2	53.78b-h	41.71d-k	11.36ab	123.79b-f	101.27a	160.26d-f	2.44ab	2.97a	28.52f-k	39.95c-1
1 X 3B	1	44.78k-t	23.98k	9.09abc	87.51gh	59.00	117.52hij	2.18ab	2.43ab	20.74iik	31.62g-l
	2	55.92a-g	30.32iik	9.44abc	125.94a-f	85.92ab	161.70d-f	2.29ab	2.65ab	30.38d-k	42.30c-1
1 X 3C	1	40.04st	31.50h-k	7.91c	82.00h	52.83cd	103.96iik	2.17ab	2.49ab	17.16iik	26.92g-1
11100	2	52.03c-1	32.79g-k	9 44abc	122.03c-f	86.33ab	173.96cd	2.28ab	2.54ab	28.50f-k	47.68c-h
1 X 4A	1	38.30t	31.50h-k	7.08c	79.98h	62.59bc	144.83fg	2.60a	3.00a	30.72d-k	39.73d-1
	2	55 92a-g	38 28d-k	9.37abc	125 94a-f	86 94ah	191 50b	2.78a	3 23a	65.01abc	79.80ab
1 X 4B	1	40 54st	30.67iik	9.66abc	82 59h	56.82c	140 24g	2.70a	2.66ab	29.41e-k	40 77e-1
1 /1 10	2	52 61c-1	68 13a	9.77abc	122.61c-f	90.00ab	189 90b	2.5 Tu	3.14a	47 57a-i	60.09a-i
1 X 4C	1	41 15 st	27 94ik	10.21abc	83 29h	61.66bc	172 03cd	2.63a	2 89a	36.81d-k	51 94h-1
IATC	2	51.71c-k	32.68g_k	13 119	121.05c-f	83.88ah	205 399	2.03a	3 31a	60.44abc	81 12ab
1 X 5 A	1	1/ 29k_t	33.85g-k	9.09abc	86.94gh	65.00ab	1205.57a	2.70a	2 30ab	$23 23 g_{-}k$	30.31g-1
IAJA	2	57.65a-f	12.46d_k	9.03abc	127.68a_f	100 899	169.76d	2.54a0	2.57ab	23.23g-k	44 14c-1
1 V 5B	1	37.03a-1	42.400-K	9.95abc	87 70gh	73 27h	136.05gh	2.36a	2.00a0	26 56f k	36 780 1
IAJD	2	44.94K-L	50.27eb	9.39abc	126 70o f	110.150	130.05gn	2.4100	2.3340	20.301-K	18.620 h
1 X 5C	1	30.08a-g	30.37ab	0.62abc	120.70a-1 82.43h	78 14b	176.31C	2.00a	2.94a	23.65 g k	36 280 1
1730	1	40.41st	39.300-K	9.02a0C	02.4311 122.220 f	07.250	133.07gn	2.33a0	2.54a0	23.03g-K	18 400 h
1 V 6 A	1	27.520-1	43.140-K	8 70ba	70.11h	97.33a	1/3.91cu	2.5640	2.0000	32.77u-K	40.490-1
1 A 0A	1	37.33t	27.02K	8.700C	79.1111 110.00f	39.00C	149.311g	2.03a	2.75a	35.210-K	43.04C-I
1 V (D	2	49.111-r	32.08g-K	9.50abc	01 771	81.30ab	149.300	2.888	3.34a	47.50a-j	02.1/a-1
1 X 6B	1	39.83t	32.31g-K	9.92abc	81.//n	58.26C	148.00fg	2.62a	3.18a	32.70d-K	50.896-1
	2	50.//f-r	36.49f-k	14.19a	120.76ef	90.00ab	228.58a	2.78a	3.26a	85./5a	98.51a
1 X 6C	1	38.38t	32.42g-k	9.24abc	80.08h	55.13c	143.96g	2.44ab	2.82a	26.95f-k	37.84d-1
	2	50.08f-r	36.21f-k	10.67abc	120.07ef	80.76ab	235.60a	2.58a	3.02a	64.27abc	88.32ab
1 X /A	1	38.96t	31.20 h-k	9.17abc	80.75h	54.43cd	137.32gh	2.56a	2.33ab	24.11g-k	34.05f-l
	2	49.60f-r	31.90 h-k	10.98abc	119.58f	84.29ab	154.71f	2.68a	3.11a	29.35e-k	38.96d-l
1 X 7B	1	39.38t	32.10 g-k	9.80abc	81.24h	62.19bc	157.70ef	2.58a	2.72a	35.39d-k	55.20b-l
	2	51.71d-t	36.15 f-k	9.97abc	121.05c-f	86.33ab	189.93b	2.78a	3.26a	49.15a-j	59.43b-i
1 X 7C	1	39.21t	31.67 h-k	9.76abc	81.04h	47.46	118.10hij	2.25ab	2.63ab	20.90ijk	30.68g-l
	2	51.71d-t	34.74 f-k	9.77abc	121.05c-f	85.11ab	175.17c	2.38ab	2.83a	35.09d-k	57.36b-i
2 X 3A	1	42.29st	29.25jk	8.03bc	84.62gh	61.20bc	134.39gh	2.54a	2.68ab	29.85e-k	36.98e-1
	2	61.64a	32.69g-k	8.50bc	131.56ab	89.40ab	183.59bc	2.68a	3.21a	45.96a-k	60.39a-i
2 X 3B	1	40.87st	26.25k	8.43bc	82.97gh	56.62c	121.03h	2.43ab	2.70a	24.63g-k	36.36e-1
	2	59.81a-d	45.99d-k	9.44abc	129.85ab	101.27a	175.47c	2.58a	2.92a	47.82a-j	60.89a-1
2 X 3C	1	42.53st	26.78k	9.90abc	84.91gh	55.22c	140.15g	2.41ab	2.44ab	22.89ijk	32.17g-l
	2	61.75a	44.57d-k	13.18a	131.80ab	90.00ab	161.53d-f	2.58a	2.82a	27.12f-k	41.50c-l
2 X 4A	1	42.62st	29.36jk	9.30abc	85.00gh	62.08bc	147.85fg	2.59a	2.61ab	32.25d-k	43.67c-l
	2	55.04a-g	36.15 f-k	10.70abc	125.06a-f	72.41b	177.42c	2.68a	3.22a	39.72c-k	49.55b-l
2 X 4B	1	38.79t	25.56k	9.70abc	80.56h	58.41c	116.70hij	2.41ab	2.10b	17.26ijk	22.67g-l
	2	52.03c-1	31.02h-k	10.98abc	122.03c-f	82.66ab	134.78gh	2.48ab	2.65ab	24.57g-k	35.26f-l
2 X 4C	1	40.12st	33.41g-k	10.84abc	82.10h	63.59bc	157.12ef	2.53a	2.88a	30.52d-k	45.80c-1
	2	51.06d-m	35.06f-k	11.93ab	121.70c-f	94.90ab	220.25a	2.68a	3.16a	52.89a-h	80.99ab
2 X 5A	1	40.96st	33.29g-k	9.03abc	83.07gh	66.37bc	140.24g	2.46ab	2.31ab	26.60f-k	35.83e-1
	2	53.37b-h	33.85g-k	11.45ab	123.38b-f	90.62ab	162.15d-f	2.58ab	3.00a	26.91f-k	37.36f-l
2 X 5B	1	40.37st	31.20h-k	9.23abc	82.39h	76.33b	142.39g	2.47ab	2.57ab	28.09e-k	47.47e-l
	2	52.42c-1	46.00d-k	12.21ab	122.42c-f	100.30a	180.44bc	2.58a	2.89a	40.61c-k	51.05b-l
2 X 5C	1	41.06st	35.03f-k	9.31abc	83.19gh	66.41bc	103.00ijk	2.21ab	2.70a	18.18ijk	25.96g-l
	2	52.72c-1	52.84ab	13.00a	122.72c-f	104.70a	191.61b	2.48ab	2.71a	44.27b-k	63.32a-i
2 X 6A	1	38.21t	28.20k	8.98bc	79.88h	56.42c	154.88ef	2.73a	2.91a	38.17c-k	48.17c-1
	2	49.87f-r	34.03g-k	9.84abc	119.86f	83.47ab	201.92a	2.08ab	3.53a	58.00a-d	73.78a-e
	-	38 8/1t	30.85ik	9.76abc	80.62h	54.25cd	147.86fg	2.70a	3.11a	34.68d-k	49.41c-1
2 X 6B	1	30.041		15 20-	121.05c-f	82.38ab	232.67a	2.88a	3.39a	84.77a	97.92a
2 X 6B	1 2	51.06d-m	31.30h-k	15.29a		50.61	126 60h	2.45ab	3 1 1a	26.84f-k	26.60-1
2 X 6B 2 X 6C	1 2 1	51.06d-m 39.21t	31.30h-k 28.54k	15.29a 9.90abc	81.00h	58.61C	120.090	4		20.041 K	30,096-1
2 X 6B 2 X 6C	1 2 1 2	51.06d-m 39.21t 51.06d-m	31.30h-k 28.54k 33.649-k	15.29a 9.90abc 12.59ab	81.00h 121.05c-f	58.61c 86.58ab	251.689	2.48ab	3.13a	68.64ah	95 47a
2 X 6B 2 X 6C 2 X 7A	1 2 1 2 1	51.06d-m 39.21t 51.06d-m 39.87t	31.30h-k 28.54k 33.64g-k 33.15g-k	15.29a 9.90abc 12.59ab 8.71bc	81.00h 121.05c-f 81.72h	58.61c 86.58ab	251.68a 120.64h	2.43ab 2.48ab 2.40ab	3.13a 2.62ab	68.64ab	36.69e-1 95.47a 35.48f_1
2 X 6B 2 X 6C 2 X 7A	1 2 1 2 1 2 1 2	51.06d-m 39.21t 51.06d-m 39.87t 51.83c_k	31.30h-k 28.54k 33.64g-k 33.15g-k 37.44f-k	15.29a 9.90abc 12.59ab 8.71bc 9.30abc	81.00h 121.05c-f 81.72h 121.73c-f	58.61c 86.58ab 60.00c 93.92ab	251.68a 120.64h 159.97ef	2.48ab 2.40ab 2.58a	3.13a 2.62ab	20.041 k 68.64ab 26.83f-k 33.25d_k	35.48f-1 43.07c 1
2 X 6B 2 X 6C 2 X 7A 2 X 7B	1 2 1 2 1 2 1 2 1	51.06d-m 39.21t 51.06d-m 39.87t 51.83c-k 39.54t	31.30h-k 28.54k 33.64g-k 33.15g-k 37.44f-k 27.484	15.29a 9.90abc 12.59ab 8.71bc 9.30abc 10.57abc	81.00h 121.05c-f 81.72h 121.73c-f 81.43b	58.61c 86.58ab 60.00c 93.92ab	251.68a 120.64h 159.97ef	2.49ab 2.48ab 2.40ab 2.58a 2.59a	3.13a 2.62ab 2.91a 2.49ab	26.841 k 68.64ab 26.83f-k 33.25d-k 35.88d k	95.47a 35.48f-1 43.07c-1
2 X 6B 2 X 6C 2 X 7A 2 X 7A 2 X 7B	1 2 1 2 1 2 1 2 1 2 1 2	51.06d-m 39.21t 51.06d-m 39.87t 51.83c-k 39.54t 51.454 t	31.30h-k 28.54k 33.64g-k 33.15g-k 37.44f-k 27.48k 46.944 k	13.29a 9.90abc 12.59ab 8.71bc 9.30abc 10.57abc	81.00h 121.05c-f 81.72h 121.73c-f 81.43h 121.44c f	58.61c 86.58ab 60.00c 93.92ab 59.41c	251.68a 120.64h 159.97ef 162.97d-f	2.49ab 2.48ab 2.40ab 2.58a 2.59a 2.68a	3.13a 2.62ab 2.91a 2.49ab	68.64ab 26.83f-k 33.25d-k 35.88d-k	95.47a 95.48f-1 43.07c-1 47.43c-1
2 X 6B 2 X 6C 2 X 7A 2 X 7A 2 X 7B	1 2 1 2 1 2 1 2 1 2 1	51.06d-m 39.21t 51.06d-m 39.87t 51.83c-k 39.54t 51.45d-t 20.62t	31.30h-k 28.54k 33.64g-k 33.15g-k 37.44f-k 27.48k 46.94d-k 28.281	13.29a 9.90abc 12.59ab 8.71bc 9.30abc 10.57abc 11.74ab	81.00h 121.05c-f 81.72h 121.73c-f 81.43h 121.44c-f 81.52h	58.61c 86.58ab 60.00c 93.92ab 59.41c 102.74a	251.68a 120.64h 159.97ef 162.97d-f 175.66c	2.49ab 2.48ab 2.40ab 2.58a 2.59a 2.68a 2.44-1	3.13a 2.62ab 2.91a 2.49ab 2.88a 2.82a	68.64ab 26.83f-k 33.25d-k 35.88d-k 37.48c-k	36.69e-1 95.47a 35.48f-1 43.07c-1 47.43c-1 50.83b-1
2 X 6B 2 X 6C 2 X 7A 2 X 7B 2 X 7B 2 X 7C	1 2 1 2 1 2 1 2 1 2 1 2 1 2	51.06d-m 39.21t 51.06d-m 39.87t 51.83c-k 39.54t 51.45d-t 39.63t	31.30h-k 28.54k 33.64g-k 33.15g-k 37.44f-k 27.48k 46.94d-k 28.28k 28.28k	13.29a 9.90abc 12.59ab 8.71bc 9.30abc 10.57abc 11.74ab 9.97abc	81.00h 121.05c-f 81.72h 121.73c-f 81.43h 121.44c-f 81.52h	58.61c 86.58ab 60.00c 93.92ab 59.41c 102.74a 57.21c	251.68a 120.64h 159.97ef 162.97d-f 175.66c 139.27g	2.49ab 2.48ab 2.40ab 2.58a 2.59a 2.68a 2.44ab	3.13a 2.62ab 2.91a 2.49ab 2.88a 2.83a	26.644k 68.64ab 26.83f-k 33.25d-k 35.88d-k 37.48c-k 25.62f-k	36.69e-1 95.47a 35.48f-1 43.07c-1 47.43c-1 50.83b-1 37.34d-1
2 X 6B 2 X 6C 2 X 7A 2 X 7B 2 X 7B 2 X 7C	1 2 1 2 1 2 1 2 1 2 1 2 2	51.06d-m 39.21t 51.06d-m 39.87t 51.83c-k 39.54t 51.45d-t 39.63t 51.06d-m	31.30h-k 28.54k 33.64g-k 33.15g-k 37.44f-k 27.48k 46.94d-k 28.28k 38.28d-k	13.29a 9.90abc 12.59ab 8.71bc 9.30abc 10.57abc 11.74ab 9.97abc 12.46ab	81.00h 121.05c-f 81.72h 121.73c-f 81.43h 121.44c-f 81.52h 121.05c-f	58.61c 86.58ab 60.00c 93.92ab 59.41c 102.74a 57.21c 83.01ab	251.68a 120.64h 159.97ef 162.97d-f 175.66c 139.27g 205.94a	2.43ab 2.48ab 2.40ab 2.58a 2.59a 2.68a 2.44ab 2.58a	3.13a 2.62ab 2.91a 2.49ab 2.88a 2.88a 2.88a 2.88a	26.644b 26.83f-k 33.25d-k 35.88d-k 37.48c-k 25.62f-k 43.64b-k	36.69e-1 95.47a 35.48f-1 43.07c-1 47.43c-1 50.83b-1 37.34d-1 73.51a-e
2 X 6B 2 X 6C 2 X 7A 2 X 7B 2 X 7B 2 X 7C 3 X 4A	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	51.06d-m 39.21t 51.06d-m 39.87t 51.83c-k 39.54t 51.45d-t 39.63t 51.06d-m 39.04t	31.30h-k 28.54k 33.64g-k 33.15g-k 37.44f-k 27.48k 46.94d-k 28.28k 38.28d-k 23.66k 23.66k	15.29a 9.90abc 12.59ab 8.71bc 9.30abc 10.57abc 11.74ab 9.97abc 12.46ab 8.16bc	81.00h 121.05c-f 81.72h 121.73c-f 81.43h 121.44c-f 81.52h 121.05c-f 80.85h	58.61c 86.58ab 60.00c 93.92ab 59.41c 102.74a 57.21c 83.01ab 57.81c	251.68a 120.64h 159.97ef 162.97d-f 175.66c 139.27g 205.94a 137.42gh	2.43ab 2.48ab 2.40ab 2.58a 2.59a 2.68a 2.44ab 2.58a 2.58a 2.58a	3.13a 3.13a 2.62ab 2.91a 2.49ab 2.88a 2.88a 2.88a 2.88a 2.88a 2.88a	26.644b 26.83f-k 33.25d-k 35.88d-k 37.48c-k 25.62f-k 43.64b-k 29.85e-k	36.09e-1 95.47a 35.48f-1 43.07c-1 47.43c-1 50.83b-1 37.34d-1 73.51a-e 37.95d-1

© 2021 Scholars Academic Journal of Biosciences | Published by SAS Publishers, India

Adewusi, O. F., Sch Acad J Biosci, May, 2021; 9(5): 130-138

GENO	YEAR	DTF	PHTF	NBP	DTM	PHTM	NPP	NSP	P.L	SYD	TPW
	2	49.11f-r	31.26h-k	8.62bc	119.09f	85.11ab	211.72a	2.48ab	2.92a	59.32a-d	74.18a-e
3 X 4C	1	39.21t	31.90h-k	9.84abc	81.04h	55.82c	145.80fg	2.44ab	2.55ab	24.09g-k	34.01f-1
	2	51.06d-m	35.62f-k	11.19ab	121.05c-f	86.74ab	173.65cd	2.58a	3.27a	31.99d-k	52.40c-h
3 X 5A	1	42.78st	35.62f-k	9.57abc	85.20gh	75.53b	118.88hii	2.43ab	2.43ab	23.59g-k	30.95g-1
	2	55.24a-9	44.57d-k	11.45ab	125.25a-f	104.70a	163.87d-f	2.58a	2.47ab	31.38d-k	41.56c-1
3 X 5B	1	42.20st	35.98f-k	10.51abc	84.52gh	85 09ab	158 19ef	2.57a	2.47ab	30.07e-k	48.07c-1
01100	2	54.73 b-h	42.46d-k	9.09abc	124.74a-f	97.08a	167.70d	2.68a	2.57ab	32.58d-k	40.00c-h
3 X 5C	1	41.12st	37.57f-k	10.04abc	82.97gh	73.94h	122.88h	2.21ab	2.21b	20.26jik	30.43g-1
01100	2	53.22 b-h	49.85a-g	11.29ab	123.22b-f	103.61a	203.33a	2.38ab	2.77a	42.44c-k	67.50a-h
3 X 6A	1	38.05t	31.50g-k	9.17abc	79.69h	61.60c	150.29f	2.63a	2.64ab	33.87d-k	44.97c-1
	2	49.84f-r	42.17d-k	12.52ab	119.83f	88.78ab	183.95bc	2.68a	2.75a	53.02a-g	64.19a-h
3 X 6B	1	37.71t	29.43ik	8.90bc	79.30h	57.81c	147.46fg	2.64a	2.64ab	32.36d-k	45.57c-1
0 11 02	2	49.31f-r	32.69g-k	11.93ab	119.29f	87.07ab	211.91a	2.78a	2.93a	65.99abc	77.80abc
3 X 6C	1	39.21t	31.90g-k	9.97abc	81.04h	59.21c	121.61h	2.48ab	2.48ab	27.25f-k	37.01d-1
01100	2	51.06d-m	32 88g-k	11 93ab	130 93ab	83.04ab	242 20a	2.68a	3 18a	63 34abc	94 78a
3 X 7A	1	39 54t	31 11g-k	8 98bc	81 43h	61 40c	152 63f	2.60a	2.44ah	27 30f-k	37 49d-1
51111	2	51.48d-m	44.57d-k	10.11abc	121.48c-f	98.17a	159.48ef	2.78a	2.63ab	33.54d-k	46.60c-1
3 X 7B	1	40.87st	35.62f-k	10.04abc	82.97h	52.63cd	136.05gh	2.44ab	2.44ab	25.76f-k	36.31e-1
01172	2	53.00b-h	37.44f-k	10.51abc	123.00b-f	94.90ab	165.43d	2.58a	2.51ab	27.40f-k	48.50b-1
3 X 7C	1	38.30t	30.31iik	8.97bc	79.98h	65.78bc	161.04d-f	2.65a	2.55ab	36.06c-k	46.02c-1
01170	2	50.38f-r	35 44f-k	10.03abc	120 36f	88 54ab	166 78d	2.00 a	2.65ab	37.82c-k	50 44b-1
4 X 5A	1	43 121-t	34 91f-k	8 14bc	85 58gh	72 94h	132 15gh	2.50a	2.50ab	28.00f-k	35.00f-1
111011	2	55 62a-9	46 47a-9	9.23abc	125 64b-f	103 23a	178 78c	2.30a	2.50ab	41 54c-k	52 30c-h
4 X 5B	1	44 28h-t	32 08f-k	8.90bc	86 93oh	67 57bc	140.44g	2.70a	2.30ab	29.07d-k	39 38d-1
- MOD	2	64 80 a	50.74ab	10.04abc	133 86a	104 21a	174 10cd	2.17a0	2.17ab	38 78c-k	50 75b-1
4 X 5C	1	42 72st	37.00f-k	9.84abc	85 12gh	69.85hc	125 87h	2.30a 2.25ah	2.54u0	19 80jik	31.75g-1
+1150	2	-42.723t	45 75d-k	14 05a	126 18b-f	98 58a	157 63ef	2.23ab	2.230 2.40ab	25 80f-k	36.01c-1
4 X 6A	1	37.71t	26 35k	7 04c	79 32h	50.64cd	120 35h	2.18ab	2.10ab	26.07f-k	33.61g-l
	2	45.39h-t	30.58iik	9.44abc	115.35f	76.12b	158 44ef	2.58a	2.63ab	34.59d-k	42.87c-1
4 X 6B	1	38 38t	28.25k	9.39abc	80.08h	53.92cd	137 57gh	2.50a	2.05u0	26.06f-k	34 77 g-1
- IN OD	2	50.50t	29.36ik	11 93ab	120.46f	81 19ab	163 87d-f	2.50a	2.270 2.50ab	27.63f-k	36.11c-1
4 X 6C	1	38 30t	23.41	6.25cd	79 98h	40.89	103.37iik	2.00a	2.30to	18 88ijk	26.80g-1
inte	2	51.06d-m	28.73k	9.10abc	121.05d-f	85.11ab	192.72h	2.28ab	2.200 2.85a	33.88d-k	71.20a-h
4 X 7A	1	37.96t	26.51k	8.70bc	79.59h	61.80c	146 49fg	2.66a	2.66ab	35.17d-k	44.68c-1
	2	49.60f-r	32.97g-k	10.13abc	119.58f	84.62ab	177.42c	2.88a	2.74a	49.75a-9	61.60a-i
4 X 7B	1	40.04st	29.04ik	9.31abc	82.00h	56.69c	148.52fg	2.57a	2.57ab	31.64e-k	47.15c-1
	2	51.74c-1	30.79ik	11.93ab	121.73d-f	86.58ab	198.08ab	2.68a	2.80a	58.08a-d	66.80a-h
4 X 7C	1	38.38t	35.06f-k	10.03abc	80.08h	59.80c	122.55h	2.60a	2.02bc	12.21kl	22.59g-1
	2	50.08d-m	36.33f-k	10.44abc	120.07f	85.11ab	156.05ef	2.78a	2.60ab	32.85e-k	48.71c-h
5 X 6A	1	38.79t	28.89k	8.83bc	80.56h	53.43cd	132.73gh	2.44ab	2.44ab	25.70f-k	34.78g-1
	2	57.38a-f	35.09f-k	9.47abc	127.40b-f	82.17ab	165.62d	2.58a	2.57ab	40.60c-k	51.95b-l
5 X 6B	1	39.38t	34.83f-k	9.93abc	81.24h	56.82c	148.15fg	2.57a	2.57ab	30.92f-k	63.27c-1
	2	58.08a-d	44.57d-k	10.24abc	127.89b-f	97.63a	194.12b	2.68a	2.79a	52.85a-g	45.12a-i
5 X 6C	1	39.21t	31.37g-k	10.11abc	81.04h	56.32c	177.90c	2.69a	2.64ab	37.15c-k	50.67b-1
	2	57.86a-f	35.27f-k	12.34ab	127.89b-f	87.28ab	183.73bc	2.88a	2.69ab	39.74c-k	58.47a-i
5 X 7A	1	38.38t	30.70iik	9.02abc	80.08h	48.72	130.30gh	2.58a	2.55ab	28.71f-k	38.78d-1
011711	2	50.08d-m	36.65f-k	9.19abc	120.07f	89.46ab	165.22d	2.78a	2.58ab	39.31c-k	49 40b-1
5 X 7B	1	39.38t	31.29g-k	9.84abc	81.24h	53.83cd	156.63ef	2.64a	2.40ab	28.00f-k	37.67d-1
	2	51.27 c-1	37.71f-k	10.45abc	121.26d-f	93.27a	165.11d	2.78a	2.64ab	33.50e-k	52.69c-h
5 X 7C	1	40.12st	31.26g-k	9.43abc	82.02h	54.07cd	132.36øb	2.48ab	2.48ab	28.00f-k	41.28c-1
0.1.70	2	52.68c-1	35.34f-k	9.91abc	122.68d-f	89.82ab	181.89hc	2.68a	2.61ab	35.22c-k	56.98b-1
6 X 7 A	1	37.88t	25.56k	8.16bc	79.50h	54.83cd	131.37øb	2.53a	2.31ab	24.72f-k	32.22d-1
011/11	2	49.60f-r	30.85iik	10.63abc	119.58f	80.82ab	151.54f	2.68a	2.53ab	29.82e-k	37.12f-1
6 X 7B	1	37.55t	31.20g-k	9.57abc	79.11h	63.79c	158.29ef	2.60a	2.41ab	25.84f-k	34.92c-1
0.1.1.0	2	49.11f-r	34.11f-k	11.17ab	119.10f	87.56ab	163.29d-f	2.78a	2.60ab	32.63e-k	44.82c-1
6 X 7C	1	38.38t	33.16o-k	10.17abc	80.08h	62.390	155.36ef	2.639	2.63ab	33.13e-k	48.74b-1
	2	50.08d-m	37.48f-k	13,159	120.07f	86.09ab	210.06a	2.889	2.85a	48.98a-o	75.31a-e
L	<u>ـ</u>	50.00u m	57.101 K	15.15u	120.071	00.0740	210.00u	2.00u	2.05u	10.204 8	10.0140

Means that do not share the same letters are significantly different at 95% confidence using tukey pairwise comparison

DTF= Days to flowering (days); PHTF= Plant Height at Flowering (cm); NBP= Number of Branches per Plant; DTM = Days to Maturity (days); PHTM = Plant Height at Maturity (cm); NPP = Number of Pods per Plant; NSP = Number of Seeds per Plant; PL=Pod Length per Plant (cm); SYP = Seed Yield per Plant (g);

 $\begin{array}{l} P1{=}TGx1835-40E;\ P2{=}TGx1990-55F;\ P3=\\ TGx1990-3F;\ P4=TGx1990-37F;\ P5=TGx1989-21F;\\ P6=TGx1830-20\ E;\ P7=TGx1990-57F \end{array}$

Table-4: Levels of polymorphism for F ₂ populations of Soybean, Glycine max by SNP- PCR analysis										
PRIMER NAME	NUMBER	POLYMORPHIC	MONOMORPHIC	POLYMORPHIC	MONOMORPHIC					
	OF BANDS	BAND	BAND	%	%					
BARC-013065-00437	9.00	6.00	3.00	66.67	33.33					
BARC-014847-01910	10.00	10.00	0.00	100.00	0.00					
BARC-015973-02029	9.00	6.00	3.00	66.67	33.33					
BARC-016485-02069	10.00	7.00	3.00	70.00	30.00					
BARC-016861-02355	9.00	6.00	3.00	66.67	33.33					
BARC-018933-03040	3.00	0.00	3.00	0.00	100.00					
BARC-019085-03298	10.00	7.00	3.00	70.00	30.00					
BARC-021329-04038	10.00	7.00	3.00	70.00	30.00					
BARC-021827-04218	10.00	7.00	3.00	70.00	30.00					
BARC-021831-04219	12.00	9.00	3.00	75.00	25.00					
BARC-021937-04237	9.00	6.00	3.00	66.67	33.33					
BARC-024043-04709	10.00	7.00	3.00	70.00	30.00					
BARC-024333-04850	12.00	9.00	3.00	75.00	25.00					
BARC-025961-05189	8.00	5.00	3.00	62.50	37.50					
BARC-028309-05824	9.00	6.00	3.00	66.67	33.33					
BARC-028793-06015	13.00	7.00	6.00	53.85	46.15					
BARC-029343-06156	9.00	6.00	3.00	66.67	33.33					
BARC-029859-06448	10.00	7.00	3.00	70.00	30.00					
BARC-030337-06857	15.00	15.00	0.00	100.00	0.00					
BARC-030735-06928	9.00	6.00	3.00	66.67	33.33					
BARC-030807-06945	12.00	6.00	6.00	50.00	50.00					
BARC-031701-07215	9.00	6.00	3.00	66.67	33.33					
BARC-039561-07508	9.00	6.00	3.00	66.67	33.33					
BARC-039593-07509	12.00	6.00	6.00	50.00	50.00					
BARC-040033-07641	9.00	6.00	3.00	66.67	33.33					
BARC-040075-07652	12.00	9.00	3.00	75.00	25.00					
BARC-040339-07714	12.00	6.00	6.00	50.00	50.00					
BARC-040459-07745	15.00	9.00	6.00	60.00	40.00					
BARC-041267-07957	15.00	9.00	6.00	60.00	40.00					
BARC-041819-08107	3.00	0.00	3.00	0.00	100.00					
BARC-042201-08212	9.00	6.00	3.00	66.67	33.33					
BARC-044047-08593	9.00	6.00	3.00	66.67	33.33					
	322.00	214.00	108.00							

Fig-1: Distribution of Polymorphic SNPs across the Soybean Genotypes

DISCUSSION

Genetic improvement of any crop depends upon the nature and extent of genetic variability available [40]. This would ensure organized and systematic hybridization programme for creating genetic variability to be exploited for genetic improvement of the trait under consideration [41]. The results from this study indicated wide genetic variability among the genotypes for the different characters studied. This provides good opportunity for selection among the genotypes for the agronomic characters evaluated with exception of number of branches per plant signifying that the genetic variability can be utilized in soybean breeding program

[42]. This finding corroborates the findings of Rajkumar et al., [43] and Reni and Rao [44]. They reported that, analysis of variance revealed significant differences among the genotypes for days to flowering, plant height, number of pods, number of seeds per pod and seed yield. The significant variation observed in interaction of genotype with year (G x Y) for plant height at flowering, plant height at harvesting, number of pods per plant, total pod weight and seed yield per plant is an indication that genotypes were sensitive to variations in the environmental and climatic conditions, and as a result, they responded differently [45]. The result obtained based on the mean performance of the genotypes differed significantly in mean values for seed yield and its component characters This result finding is in harmony with the findings of Shanti et al., [46]; Shah et al., [47] and Nassar [48]. SNP markers have proven to be a powerful tool for molecular genetic analysis and plant breeding programs to assess genetic diversity for the development of improved varieties [49].

CONCLUSION

It can be concluded from the study that, there was a wide genetic variability among the F_2 populations from the result of the SNP markers analysis. This will

provide a good opportunity for selection among the F_2 populations to serve as a possibility for their utilization in further soybean breeding program. It can also be observed from the study that genotypes TGx1990 – 37F x TGx1830 – 20E A, TGx1830 – 40E x TGx1830 – 20E A, TGx1990 – 3F x TGx1990 – 37F B and TGx1830 – 20 E x TGx1990 – 57F B could be utilized when breeding for earliness due to their short days to flowering recorded. The following genotypes, TGx1830 – 20E B also stand out as promising genotypes with regards to seed yield and could be considered for future breeding programmes.

ACKNOWLEDGEMENT

The authors acknowledge the soybean germplasm collection and bioscience centre of International Institute of Tropical Agriculture (IITA) Ibadan, Oyo- State Nigeria, for the provision of the soybean genotypes used as parents and the DNA extraction respectively. The contributions of Daka, L. and Inqaba Biotechnical Laboratory, Pretoria South Africa, for the SNP design and the SNP analysis respectively are also acknowledged by the authors.

REFERENCES

- Jain RK, Joshi A, Singh M, Sen Y, Kaur G. Isoenzyme diversity and phylogenetic relationship among soybean (Glycine max L.) Genotypes. Journal of Pharmacognosy and Phytochemistry. 2017;6(5):1260-1265.
- El-Hamidi M, Zaher FA. Production of vegetable oils in the world and in Egypt: an overview. Bulletin of the National Research Centre. 2018;42(1):1-9.
- Xiaoming Z, Qiong L. A Brief Introduction of Main Diseases and Insect Pests in Soybean Production in the Global Top Five Soybean Producing Countries. Plant Diseases & Pests. 2018;9(1).
- Thrane M, Paulsen PV, Orcutt MW, Krieger TM. Soy protein: Impacts, production, and applications. In Sustainable protein sources (pp. 23-45). Academic Press. 2017.
- Kebede E. Grain legumes production and productivity 5 Ethiopian smallholder agricultural in system, contribution livelihoods and the to wav forward. Cogent Food & Agriculture. 2020;6(1):1722353.
- Mebrahtu T. Analysis of nutritional contents in vegetable soybeans. Journal of Crop Improvement. 2008;21(2):157-170.
- Chadare FJ, Idohou R, Nago E, Affonfere M, Agossadou, J., Fassinou TK, Hounhouigan DJ. Conventional and food- to- food fortification: An appraisal of past practices and lessons learned. Food science & nutrition. 2019;7(9):2781-2795.
- Eboagu NC, Odidika CC, Ochiagha KE, Nwokoye JN, Ekwunife CM. Formulation of Weaning Food from Fonio (Digitaria exilis Stapf) and Soya Bean (Glycine max). Science. 2020;8(3):122-127.
- Asafo-Adjei B, Singh BB, Atuahen-Amankwah G. Registration of A sontem Cowpea. Crop Science. 2005;45(6):2649-2650.

- Weber R, Aha DW, Becerra-Fernandez I. Categorizing intelligent lessons learned systems. InIntelligent Lessons Learned Systems: Papers from the AAAI 2000 Workshop 2000 (pp. 63-67).
- Desroches S, Mauger JF, Ausman LM, Lichtenstein AH, Lamarche B. Soy protein favorably affects LDL size independently of isoflavones in hypercholesterolemic men and women. Journal of Nutr, 2004;134:574-579.
- Gautam A. Genetic divergence and character association studies in indegenous ridge gourd (Luffa Acutangula (L.) Roxb.) Genotypes. Journal of Pharmacognosy and Phytochemistry. 2017;6(4):1769-1774.
- 13. Duzyaman E, Vural H. Different Approaches of the Improvement procession in some local okra variety. Acta Horticulture, 2002;599:139-144.
- Bartaula S, Panthi U, Timilsena K, Acharya SS, Shrestha J. Variability, heritability and genetic advance of maize (Zea mays L.) genotypes. Research in Agriculture Livestock and Fisheries, 2019;6(2):163-169.
- Glenn KC, Alsop B, Bell E, Goley M, Jenkinson J, Liu B, Martin C, Parrott W, Souder C, Sparks O, Urquhart W. Bringing new plant varieties to market: plant breeding and selection practices advance beneficial characteristics while minimizing unintended changes. Crop Science. 2017 Nov;57(6):2906-21.
- Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH, Mugnozza GS, Moshelion M, Tuskan GA, Keurentjes JJ, Altman A. Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends in biotechnology. 2019 Nov 1;37(11):1217-35.
- Yadav P, Priyanka P, Kumar D, Yadav A, Yadav K. Bioenergy Crops: Recent advances and future outlook. Prospects of Renewable Bioprocessing in Future Energy Systems. 2019:315-35.
- Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W, Bajaj P, Cubry P, Rathore A, Jian J, Doddamani D. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature genetics. 2019 May;51(5):857-64.
- Huo Y, Gao L, Liu B, Yang Y, Kong S, Sun Y, Yang Y, Wu X. Complete chloroplast genome sequences of four Allium species: comparative and phylogenetic analyses. Scientific reports. 2019 Aug 22;9(1):1-4.
- 20. Sahebi M, Hanafi MM, Rafii MY, Mahmud TM, Azizi P, Osman M, Abiri R, Taheri S, Kalhori N, Shabanimofrad M, Miah G. Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools, and the WRKY gene family. BioMed research international. 2018 Aug 7;2018.
- SanghvI GV, Dave GS. Molecular markers in plant biotechnology. Plant Biotechnology, Volume 1: Principles, Techniques, and Applications. 2017;415.
- Adhikari S, Saha S, Biswas A, Rana TS, Bandyopadhyay TK, Ghosh P. Application of molecular markers in plant genome analysis: a review. The Nucleus. 2017 Dec;60(3):283-97.
- Darkwa K, Olasanmi B, Asiedu R, Asfaw A. Review of empirical and emerging breeding methods and tools

© 2021 Scholars Academic Journal of Biosciences | Published by SAS Publishers, India

for yam (Dioscorea spp.) improvement: Status and prospects. Plant Breeding, 2020;139(3):474-497.

- 24. Joshi SP, Prabhakar K, Ranjekar PK, Gupta VS. Molecular markers in plant genome analysis. Journal of Microbiology and Biotechnology, 2011;11(4):438-448. http/www.ias.ac.in/curr sci/Ju125/articles15.Htm.ppl-19.
- Chakravarthi BK, Naravaneni R. SSR marker based DNA finger printing and diversity study in Rice (Oryza sativa (L.)). African Journal of Biotech. 2006;5(9):684-688.
- Orf J, Diers HB, Boerma HR. Genetic improvement, conventional and molecular based strategies in soybeans: Improvement, production and uses. ASA, CSSA, SSSA, WisConsin, USA, 2004;417-450.
- Duminil J, DiMichele M. Plant species limitation: A comparison of morphological and molecular markers. Plant Biosystems, 2009;143(3):528-542.
- Leakey AD, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell DB. Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annual Review of Plant Biology, 2019;70:781-808.
- Kulkarni KP, Tayade, R, Asekova S, Song JT, Shannon, JG, Lee JD. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Frontiers in plant science, 2018;9:1314.
- Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB. Development and Evaluation of SoySNP50K, a High Density Genotyping Array for Soybean. PLoS ONE. 2013;8(1):e54985.
- Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S. SNP markers and Their Impact on Plant Breeding. Intl Journal of Plant Genomics, 2012, 11pp.
- 32. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature genetics. 2010 Dec;42(12):1053-9.
- Zhang X, Borevitz JO. Global analysis of allele-specific expression in Arabidopsis. Genetics. 2009;182:943–95.
- 34. Subbaiyan GK, Waters DLE, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ. Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotech Journal. 2012;(1):1-12.
- 35. Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature biotechnology. 2012 Jan;30(1):105-11.

- Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter. 1983;1(4):19-21.
- Gabriel C, Peyman A, Grant EH. Electrical conductivity of tissue at frequencies below 1 MHz. Physics in medicine & biology. 2009 Jul 27;54(16):4863.
- 38. Masouleh BK, Ten Dam GB, Wild MK, Seelige R, van der Vlag J, Rops AL, Echtermeyer FG, Vestweber D, van Kuppevelt TH, Kiesel L, Götte M. Role of the heparan sulfate proteoglycan syndecan-1 (CD138) in delayed-type hypersensitivity. The Journal of Immunology. 2009 Apr 15;182(8):4985-93.
- Pattemore J, Henry RJ. Sequenom MassARRAY® iPLEX[™] Gold SNP genotyping for high throughput variety identification. 2008.
- Parimala K, Devi RK. Estimation of Variability and Genetic Parameters in Indica and Japonica Genotypes of Rice (Oryza sativa L.). Int J Curr Microbiol App Sci. 2019;8(3):1138-1142.
- 41. Azeez MA, Adubi AO, Durodola FA. Landraces and crop genetic improvement. In Rediscovery of Landraces as a Resource for the Future. IntechOpen. 2018.
- 42. Chairi F, Sanchez-Bragado R, Serret MD, Aparicio N, Nieto-Taladriz MT, Araus JL. Agronomic and physiological traits related to the genetic advance of semi-dwarf durum wheat: The case of Spain. Plant Science, 2020;295:110210.
- Rajkumar R, Kumar V, Murlidharan P, Agarwal, DK. Study on genetic variability and traits interrelationship among released soybean varieties of India (Glycine max (L.) Merrill). Electronic Journal of Plt. Breed, 2010;1(6):1483-1487.
- Reni YP, Rao YK. Genetic Variability in Soybean (Glycine max (L.) Merrill). Intl. Journal of Plant, Animal and Environ. Sci, 2013;3(4):35-38.
- Saxena KB, Sharma D, Vales MI. Development and commercialization of CMS pigeonpea hybrids. 2018.
- Shanti P, Kalamkar V, Sable NH, Maheshwari JJ. Study of Heterosis in Soybean. Journal of Soils and Crops, 2008;18(1):208-211.
- 47. Shah TM, Imran M, Atta BM, Ashraf MY, Hameed A, Waqar I, Maqbool MA. Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. BMC plant biology, 2020;20:1-16.
- Nassar MAA. Heterosis and combining ability for yield and its components in some crosses of soybean. Aust Journal of Basic and App Sci, 2013;7(1):566-572.
- Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science. 2020.