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Abstract | Review Article

Consider the existence of a non-autonomous two-dimensional stochastic plate equation with linear memory term

pullback the attractor on R?. Apply the Ornstein-Uhlenbeck process to deal with the random term, transform the
original equation into a deterministic equation containing random variables, and then estimate its consistency by
replacing the system solution with variables, and prove that the random dynamic system corresponding to the original
system equation pullback the absorption set Existence, and finally proves the system's pullback asymptotically
compaction , which leads to the existence of the pullback attractor of the original system.
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1. INTRODUCTION

The Plate equation is derived from the elastic vibration equations established by Woinowsky-Krieger [7] in
1950 and Berger [8] in 1955. There have been many studies on the gradual progress of the deterministic nonlinear plate
equation. Among them, Carbone [9] explored the singular non-autonomous plate equation with damping term on
Q — R", and verified that when the nonlinear term dissipates. There is an attractor; Baowei Feng et al. [11] considered
a class of plate equations with time-varying delays in internal feedback. The main result is the long-term dynamics of the
system. The pseudo-stability properties of the system are established and the exponential attractor is proved to be
Existence. In the literature [1], the existence of the global attractor in the bounded region of the two-dimensional plate
equation with linear memory term is verified.

For the random plate equation, Ma W et al. in the literature [12] have the existence of the attractor of the
damping plate equation that can add noise; Shen X et al. in the literature [13] explored the randomness with memory
terms and noise that can be added. Plate equation; Yao et al. discussed the long-term morphology of a class of non-
autonomous stochastic plate equations on unbounded regions in literature [14]. What this article discusses is a kind of
non-autonomous two-dimensional plate equation with linear memory term [1] after introducing random addable noise, it

randomly pullback the existence of attractor on R%.

2. PRELIMINARIES
Set (X, d) be a complete separable metric space with Borel o —algebra B(X) let (), be a nonempty set,

and (Q,,F,, P) be a probability space. Suppose there are two mappings: {6’1 (t)}t qand {92 (t)}t  acting on the Q,

€

and ), respectively. For convenience, we abbreviate 6, (t) and 6,(t) as 6, and 6,,, and we call both

(Ql, {6’1 (t)}teR) and (QZ, F,, P, {492 (t)}teR) a parametric dynamical system.
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Definition 1.1[2]: (Ql,{ﬁl (t)}tER) and (QZ,FZ, P,{Hz (t)}teR) be a parametric dynamical system, A mapping
D:R"xQ xQ,xX —> X is called a continuous cocycle on X  over (Ql,{@l(t)}teR)and
(QZ, F,, P, {6’2 (t)}teR) ifforall @ €, w, €Q, and t,7 € R" satisfy the following conditions:

(0. DOC @) R"xQxX — X is (B(R*)x F,xB(X), B(X)) measurable;

(ii). ®(0,m,,,) isthe identity on X ;

(ii)). Dt+7,0,0,,) =D, 6,,0,6, .0,,") O(r,0,®,,") ;

(iv). O, @, ®,,): X — X is continuous.

Definition 1.2: let B and D be e two families of subsets of X which are parametrized by (@, @,) € Q, xQ, . B =
D equivalent to if B(a,, @,) = D(@,, ®,) forany @, € Q, @, € Q, .In the following, we use D to represent some

non-empty subset families of X : D ={D ={@#D(w,w,)c X0, €Q, 0, EQZ}}

Definition 1.3: B ={B(@, ®,): @ € O, , € Q,} be some families of subsets of X forall @ €Y, m, €Q, let
Q(B,w,w,)=NUDL,6,_ 0,6, @, BO_v,b6, ®,))

20t>7

Then call the {Q(B,a)l,a)z):col e, w, eQz} Q- limitsetof B, writeas Q(B).

Definition 1.4: D be some families of subsets of X ,S ={S(@,®,): @ €Q,,w, €Q,} €D . We callSasD —

pullback absorbing set for @ if for all @, €€, @, €Q,,BeD, there exsists T =T (B, @, ®,) >0, for all
t>T such that
O, 6 _@,0, @,,B(6,_@,0, @,,)) = S(@, @)

Definition 1.5: D be some families of subsets of X , we can say @ is said to be D —pullback asymptotically
compact in X if for all @ €Q,w,€Q,, the sequence {®(t,.6, .6, , @, %)}, when t —> o0,

X, € B(6,_@,,0, ,,) has a convergent subsequence in X .

Definition 1.6: D be some families of subsets of X , A= {A (0, 0,): 0 e, 0,¢ Qz} . A\ canbecalled a

D — pullback attractor for @ if A fulfill the following conditions (i) - (iii)
(). A ismeasurablein Q,,and A (a)l,coz) is compact for all @, € QQ, w, €2, ;

(i)). A is invariant, that is, for every @ €Y, @, €Q, O(t, @, 0, A (@, @,))=Alt,6,@,0,®,) when

t>0.
(iii). A attracts every member of D , that is for B={B(@,®,):®eQ,0,eQ,}eD, for all

®, €, w, €, thereis !im d (CD(t, 0,0, @, B(6,_ .0, \0,,)),A(w,0, )) =0.

Suppose now €, =R, Define operator family {01 (t)}t . of shift operators by, forall t,h e R, 0, (h) =t+h,

Proposition 1.1: D be some families of subsets of X , and @ isa a continuous cocycle on X over (R,{@l (t)}teR)

and (QZ,FZ,P,{HZ(t)}teR).d) has a D —pullback attractor A in D if and only if @ be D-pullback
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asymptotically compact , has a closed measurable D — pullback absorbing set S in D andforany 7€ R, w, €€,

there exsist the unique attractor A in X : A(T,G))ZQ(S,Z’,CO)Z U Q(B,z‘,a)).
BeD

Lemma 1.1: Gagliardo-Nirenberg Inequality
Let Q be an open, bounded domain of the lipschitz class in R" . Suppose that1< p, <00,1<r,0<8<1, if

k-2<om-)+(1-0)2
p q r

Then the following inequality holds
Jul,, <c@ul” Jul,,

Lemma 1.2: Gronwall’s lemma
Suppose that u(t) , h(t) and g(t) are three locally integrable function over [t,,+oo] , If the differential equation
satisfies the following

%eru(t) <h(t),

Then forall y>0
tl
u(t,) <exp(—y(t, —t, u(t,) + L, exp(= (t—s))h(s)ds.
3. COCYCLES FOR NON-AUTONOMOUS STOCHASTIC PLATE EQUATIONS WITH LINEAR MEMORY

ON R?
Consider the plate equation defined on R? with a linear memory term and white noise

U, + U+ HO)A — (N, + Blu,[u, — (N, + Blu, [ u,, + T¢'(5)A2u(t _s)ds

2.1
do(t
=1, f(xy,t)+ ph(x, y)%
Initial value conditions
u(x, y,7) =u’(x, y) 02

0
UI(X’ y’T) = u t(X7 y)
Where, I;,1,,N;, N,, o, # are non-negative constants , ¢(0),@(0) >0,¢'(S) <0,¥seR", In order to facilitate
the processing of memory term, without loss of generality, there is @(0) =1, h(X,y) is known functions in

H 2(RZ) , random variables @(t) is a two-sided real-valued Wiener process on a probability space.

Next, we define the relevant continuous stochastic dynamic system for the plate equation in (2.1). Consider the
probability space (Q, F, P) , Which Q= {a) € C(R, R) : a)(O) = O} .LetF is the Borel o —algebra induced by

the compact-open topology of €2 , P the corresponding Wiener measure on (Q, F ) :

Definite a group {HZ’t }t o acting on a probability space (Q, F, P) , and the time shift by
0, 0()=o(-+t)—o(t),weQteR
Then (Q, F,P, {szt}t R) is a parametric dynamical system.

Forall @€ Q) , we consider the Ornstein-Uhlenbeck equation:
dz+zdt=dw
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And we have dz(6, @)+ 2(6,,w)dt =dw, Then we can easy to check that the random variable z have a stationary
solution denote by

Z(w) = —Iio e‘w(r)dr.

Then there exists set € which is@,, invariant set of full P measure, and the random variable z(6, @) is
continuous in T forany @ € €2 , then it is found in reference [4] [5] [6] , the variable |Z(a))| is tempered . For the sake

of simplicity, we don't distinguish between Q and Q .
Let £(S)=—¢'(S), and define the following transformation

n(x,y,s) =u(x, y,t) —u(x, y,t—s)
Then (2.1) can be transformed into the following equations
2 2 <
Py + 60U, +A%U— (N, + Blu, | u, — (N, + ,6’|uy| u,, + Iy(s)Aznds
0

do(t) (2.3)

=1, f (X, y,t)+ ph(x, y)T

n,+n, =4,

Then introducing variables m = U, + 46U,V =m—hz(6, @) , (2.1) can be transformed into the following deterministic
equation with random variables by the Ornstein-Uhlenbeck Transformation
V=U,+0ou-hz

n +1s =U

p(V, +8%°U— 6V —6hz) + 1,1, (v+hz — 5u) + A’u— (N, +ﬂ|ux|2)uXX —(N, +ﬁ‘uy‘z)uw (2.4)

+ j u(s)A%pds = . f (X, y,t) + phz
0

If the initial time of the system is 7, then the initial value condition of equation (2.4) is
u(x, y,z) =u’(x,y)
u (%, y,7) =u’ (x,y) (2.5)

77 (X, Y,8) =u(x,y,7)-u(X,y, 7 =s)=7"(x,Y,s)
now, m’=u’(x,y)+su’(x,y), v°=m’—-hz(z).
In this paper, we make the following assumptions about the memory kernel £ function:
(H1) xeC'(R)NL(R), 1/(s)<0,forany seR";
(H2) j:’ u(s)ds=M >0;
(H3) £/(s)+au/(s)<0,forany se R",a >0.

In this paper, we denote by H = L*(R?),V = HZ(R?) endowed with the inner product (-,-), ((,)) respectively,

the norm ||, || H, | " respectively, and denote the H”p as the norm of L” (Rz) .

[ © 2021 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India [ 108 |




Tieyuan Zhang & Xianyun Du., Sch J Phys Math Stat, June, 2021; 8(6): 105-117

Where, (u,v):iju(x, y)V(x, y)dxdy | ((u,v)):ijAu(x, Y)AV(X,y)dxdy , and we define D(A)={veV,AveH],
A=A?, the operator A is assumed to be: D(A) — H are isomorphism , then there exists « >0 ,such that

(Au,u) > a||u iﬂ for all u €V .From the Poincare inequality, we have:||V||H2 > /ll”V » YveV, where A is the

first eigenvalue of A% and in order to determine the phase space, regarding the memory kernel function x , the
following weighted Hilbert space is introduced:
Let Lzy(RJ’, HZ) be the Hilbert space of H/ fuctions on R™, and the inner product and norm are defined as follows

(8.),.y =], #(s)(Ag(s). Ay (s))ds
65y = (6.6, = J; #(5)lel} ds

We denote H, =V xH x Lzﬂ (R",V) , using the classic Faedo-Galerkin method [3], the solution of equation
(2.4) can be well-posed in phase space H0 under the above assumptions, that is, equation (2.4) has a continuous weak

solutionW(t)=W(t+T,T,92ﬁTa),WO)Z(U(t,T,a)),V(t,T,a)),n(t’T’w)) , in phase space that depends on the initial value
w, (% v0,n°) .

Next we can define a cocycle @ : R* x RxQxH; — H, , and we let
D(t,7,0,W,) =W(t+7,7,6, o,W,) (2.6)

Let B be a random bounded subset of H;, , and denote by HB” =Sup|(p| .LetD= {D(r,a)) ‘T€E R,a)eQ} is a
@eB

family of subsets as B , and satisfying to be inclusion-closed and tempered, that is

lim e** D(HS’QZ-S“’)H; =0 2.7)

§—>—0

Where A is a non-negative constant. Let D, = {D = {D(T,a)) TeR,we Q}} . It can be seen D, is tempered

from literature [2]. For the external force term, when we deriving uniform estimate of solution, the following condition
will be satisfied for any 7 € R, there is

J: e®|f (., s,)|2 ds < oo 2.8)
Then easy to get from (2.8)

. T s 2 _

lim LO jyk e | (x,y,s)[ dxdyds =0 2.9)

4. UNIFORM ESTIMATES OF SOLUTIONS
Next, we estimate the uniform of the solution of the equation. In this paper, we use the symbol C to represent a
non-negative constant, whose value is different in different places and can be determined by context.

Lemma 3.1: If the above assumptions are true, then forany 7€ R,weQ, D :{D(T,a)):r € R,a)eQ} eD,, and there

existtime T =T (z,, D) >0 , for the solution of equation (2.4) for all t >T , there are
* <R(o)

J7A%

vz.z-t.6, oy, ) +|u@r-t.6, ou ). +|n.c 1.6, @n,.)

3.1)
J'T_t e®¢IE(s)ds <R(w)
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where E(s) =|v(S)|" +[Au(s)|" +]u, &) +[u, &) +[u, ) +[u, G+l . R(e) is temperea.

2

rr rr

Proof. Taking & € (0,8,),, =min A ,—2- 1 Taking the inner product of the third formula in equation
4p 2rr, ‘p+1

(2.4) with v in L(R?) , we can get that

1d

2 {p||v|| T R Y S W YT T }+| NS+ N[, |

||u i +5 Hu [} +7.9) .~ (8u, 8h2(6,,) - N, (u,. b, 2(8,,0)) N, (U, 0, 2(6,,0)) 3.2)
Luf ,z(ez,tw)hx)—g(\uy\ 0, 2(6,,0) =11 V)
Where |, = —5,o||v||2 +Ir, ||v||2 + 5||Au||2 — (1,8 = 5% p)(U,V) + (1K, — 5p — p)(hz(6,,®), V).

Then take the value of & into the calculation to get
2 2
1, =(nr, _§P)||V” + 5”AU” —(rnS - 8% p)(u,v)+(rr, —p - p)(hz(6,,0),v)

Ly, —op 9 L, — o L, —dp—p)°
2t -ap- M2 J||v||2+[5‘52—112 p]llAunz—(“ L (0,00 G
Ly Oy 2 (ILh,—d80—p)° 2
Y O

For memory term (77, V) v

7V),v =5 ||f7|| v 1), +8(,0),, +(1,-02(6,,0)) (34)

2 dt
It can be obtained by applying (H1-H3) and young and holder inequalities
1 po d 2 1e= |, 2 a2
(7.1 ,v = [, w(s) Al dS=—§IO #s)|an] ds=Z|nl,,

8(7,u) =6jo°°u(s)(An,Au)dsz—5( [ us)|an|f ds)ﬂz-( [ () Jaulf ds)”

(3.5)
2= L, Ol o —%ZI;” w)aul ds= =2y, —MTyIIAullz
01 —12(0,,0) .y =~ ) An, h2(6, ))ds >~ [}, -2 ane(@, o)
Can be obtained from (3.5)
19025 Sl + 21, ~ M -2 e, o) @9
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Similarly, we then use holder and young inequalities to estimate the last few terms on the left side of (3.2) inequality

—(Au, Ahz(6,,0)) > —3||Ahz(<92tgo)||2 —§||Au||2

_Nl(u 2.t 2t __N ”U ”
—Nz(uy,hyz(ezvla)))2—2—§||hyz(6?2,ta))|| __N2||uy||2 (3.7)
—§<|ux|3,hxz<ez,tw»z—% R T
Lo .oz Ln 0.0, - ‘%u L
To (3.2) the external force term on the right
n(f <af fvf< 27+ 22 v e
r, 4
2 2 2 pB s p 4 2 ) )
Denote E(t)={p”V” +HAUH ZHUVH +=|lu 4+EHUVH4+H77” ylv},then there exist a non-negative
constant C be related to I;,1,,N;,N,,d, ,M,a,h , we take
-dp-p): 2M
- max =2Vt Py Lt Mg Mo 2 L 2}
0 a
We can get the following formula from (3.1)-(3.8):
d 1 2M6 0 o)
B+ 2456 - Z ) Jauf N N, o+ L+ L[+ S,
2 (3.9)
l|| | +c@+|z(6,0 H +z(0,0 H)
_ 1 1 {5 Lr, a}
Take the appropriate value of ¢ so that , then we take C, ==—min , there are
a 2 4'2p'8
—E(t)+2c E(t)<—|| I +C(1+H 0,,0) H +H 6, @ H) (3.10)
Multiply (3.10) by €*“ and integrate on (7 —t,7)
E(r)+c, I:_te%(“” E(s)ds<e ™E,_, +e ™% %Lc e[ f (s)| ds
2
+C [ et (1 26,0 +]2(6,._.)[)ds G.11)
—Cqy —CoT 21, + CoS 0 CoS 2
<e“E_ +e r—: [ e[ t() ds+C[ e 1+]2(6,.0)| +[2(6,.0)|;)ds
Take E, , e D(r-t,6, _ta)) , there is
limsupe - HD(T—t,HZ_ta))Hi =0 (3.12)
t—o0 0
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Therefore there exists time T =T (z,, D) >0 so thatforall t >T , e E. <1, let

R(w)=1+eE,_, +&™* % j; e || f (s)[" ds+C jio e (1+ Hz(&zvsa))uz + Hz(@zvsa))uj)ds , Easy to check
2

that lim e™ HR(a))HH =0 from (2.8) etc. Then it can be known that R(a)) is tempered, which completes the proof
t—>—0 0
of Theorem 3.1.

Lemma 3.2: If the above assumptions are true, then forany 7€ R,we Q, D= {D(r, a)) teRwe Q} eD,,

then there exist time T =T (7, @, D) > 1, for the solution of equation (2.4) forall t >T and & >0, there are

| A (UG v )| +Hau e -6, ou, ) + [ S r-1.6, on, )| d)ddy<e

Where (VH YU s 77,4) e D(r-t, 92,460) :

Proof. fistly, let M(S) be a smooth function defined on R* sothat 0<m(s) <1 forall Se R,
0 when 0<s<1
m(s) =

= (3.13)
1 when s>2

Then there exists a positive constant ¢ so that m'(S)<c, m"(s)<c, taking the inner product of the third

2 2
formula in equation (2.4) with mLX +2y jv in L*(R*) , and denote C, = ,r, — pJ,C, = I,I, — pS — p , then we

can get that
1d

PYTaLE pm(

)vzdxdy 5S¢ j m( )uvdxdy+c.[ m( )vzdxdy

sc, m( Y y )havdxdy + | Y Atudxdy - N . m( Y y u,, vdxdy

(3.14)
—ﬁijm(X +y )|u | u vdxdy — N _[ ( y )u,, vxdy — ,Bf m( )‘u ‘ u,, vdxdy
j0°° () ijm )vAzndxdyds [ j m( )fvdxdy
For similarity and (3. 3) the left side of (3.14) can be estimated
-6t [, m(*—- y Juvxdy| > ~¢,6% [ m(*—7 y )uzdxdy—— [ Y axdy
52 (3.15)
c X2 +y?
>— ;le ijm( 2 )(Au) 2dxdy — =2 I m( )v dxdy
2 2 2
m( Y hzvdxdy| > - 2 ijm(X . +y" ) (hz)’xey — %2 j mC Y axdy e
op

x+y

)vAzudxdy I m( y YAvAudxdy + I m”(

JmC

For (3.17) , among them, it can be seen from the expression of V and the setting of the smooth function m

) k22 vAudxdy (3.17)

2 2
2
[ m"(xk#)FvAudxdy > >——||Au|| - 2||v||2 (3.18)

2
.[Rz c &z vAudxdy
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2

Lzm( )AvAudxdy J. m( )A(u + ou —hz)Audxdy

%% Rzm(kazy)(Au)zolxolyijzm(x2 ) (Au)dxdy - | m(HY y )AuAhzdxdy .
2%% . m(%)(Au)dedy+6J‘Rzm(x2 )(Au) dxdy I —m(X Yy )(Au)zdxdy

- Rz%m(x Y )(Ahz)’ dxdy

For terms containing N, in (3.14)

—N, ( y u,, vdxdy = N_[ m( y )u vdxdy+N_[ m(X Y i)z(vu dxdy  (3.20)
For (3.20)
x +y 2x N,c
N[ ) gyl > == [ dxdy>——(||v|| +u ) (3.21)

Nj m( y )u, v, dxdy = Nj m( y U, (U, +6u—hz), dxdy

~1d X* + X +y°
SOt IRZ M—7— y )(u, ) dxdy + NléLzm(Ty)(ux)zdxdy—Nj ( y )u,h, zdxdy .
J1d X2 +y? X2 +y? X2 +y '
> . Nlm(T)(ux)dedy+ NG|, m( % )(u, ) dxdy - j % im( )(u, )’ dxdy
N, x*+y° 2
—jRZZ—;m( % )(h,z)" dxdy.
Similar to for terms containing N, in (3.14)
2
N, [ m )u vdxdy = N I m( )u dxdy+Nj m(X -y )igvu dxdy  (3.23)
X2 +y? 2y 2 2
N, Jo M= )k2 wu, dxdy| > L<W<fk ,dxdy > — Ny (||v|| +uy| ) (3.24)
2 2 2

X"+ X*+
szRzm( kzy Ju,v, dxdy = NZIRZm(Ty)uy(ut+5u—hz)ydxdy

2

ZEEJ'RZ sz(ﬂ)(uy)zdxdy+ Nzéijm(sz;zy)(uy)zdxdy—N I ( y Ju,h, zdxdy

2 dt k?
(3.25)
14 2, .2 22 N,o
2 N o, oy 0T mC = o, oy -, m(X%)(“ydedy
N X +y
_IRZ_zm( ' )(h z) dxdy.
20 k
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And for (3.14) the fourth item from the left has

x+y

—ﬂIRZ )|u,|” u,,vxdy
3.26
Ys; x +y 3] x +y? 2x (320
:EIRZ )|u, | v, dxdy + = _[ o |u | vdxdy
For (3.26)
x +y%. 2X fc c
B ) S Puady > (L2 Ju vy > L2 - L2 62
For (3.27) by Gagliardo-Nirenberg, holder, young inequality, there are
Be pe
- |3——|IVI|2>——||A uf’ - IIVI|2>——||A u —C——II I (328)
ﬁijm( )|u | vdxdy—ﬁj m( )|u | (u, +Su—hz) dxdy
2dt-[R2ﬂ X k+2y )(u )dxdy+ﬂ5j m(X V) (u, ey -2 j m(X Y u, b, zddy -
, .
o
Zdt.[Rzﬂ < ;Zy )(u )dXdY+ﬂ J m(X il )(u, ) dxdy - I X +y )(u, ) dxdy
e g™ (h z)" dxdy.
Similarly,
—ﬂijm(X Yy, [ u, vaxdy
(3.30)
:ﬁIRz s +y )|u, ‘ VdXdny’BI m(X Y Zy‘u ‘ vdxdy

Bl (Y2 pe e Bc
ijzm( ) 2 |u, ‘ vdxdy| > jkg\/ﬁsﬁk‘uy‘ vdxdyz——||Au||4—c—?||v||2 (3.31)

‘u ‘ U, +0U— hz) dxdy

gj X+y)‘u‘vdxdy ﬁj m(

=11L2§m(u)(uy) dxdy+’86I m( +2y )(uy)zldxdy_ﬁjzm(X +2y )‘u ‘3 h, zdxdy

2,2 '
28 e oy 22 o,y () oy
2 2
e ) ey
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For memory term

J‘owﬂ(s)ij m

—j y(s)ijm( y )AvAndxdyds+j y(S)J m"( X I;y )k VA ndxdyds

y2
% WA’ ndxdyds

For (3.33), similar to the previous processing methods , there are

X"+
" u(s) j —y)k—vAndXdyds

,u(S)J. VA ndxdyds‘
,u(s) j An) dxdyds

ju(s)j e
1d = X2 +y°
—any(s>ijm( "
+f, w)f.m

1d
> " u(s)], . m(*

M 52 X* +y? 2
- J.Rzm( 2 )(Au)dxdy—7

el IL,V e oI

2
Zy JeAuAnexdyds - [ u(s) (Y7 Ahza paxdyds

2

x2+y
2

m( )(Ahz)’dxdy

R2
For external force term

X2 +y? r X2+ y? rr, X2 +y?
rlijm(Ty)fvdxdyséijm( 8l )(f)zdxdy+%J.Rzm( kzy )(v)’ dxdy

that
1d X2 +y? 2 2 2 2 B PP 2
oa RZm( 2 )(pM +|Auf"+ N, [u, +N2‘uy‘ +—\ux\ +—‘uy‘ +J'O u(s)(An) dsjdxdy

X2 +y? L), e ¢ & M5 2 N, g2
[, m —co-C -1 V[ +| §-L5-=— Au +—u 2~ lu
R? ( k2 ){(Cl Cl 2 4 J‘ ‘ [ 4]12 4 ‘ ‘ ‘ 2 y

E\ux\ +£‘uy‘4+%j:y(s)(An)z ds}dXdYSQ(HVHZ+HAUH2+HUXHZ+HUyH +H77va)
<, Al +C, (1+HZHZ+Hij)+rL: [mE ktyz)(f)z dxcly
From Lemma 3.1 and (3.10), it can be seen that there exist positive constant C, > 0 such that
% RZm()(2k+zy2)(;)|v|2+|Au|2+N1|ux|2+N2|u | ﬁ|u| +ﬂ|u +I s)(An) dsjdxdy

XZ
-I-CJRZ m(

(p|V| +[Auf + Ny u, [+ N, u, | +'B|u 4+ﬁ|u | +jwy(s)(An)2dsjdxdy

2
SC1<||V||2+||AU||2+||ux||2+||uy||2+||f7|| D+ C, (12 + el )+ Im( (1) day
2

)(An)zdxdyds+j°°ﬂ(s)—— m(X +y° )(An) dxdyds

)(An) dxdyds + < j y(s)j k+2y )(An) dxdyds

(3.33)

(3.34)

)AvAndxdyds J' y(s)J' m( y ——>)A(7, + 1, +Su—hz) Andxdyds

(3.35)

(3.36)

It can be seen from (3.14)-(3.36) that there are non-negative constants C,,C, related to N,,N,,M,d,c, 3,k , such

(3.37)

(3.38)
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Similar to (3.11), apply Gronwall's lemma to (3.38), and then from Theorem 4.1, there are
XZ 2
ijm( I;y )[p|v|2+|Au|2+N1|uX|2+N2|uy|2 ﬂ|u ﬂ|u| j An) dsjdxdy

I (U T T e I

2re (3.39)

h

<g® I E_ds+Ce °°tJ‘ °°SR(w)d5+C1e_c°tJ‘ e“R(w)"ds

71 T

+Ce o[ e (1l + el s+ [ e[ - T

O [ e Lefaf ol [ e 11 oy
2

j.éx2+y22k
Then when t is large enough, from (2.9) (3.12) we can see that the above formula tends to 0, therefore exist time
T(z,w,D) for t >T and any positive constant &, such that

2 2
LZ m(x I;y )(p|v(r, f—t,Hzﬂa),VH)|2 +|Au(7, r-t,0, 0, UH)|2 +IO ,u(s)|r7(r, r-t,0, 0, 77H)|2 ds)dxdy

, (3.40)
<J Y [p|v| fauf enfo oo 2oL an) dsjdxdy<g
At this point, we have completed the proof of Theorem 3.2.

5. EXISTENCE OF PULLBACK ATTRACTORS FOR STOCHASTIC PLATE EQUATIONS
Next we will prove that @ is D — pullback asymptotically compact in H,, .

Lemma 4.1: From assumptions of the front, @ is D — pullback asymptotically compact in HO . That is, for all
treRweQ,DeD,, ®(r-t,6, o W,,) hasaconvergent subsequence in H,

when t, —>oo,W,, € D(z-t,,0,  o,W,,).

Proof. To prove the asymptotically compact of d, then it needs to be explained that for any & >0, there is a finite
sphere coverage with a radius not exceeding & for the sequence CI)(r—tn,sz_tna),Woyn). And we denote

Q. :{X, y e R :|X|+|y| < k}, where k >0, and let QF =R*/Q, . Then it can be known from Theorem 3.2,

there exist K = K {z', , g} > 2k and N, =N, {T,a), D,e} >1 so that forall N> N, there is

&
‘d)(r—tn 0,  O,W,,) Ho(G) < > (4.1)

According to lemma 3.1, there exist N, = N, {T,a), D,g} > N, sothat forall N> N, , there is
(.6, o W,,)|,

) <c(r,w) 4.2)

Where C(7,w) is constant controlled by the right side of (3.11. Therefore @ is precompact in H, (Qk) so that there

&
exist a finite sphere coverage with a radius not exceeding E in the HO(Qk), and according to (4.1),

O(z—t,,6, , @,W,,) hasa finite sphere coverage with a radius not exceeding & in the H,(R?), now we proved

that @ is D — pullback asymptotically compactin H,.

Lemma 4.2 From assumptions of the front, the cocycle @ determined by (2.1) - (2.2) has a unique D — pullback
attractor A € D, in H,,.
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Proof. According to the lemma 3.1, we know that @ has a closed measurable D — pullback absorbing set,

and @ is D —pullback asymptotically compact in H, by lemma 4.1. hence allow from Proposition 2.1, we can know

that the cocycle @ has the unique D — pullback attractor A € D, in H,,.
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