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Abstract  Original Research Article 
 

In this paper, the (3+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation is studied by the bifurcation theory of 

dynamical system. Based on this theory, phase portraits of different topological structures of the equation are obtained, 

which clearly show all bounded orbits corresponding to the bounded traveling waves of the equation. Furthermore, the 

periodic wave solution of the (3+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation are obtained by calculating 

complicated elliptic integrals. 
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1. INTRODUCTION 
In the past four decades, the research area of 

nonlinear evolution equations modeling various 

physical phenomena has played a significant role in a 

great many applications such as fluid mechanics and 

water waves. A large amount of effort has been 

expended over the last ten years or so in attempting to 

find robust and stable analytical methods to solve these 

equations. Many powerful methods have been presented 

to investigate exact solutions of nonlinear equations, 

such as the Backlünd transformation method [1, 2], the 

homogeneous balance method [3], Jacobi elliptic 

function method [4], extended tanh method [5, 6], F-

expansion method [7, 8], Lie group analysis [9-11], the 

modified simple equation method [12, 13], variational 

iteration method [14], and so no. 

 

In 1990, Bogoyavlenskii and Schiff used the 

nonlinear integrable equation Calogero-

Bogoyavlenskii-Schiff (CBS) equation to describe the 

interaction of Riemann waves along a two-dimensional 

space [15, 16]. Riemann wave mechanics is one of the 

most important applications of physics and engineering, 

such as tsunamis and tides in rivers, magneto acoustic 

waves in plasmas, internal waves in oceans, and optical 

tsunamis in fibers.  

 

In this paper, we study the following (3+1)-dimensional CBS equation 

𝑢𝑥𝑡 + 𝑢𝑥𝑢𝑥𝑦 + 𝑢𝑥𝑥𝑢𝑦 + 𝑢𝑥𝑢𝑥𝑧 + 𝑢𝑥𝑥𝑢𝑧 + 𝑢𝑥𝑥𝑥𝑦 + 𝑢𝑥𝑥𝑥𝑧 = 0, …………………. (1.1) 

 

At present, scholars have published a lot of 

research results on the solution of Calogero-

Bogoyavlenskii-Schiff (CBS) equation. For example, 

multiple Exp-function method is used to obtain multiple 

soliton solutions of CBS equation [16], and multiple 

soliton solutions and cross solutions are constructed 

based on Bell polynomial, auxiliary variables and 

bilinear form [17]. There are also many research 

methods, such as the singular popular method, the 

generalized Kudryashov method, the modified simple 

equation method, the symmetric method and the 

generalized Riccarty equation expansion method [19-

23]. 

 

Although there are many profound 

consequences about the traveling wave solutions of Eq. 

(1.1), which are beneficial for us to understanding of 

nonlinear physical phenomena and wave propagation, 

the traveling wave solutions of Eq. (1.1) is not sufficient 

discussed, especially for its bounded traveling wave 

solutions. Therefore, the purpose of this paper is to find 

all possible bounded traveling wave solutions in Eq. 

(1.1). Motivated by them, our first step is to transform 

the traveling wave equation of Eq. (1.1) into a 
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dynamical system in R3. Fortunately, we can find a 2-

dimensional invariant manifold which determines most 

of dynamical behavior. Then, bifurcation analysis can 

be applied to seek the parameter bifurcation sets which 

determine various qualitatively different phase portraits. 

Finally, by calculating the complex elliptic integrals 

along these orbits, we will show the expressions of all 

bounded traveling wave solutions in the (3+1)-

dimensional Calogero-Bogoyavlenskii-Schiff (CBS) 

equation. 

 

2. Traveling wave system and bifurcation analysis 

With the following traveling wave transformation 

𝑢 = 𝑢( ,  ,  ,  ) = 𝑢( ) = 𝑢( +   +      )， 

 

Equation (1.1) can be transformed into its raveling wave system 

          𝑢′′ + 2( +  )𝑢′𝑢′′ + ( +  )𝑢′′′′ = 0 …………………... (2.1) 

 

Where ＇stands for d/dξ, a, b ≠ 0 represent the wave numbers in the y and z directions respectively and c ≠ 0 is the 

wave speed. Integrating (2.1) once and retaining an integral constant, we have 

( +  )𝑢′′′ + ( +  )(𝑢′)2   𝑢′ = 𝑒 ……………………….. (2.2) 

 

Where parameter e is the integral constant, letting u′ = v , we have 

{
𝑢′ = 𝑣……………………………… . (2.3)

𝑣′′ =  𝑣2 +
 

 +  
𝑣 +

𝑒

 +  
 …… (2.4)

 

 

Obviously, Eq. (2.4) does not contain function u. So let us analyze the flow of Eq. (2.4) firstly. Without a doubt, Eq. (2.4) 

can be rewrite to the equivalent system 

,
𝑣′ =   

 ′ =  𝑣2 +
𝑐

𝑎+𝑏
𝑣 +

𝑒

𝑎+𝑏
 
.…………. (2.5) 

 

Which is exactly a Hamiltonian system with the energy function 

 (𝑣,  ) =
 

2
 2 +

 

3
𝑣3  

𝑐 

2
𝑣2  e 𝑣 …………………… (2.6) 

 

Where  =
 

𝑎+𝑏
 . 

Next, we need to discuss the equilibrium of system (2.4). 

 

Theorem 2.1. When  2 2 + 4𝑒   0, system (2.5) has two equilibria, a saddle   (
 𝑐 √𝑐   +4𝑒 

2
, 0) and a 

center  2 (
 𝑐+√𝑐   +4𝑒 

2
, 0). When 2 2 + 4𝑒 = 0, system (2.5) has a unique equilibrium of higher order  3 .

 𝑐

2
, 0/, 

which is a cusp. When  2 2 + 4𝑒  0, system (2.5) has no equilibrium. 

 

Proof. When  2 2 + 4𝑒  0, a direct calculation shows that system (2.5) has two equilibria   (
 𝑐 √𝑐   +4𝑒 

2
, 0) and 

 2 (
 𝑐+√𝑐   +4𝑒 

2
, 0). Let   ( =  , 2, 3) 

to denote the Jacobi matrix of system (2.5) at point   ( =  , 2, 3), we have 

  = [
0  

√ 2 2 + 4𝑒 0
],  

 2 = [
0  

 √ 2 2 + 4𝑒 0
]. 

 

From this, it is not different for us to check  

 𝑒   =  √ 
2 2 + 4𝑒  0， 

 𝑒  2 = √ 
2 2 + 4𝑒  0.  

 

By the theory of plane dynamic system [24, 25, 26] and the properties of Hamiltonian system [25], it is not 

difficult to check that    is a saddle and  2 is a center.  

 

When  2 + 4𝑒 = 0, the system (2.5) has only one equilibrium  3 .
 𝑐

2
, 0/ ,with a nilpotent matrix 

 3 = 0
0  
0 0

1.  
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This shows that  3 is a degenerated equilibrium. In order to judge the type of  3 further, we do the following 

homeomorphic transformation 

 = 𝑣  
  

2
,  =  , 

 

At this point, the system (2.5) can be transformed into its normal form below 

{

  =  ,

 ′ =   2 +
 2 2

4
+ 𝑒 .

 

 

By the qualitative theory of differential equation [26], we have  = 2 and   = 0, which means that  3 is a 

cusp.  

 

When  2 2 + 4𝑒  0, it is easy to see that there is no equilibrium of system (2.5).  

 

Obviously, the hypersurface *( ,  ,  , 𝑒)| 2 2 + 4𝑒 = 0+ divides the 4-dimensional parameter space into two 

regions. The corresponding parameter bifurcation sets are composed of *( ,  ,  , 𝑒)| 2 2 + 4𝑒  0+, 
*( ,  ,  , 𝑒)| 2 2 + 4𝑒 = 0+ and*( ,  ,  , 𝑒)| 2 2 + 4𝑒  0+.To illustrate the parameter bifurcation sets ,we fix the 

parameters at a=1 and b=0 to give a special bifurcation boundary. 

  𝑒 =
 2

4
 

 

Shown in Fig 1 

 

 
Fig 1: Transition boundary on c-e plane 

 

As we know, the Hamiltonian system is a system determined by its potential energy function. So, according the 

energy function (2.6) and the properties of the Hamiltonian system [19], we have the following results. 

 

Case 1: Consider  2 2 + 4𝑒  0, there is a homoclinic orbit  connected to the saddle   . The center  2 is surrounded 

by the family of periodic orbits 

 ( ) = * (𝑣,  ) =  ,   ( ( 2, ),  (  , ))}, 
 

Where 

 (  ) =
  3 3 + ( 2 2 + 4𝑒 )√ 2 2 + 4𝑒   𝑒  2

 2
, 

 ( 2) =
  3 3  ( 2 2 + 4𝑒 )√ 2 2 + 4𝑒   𝑒  2

 2
. 
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Moreover,  ( ) tends to  2 as    ( 2) and tends to   as    (  ), besides the homoclinic orbit and 

periodic orbits, other orbits of system (2.5) are unbounded, as shown in Fig 2(a).  

 

Case 2: When  2 2 + 4𝑒 = 0, all the orbits here were unbounded, the system (2.5) has two types of orbits. Orbit   was 

different from other orbits, as show in Fig 2(b). 

 

Case 3: When  2 2 + 4𝑒  0, all the orbits here were unbounded, the system (2.5) has only one type of orbits, as show 

in Fig 2(c). 

 

 
Fig 2: The phase portraits of (2.4) 

 

Obviously, there is only case 1 has bounded orbits, namely a family of periodic orbits  ( ) and a homologous 

orbit   (see fig.2(a)), which correspond to the periodic wave and shock wave of system (2.5) respectively. Then we will 

give the expressions of traveling wave solutions corresponding to these bounded orbitals by calculating complicated 

elliptic integrals. 

 

3. Explicit traveling wave solutions of Eq. (1.1)  

In this section, we will give the explicit expression of all bounded traveling wave solutions for Eq. (1.1). 

According to the system (2.5), in order to derive the final traveling wave solutions 𝑢( ) of the (3+1)-dimensional CBS 

equation, we need to integrate the solutions of system (2.5) once with respect to  . 

 

3.1 Consider the periodic orbits, from the energy function (2.5), any one of the periodic orbits  ( ) can be 

expressed by 

 =  √
2

3
√(𝑣3  𝑣)(𝑣  𝑣 )(𝑣  𝑣2), 

 

Where 𝑣 , 𝑣2 and 𝑣3 are real numbers and the relations 𝑣  𝑣2  𝑣  𝑣3 hold. Assume that the period of these closed 

orbits is 2T, and choose initial value 𝑣(0) = 𝑣2, we have 

∫
 𝑣

√2
3√
(𝑣3  𝑣)(𝑣  𝑣 )(𝑣  𝑣2)

 

  

= ∫   
 

 

, 0     . 

∫
 𝑣

 √
2
3√
(𝑣3  𝑣)(𝑣  𝑣 )(𝑣  𝑣2)

  

 

= ∫   
 

 

,      0. 

 

The two integral expressions can be rewritten as  

∫
 𝑣

√2
3√
(𝑣3  𝑣)(𝑣  𝑣 )(𝑣  𝑣2)

 

  

= | |,       . 
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Noting that  

∫
 𝑣

√(𝑣3  𝑣)(𝑣  𝑣 )(𝑣  𝑣2)

 

  

=       (√
(𝑣3  𝑣 )(𝑣  𝑣2)

(𝑣3  𝑣 )(𝑣  𝑣 )
,  ), 

Where  2 =
     

     
 and  =

2

√     
, we get the expression of periodic wave solution of the system (2.5) 

𝑣 ( ) = 𝑣 +
(𝑣3  𝑣 )(𝑣2  𝑣 )

(𝑣3  𝑣 )  (𝑣3  𝑣2)  
2 (√

𝑣3  𝑣 
 

| |)

,       .  

 

The odevity of elliptic function leads to 

𝑣 ( ) = 𝑣 +
(𝑣2  𝑣 )

  
𝑣3  𝑣2
𝑣3  𝑣 

  2 (√
𝑣3  𝑣 
 

 )

,       .  

 

From (2.3), we need to integral above expression once again to get the final solution of Eq. (1.1) using the integral 

formula of elliptic function 

∫
 𝑢

      (𝑢)
=
 

  2
 * (𝑢) +  ,      (𝑢)-  (𝑢)+  

Where  ′ = √   2. 

 

Then, the first type of bounded traveling wave solution of system (1.1) can be calculated as follows 

 𝑢 ( ) = ∫𝑣 ( )   = ∫

[
 
 
 
 

𝑣 +
(𝑣2  𝑣 )

  
𝑣3  𝑣2
𝑣3  𝑣 

  2 (√
𝑣3  𝑣 
 

 )
]
 
 
 
 

   

= 𝑣  +
𝑣2  𝑣 
2

∫

[
 
 
 
 

 

      (√
𝑣3  𝑣 
 

 )

+
 

 +     (√
𝑣3  𝑣 
 

 )
]
 
 
 
 

   

 = 𝑣  + √ (𝑣3  𝑣 ) * (√
𝑣3  𝑣 
 

 ) +     (√
𝑣3  𝑣 
 

 )+ 

 

Where  2 =
     

     
 and       . 

 

3.2. Consider the homologous orbit whose energy is equal to the energy of E1. In fact, it is a homologous orbit of system 

(2.5) and
 
can be expressed by 

𝑣 =  √
2

3
(𝑣  𝑣4)√𝑣5  𝑣, 

Where the relation    𝑣4  𝑣  𝑣5 holds, and 𝑣4 =
 𝑐 √𝑐   +4𝑒 

2
 , 𝑣5 =

 𝑐+2√𝑐   +4𝑒 

2
, letting initial value 𝑣(0) =

𝑣5, we have 

∫
 𝑣

√2
3
(𝑣  𝑣4)√𝑣5  𝑣

  

 

= ∫   
 

 

,   0, 

∫
  

 √
2
3
(𝑣  𝑣4)√𝑣5  𝑣

 

  

= ∫   
 

 

,   0, 

 

Which can be rewritten as 

∫
  

√2
3
(𝑣  𝑣4)√𝑣5  𝑣

 

  

=  | |,      + . 
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Noting that 

∫
 𝑣

(𝑣  𝑣4)√𝑣5  𝑣

 

  

=  
 

√𝑣5  𝑣4
ln
√𝑣5  𝑣4 +√𝑣5  𝑣

√𝑣5  𝑣4  √𝑣5  𝑣
 , 

 

We get the expression of solitary wave solution of the system (2.5) 

𝑣2( ) = 𝑣4 +
4(𝑣5  𝑣4)  e   (√

2
3√
𝑣5  𝑣4| |)

( + exp (√
2
3√
𝑣5  𝑣4| |))

2 ,      + . 

 

Note that when   0, we have  

𝑣2( ) = 𝑣4 +

4(𝑣5  𝑣4)  exp ( √
2
3√
𝑣5  𝑣4 )

( + exp ( √
2
3√
𝑣5  𝑣4 ))

2   

 = 𝑣4 +

4(𝑣5  𝑣4)  exp ( √
2
3√
v5  v4ξ)  exp (2√

2
3√
v5  v4ξ)

( + exp ( √
2
3√
v5  v4ξ))

2

 exp (2√
2
3√
𝑣5  𝑣4 )

 

= 𝑣4 +

4(𝑣5  𝑣4)  exp (√
2
3√
𝑣5  𝑣4 )

( + exp (√
2
3√
𝑣5  𝑣4 ))

2  

 

It means that 𝑣2( ) has the same form for whether   0 or   0, It means that 𝑣2( ) can be simplified to the following 

form 

𝑣2( ) = 𝑣4 +

4(𝑣5  𝑣4)  exp (√
2
3√
𝑣5  𝑣4 )

( + exp (√
2
3√
𝑣5  𝑣4 ))

2 ,      + .  

 

Then, the second type of bounded traveling wave solution of Eq. (1.1) can be calculated by 

𝑢2( ) = ∫𝑣2( )   = ∫

(

 
 
 
𝑣4 +

4(𝑣5  𝑣4)  exp (√
2
3√
𝑣5  𝑣4 )

( + exp (√
2
3√
𝑣5  𝑣4 ))

2

)

 
 
 
   

= 𝑣4  
2√ √𝑣5  𝑣4

 + e  (√
2
3√
𝑣5  𝑣4 )

+  , 

 

Where      +  and    is a constant. 

 

4. CONCLUSIONS 
In this paper, we apply the dynamical system 

methods to investigate all bounded traveling waves of 

the (3+1)-dimensional Calogero-Bogoyavlenskii-Schiff 

(CBS) equation. Although it is a high dimensional 

dynamical system, we find that there exists a 2-

dimensional Hamiltonian system which determines the 

most of the dynamical behavior. And then we 

completely investigate all bounded orbits of it by 

detailed analyzing the phase space geometry, and all 

possible bounded traveling waves of the (3+1)-

dimensional CBS equation and corresponding existence 

conditions can be identified clearly. Last, using 

complex elliptic function, we get the traveling 

solutions. 
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