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Abstract  Original Research Article 
 

Effect size is an efficient way of calculating/estimating the level of variation in any data set. It has been proven to give 

more information than hypothesis testing and p-value. It also enhances the information provided by hypothesis testing. 

Hence, several renowned scholars and organisations have recommended this technique as a pertinent analysis for 

meticulous discovery and conclusions on issues of level of significance/impact of factors. Effect size analysis is 

becoming ubiquitous with a widespread availability of both methods and software used for its estimation. Despite this 

growth, their use in nested design has been limited. This could be greatly attributed to the lack of non-ambiguous 

methods for estimating effect size in Nested Design. In this work, we will to extend Cohens (1988) formula to Nested 

Design. Providing novel and well-defined formulae that can be used to produce estimate for effect size in Nested 

Design for both fixed and random factors. 

Keywords: Effect Size, NEDPY, Cohen’s f for Nested Design, Nested Design, Effect size for fixed factors, Effect size 

for random factors. 
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1.0 INTRODUCTION 
Conventionally, effect size is defined as the 

difference between ANOVA model parameters. It is 

also known as Cohen’s f. It reflects the overall degree 

of heterogeneity among effect parameters (and 

population mean). Hypothesis has been discredited for 

its dichotomous nature. This inherent dichotomy is 

dissatisfying to researchers, who frequently use the null 

hypothesis as a statement of no effects while in fact 

they are more interested in knowing how big an effect is 

rather than whether it is zero or not. Even when the test 

(hypothesis test) identifies the presence of a significant 

factor/difference, it leaves the researcher uncertain as to 

the nature of this factor/difference. P-value does not 

necessarily solve this problem as p-value could be 

misleading as it is greatly affected by sample size. 

Estimating the effect size evidently resolves this 

quagmire as it clearly gives the researcher more insight 

about the nature and size of the impact caused by this 

factor thus, he/she could draw more accurate inferences. 

 

Nested design is a type of experimental design 

used to analyse data set with nested factor(s). An 

experiment is said to have a nested factor if the levels of 

one factor (nested factor) occurs uniquely with only one 

level of the other factor. The application of Nested 

Design in real life is becoming enormous, ranging from 

application in modern science in areas such as 

medicine, ecology, statistics, horticulture, industrial 

technology, psychology to non –science fields like 

education, sociology etc. for example, to study the 

efficiency of hospitals on a particular medication. In 

this case, each patient occurs/interacts with a unique 

doctor and each doctor occurs/interacts with unique 

hospital. Hence, patients are nested within doctors and 

doctors are nested within a hospital. Using the common 

cross model will imply all the doctors should treat each 

patient and all the doctors will have to work in all the 

hospitals.  

 

A great deal of emphasis has been made on the 

need to compute, present, and discuss effect size 

statistics as a routine part of any empirical report 

(American Psychological Association, 2001; Wilkinson 

& the Task Force on Statistical Inference, 1999). 

Several scholars have produced well–defined methods 

for determining effect size in other areas of 

experimental design and there have been lack of a 

general and conscience methods for such method for 

effect size estimation when dealing with data with 

nested structure. In this article, we hope to provide 

well-defined formulae for estimating effect size in 

Nested Design. 
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A predominant reason for running a 

research/experiment is to investigate whether or not a 

certain factor/treatment has an effect on a situation or to 

find out if there exists a difference between two or more 

different occurrences. A further scrutiny into this 

question will be to find out the size of the 

effect/difference (if it exists), thus necessitate effect 

size. The estimation of the effect size will determine if 

the effect size is small, medium or large. 

 

Significance testing (hypothesis testing) has 

for a long time been used for research. It has permeated 

into virtually every area of research and has been 

customised by several scholars to handle data with 

different structures. Despite this “success”, statistical 

hypothesis testing has received an enormous amount of 

criticism, and for a rather long time for the misleading 

nature of this approach. Johnson 1999 gave a detailed 

chronological account of some reputable critics, which 

plumply criticised the apt use of significance testing. 

Despite these critics, significance testing are still being 

used not minding the dangers of its misleading 

attributes. Johnson (1999) , Steiger & Fouladi (1997) 

gave some reasons why it is still being used which are; 

they appear to be objective and exact, they are readily 

available and easily invoked in many commercial 

statistic packages, everyone else seems to use them, 

students, statisticians, and scientists are taught to use 

them and some journal editors and thesis supervisors 

demand them. 

 

Aside the above constrain, significance testing 

says nothing about the second most likely inquiry which 

is the effect/different size. Hypothesis testing gives a 

dichotomous conclusion and gives no measure or 

estimate to the effect when identified as significant. All 

these scholars suggest effect size estimation among 

other methods as a solution to this problem. 

 

Effect size has existed as far back as 1800’s. 

Huberty (2002) effectively reduced the perplexity 

associated with the history of effect size by dividing it 

into three groups for single output data, they are: 

relationship indices, group difference indices and group 

overlap indices. The relationship indices which is the 

oldest of the three is a form of indexing that estimates 

the relationship/correlation between two sets of variable 

- causation and output variable in an analysis unit. 

Francis Galton (1822 – 1912) first developed it as 

correlation. It was further developed into the coefficient 

of correlation by Francis Y. Edge (1892) worth and 

from then has been improved by several scholars, who 

made it gain application in ANOVA. It is popularly 

denoted with the symbol        .  

 

Group overlapping indices – this effect size 

estimation is made based on the explicit measurement 

of the overlapping of two sets of data. It was first 

introduced by John W. Tilton (1891-1980) and was 

subsequently developed by Dunnette (1966), Alf and 

Abraham (1968) amongst others.  

 

Huberty’s third classification, which is 

apparently the most intuitive and common effect size 

index, is the group difference indices. Jacob Cohen 

(1923-1998) proposed this index. It is considered as the 

ratio of the variation among the group means to the 

average variation among subjects within each group as 

measured by their standard deviations. It is denoted by 

d for a data set with two groups and f for a data set with 

more than two groups. The values of f can range from 

zero upwards. Cohen (1988, 285-287) gives the 

following interpretation for f values. f = 0.10 is a small 

effect, f = 0.25 is a medium effect, f = 0.40 is a large 

effect. The formula later proposed in this article is 

under this subgroup and follows the same guideline as 

the Cohen’s f estimate. 

 

Effect size in Nested Design has been treated 

by Spyros Konstantopoulos (2008) who defined it as the 

ratio of the range of the effect parameter and the total 

standard deviation in the population. His definition was 

limited to only cases where the first factor has two 

levels i.e. control group and treatment group, because it 

was specifically designed for studying intervention 

program in the educational sector. Nianbo Dong (2014) 

also postulated formulae to calculate minimum 

detectable effect size (MDES) Nested Design, but these 

formulae were restricted to continuous moderator 

variable at the first or second level in a two-stage nested 

design with random factors. The method developed in 

this work can be used effectively for any variable type 

and different amount of level. 

 

2.0 METHODOLOGY 
This methods were constructed following 

Cohen’s’ 1988 guideline and follow its benchmark. 

f = 0.10 is a small effect; f = 0.25 is a medium 

effect; f = 0.40 is a large effect. 

 

For simplicity, we would consider the two-

stage nested design. Note that the formulae formulated 

in this work can be analogously applied to nested 

design of higher order 

 

The two-stage nested effects model is: 
               ( )     (  ) (For a case of two factors) 

                              

                       

           
                     

  ( )        
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There are a levels of factor A, b levels of factor 

B nested under each level of A and n replicates. The 

subscript  ( ) indicates that the     level of factor B is 

nested under the     level of factor A. It is convenient to 

think of the replicates as being nested within the 

combination of levels of A and B; thus, the 

subscript (  )  is used for the error term. 

 

2.1 Estimation of model parameters and Variance 

component 

When the factors are fixed factors and following 

restriction are imposed on the estimates of the 

parameter. 

∑ ̂   

 

   

   ∑  ̂ ( )   

 

   

 

 

Then the least square estimates of the model parameters 

are: 

 ̂   ̂  , 

 ̂    ̅      ̅  i = 1,2, . . . ,a and 

 ̂ ( )    ̅      ̅    i = 1,2, . . . ,a and j = 1,2, . . . ,b 

 

To estimate variance components, using the ANOVA 

method yields the following equation: 

 ̂          ̂ 
   

       ( )

  
  ̂ 

   
   ( )    

 
 

 

Random factors 

Let f denote the effect size parameter 

For a random factor at first level (say factor A) 

f   √
 ̂ 
 

  
  

 

 

 

 

For a random factor at second level (say factor B) 

f   √
 ̂ 
 

  
  

 

Fixed factors 

For a fixed factor at first level (say factor A) 

f   √
∑   

  
   

  
    

 

 

  For a fixed factor at second level (say factor B) 

f   √
∑   

  
   

  
   

 

 

Where, 

 ̂ 
 
 = variance component of factor A 

 ̂ 
 
 = variance component of factor B 

     Least square estimate of model parameters for 

factor A 

     Least square estimate of model parameters for 

factor B 

  
  

∑ ∑ ∑ ( ̅         )
  

   
 
   

 
   

   
 or 

  
  

∑ ∑ ∑ ( ̅         )
  

   
 
   

 
   

    
 (two-stage) 

 

3.1 ILLUSTRATION 

We will use a simulated data set to illustrate 

how to apply effect size for nested design for both 

random and fixed factors.  

 

In this Illustration factor A is assumed to be 

fixed therefore, ∑   
 
    for i = 1,2,...,a. That is, the A 

treatment effects sum to zero. While factor B is 

assumed to be random therefore,   ( ) is NID (    
 ). 

 

Factor A1 Factor A2 

Factor B1 Factor B2 Factor B3 Factor B4 Factor B1 Factor B2 Factor B3 Factor B4 

82 79 78 79 85 86 83 84 

83 78 82 83 85 84 83 85 

79 81 83 80 83 85 85 85 

 

Factor A3 

Factor B1 Factor B2 Factor B3 Factor B4 

91 90 90 89 

89 91 91 90 

88 89 91 88 

 

Factor A effect size 

Factor A is a fixed factor therefore, 

f   √
∑   

  
   

  
   

 

f   √
        

            
 

f          

f        

 

Factor B is a random factor hence 

f   √
 ̂ 
 

  
  

f   √
       

        
 

f            

f        
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Table 3.1: (Nested ANOVA Output from NeDPy) 

 
 

3.1 DISCUSSION OF RESULT 
Based on the extended formula, Factor A 

which is a fixed factor has an effect size of 0.13, while 

Factor B which is a random factor has an effect size of 

2.41. Based on the proposed Cohen’s benchmark, f = 

0.10 -small effect, f = 0.25- medium effect, f = 0.40- 

large effect. Factor A is a small effect while Factor B is 

a medium effect. Inadvertently, these answers seemly 

corresponds with the Nested ANOVA output, as the 

Factor A is Insignificant at       , while Factor B is 

Significant at       . 

 

4.0 CONCLUSION 
These formulae are obviously easy and can 

effectively estimate the effect size in any nested data 

structure. They can be reported alone or reported 

alongside significance test to enrich the result thus help 

draw more accurate inferences. This computation can 

be carried out procedurally using most computational 

statistical software, although NeDPy II provides a menu 

that will directly compute effect size estimate using 

these procedures. At the point of this publication, the 

NeDPy version II has not been completed due to 

financial incapability. I solicit for support from all 

research lovers, those interested in the furtherance of 

this work and who find this work useful. These 

formulae can be extended to nested design of higher 

order. 
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