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Abstract  Review Article 
 

A conservative and non-conservative form of a macroscopic traffic flow model which are non-linear first order partial 

differential equation appended with initial and boundary condition that formulates an initial boundary value problem 

(IBVP). In analytical methods traffic flow model is too complex to be solved and due to the complexity of findings the 

analytical solution we investigate numerical solution by finite difference method. For numerical solution we present 

finite difference scheme namely as explicit upwind difference scheme for conservative and non-conservative form of a 

single lane traffic flow model and performs a comparative study for these numerical scheme to understand the 

computational complexity and efficiency of the schemes. 
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1. INTRODUCTION 
Every day the demand for travel increases and 

consequently roads are becoming more congested. 

Congestion results in increased travel times and exhaust 

fume emissions. Now a days, in our country, the fast 

growing number of vehicles on urban streets and 

roadways together with related economic and social 

implications, such as, prevention of car crashes, 

pollution and energy control, has motivated to go into 

this research activity in the field of traffic flow 

modeling. Traffic flow and congestion is related to our 

transportation. Information technology is making 

available new methods for the measuring, control and 

optimization of motorway traffic. Traffic phenomena 

are complex and nonlinear, depending on the 

interactions of a large number of vehicles. Many 

research groups are involved in dealing with the 

problem with different kinds of traffic models like the 

microscopic car following model, the macroscopic fluid 

dynamic model and the mesoscopic (Kinetic) model. 

All models describe various situations with different 

assumptions and simplifications. 

 

A macroscopic theory of traffic can be 

developed with the help of hydrodynamic theory of 

fluids by considering traffic as an affectivity one 

dimensional compressible fluid. The macroscopic 

traffic flow theory was introduced in the fluid-dynamic 

model of Michael James Lighthill, Gerald Beresford 

Whitham and Paul Richards (or the LWR model) for 

describing traffic flows and car following experiments 

([1, 4, 5]). This well-known paper of Lighthill and 

Whithham published in 1955 and introduce a 

description based on the equation of continuity, together 

with the assumption that flow (or velocity) depends on 

the density only, i.e. there is no relaxation time, velocity 

adapts instantaneously to the surrounding density.  

 

As presented, we study finite difference 

method for first order non-linear PDE ([6, 8, 9, 10]) and 

based on these, we develop finite difference schemes 

for conservative and non-conservative form of traffic 

flow model as an (IBVP) which has been presented in 

numerical simulation. We develop computer 

programming code for the implementation of the 

numerical schemes and perform numerical experiments 

in order to compare the efficiency and some qualitative 

behavior of conservative and non-conservative form of 

traffic flow for various traffic parameters of the 

numerical simulation.  
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2. Mathematical equation of conservative and non-

conservative form of a traffic flow model 

The well-known LWR traffic flow model ([4, 

5]) based on the principle of mass conservation. The 

among relationship velocity, density and flux, the flux

q v yields the equation of continuity. 
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The interpretation and construction of the 

velocity-density relationship plays a vital role in the 

macroscopic traffic flow model. We consider velocity 

 v v  as a function of density and therefore, we 

have the flux    .q q v     The first steady- 

state velocity-density relation is introduced by 

Greenshields, who proposed a linear relationship 

between velocity-density that is as 
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Where, vmax denotes maximum velocity (free flow 

speed) and max denotes maximum density (jam 

density). We use a linear velocity-density 
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Equation (1) leads to formulate 
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Therefore the mathematical equations of traffic 

flow model with the initial condition reads as initial 

value problem (IVP) ([3], [4], and [5]) are    
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Non-conservative form 
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3. Analytic solution of conservative and non-

conservative form of traffic flow model 

The non-linear PDE of IVP (2) and (3) can be 

solved [9] by the method of characteristics. The exact 

solution is given by [2]. 
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Which is very complicated to evaluate at each 

( , )t x . Therefore, there is a demand of some efficient 

numerical methods for solving the IVP (2) and (3). 

 

4. Numerical methods of conservative and non-

conservative form of traffic flow Model 

We consider our non-linear first order partial 

differential equation of traffic flow model as an initial 

boundary value problem (IBVP): 
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Non-conservative form 
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To establish this scheme, we discretize the time 

derivative
t




 and space derivative 

q

x




in the IBVP (5) 

and also discretize the time  
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Derivative
t
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(6) at any discrete point
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We assume the uniform grid spacing
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Putting equation (7) and (8) in equation (5) and 

writing 
n

i for ( , )n

it x , the discrete version of the 

non-linear PDE formulates the first order explicit 

upwind difference scheme of the conservative form 
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Again, equation (7) and (9) in equation (6) and 

writing 
n

i for ( , )n

it x , the discrete version of the 

non-linear PDE formulates the first order explicit 

upwind difference scheme of the non-conservative form 
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The equations (10) and (11) are the explicit 

finite difference schemes for IBVP (4) and (5). In the 

finite difference scheme, the initial and boundary data
0 and n

i a  for all 1,2,......, and 0,1,......., 1i M j N  

are the discrete versions of the given initial and 

boundary values 0( )and ( )ax t  respectively. 

 

 

 

 

4.1 Well-posed-ness and stability condition 

In explicit upwind difference scheme for non-

linear PDE of traffic flow maximum velocity is 

unknown but fortunately it is known in our specific 

model by the velocity-density relationship
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Which is the condition for well-posed-ness 

 

The explicit finite difference scheme (11) takes the form  
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The equation (13) implies 

that if 1,   the new solution is a convex combination 

of the two previous solutions. That is the solution at 

new time-step ( 1)n  at a spatial node is an average of 

the solutions at the previous time-step at the spatial 

nodes and 1.i i   This means that the extreme value 

of the new solution is the average of the extreme values 

of the previous two solutions at the two consecutive 

nodes. Therefore, the new solution continuously 

depends on the initial value , 1,2,3,.......,o
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and the explicit finite difference scheme is stable for 
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This is the stability condition. Thus whenever 

one employs the stability condition max: 1,
t

v
x


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the well-posed-ness condition equation (12) can be 

guaranteed immediately by choosing 

max max ( ), 2.i
i

k x k  o  

 

5. Numerical experiments and results discussion 

In this section, we present numerical results for 

some specific cases of traffic flow focusing on the 

traffic flow parameters of a single lane highway. We 

choose maximum velocity 
max 60km/hour.v   For 

satisfying the CFL condition we pick the unit of 

velocity as km/sec. We consider 
maxρ 550/km,  

and perform the numerical experiment for 6 minutes in 

3600 time steps with 0.1t   second for a single lane 

highway of 10 km in 401 spatial grid points with step 

size x 100  meters. We consider the initial density 

of traffic flow model for single lane is (0, )x  and 

take 10  as a constant and also the constant one 

sided boundary value for EUDS is 

( ,0) 21 / 0.1kmt  to perform numerical 

computation in the spatial domain [0, 10] in km. We 

simulate the traffic flow for six minutes. Using initial 

and boundary condition on EUDS scheme, we can 

forecast the traffic flow model.  In figure-1 presents 

initial density profile conservative and non-conservative 

form. Figure-2 shows after six minutes position of 

traffic density profile.  

 

 
Fig-1: Initial density conservative and non-conservative form in a 10 km highway 
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Fig-2: Traffic density profile after 6 minutes in conservative and non-conservative form 

 

In figure-3(a) the curve marked by solid red 

line represents the density of car at 2, 4, 6 minutes of 

conservative form and dashes green line represents the 

density profile of traffic flow in non-conservative form 

at 2, 4, 6 minutes respectively. Figure-3(b)(i) & 3(b)(ii) 

represents the respective computed velocity profile 

according to the certain points of a single lane highway. 
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So we calculate the flux with the aid of the relation

q v . Figure 3(c)(i) & 3(c)(ii) represents the 

computed flux (linear and non-linear case) with 

respected to the distance in conservative and non-

conservative form. 

 

 
Fig-3(a): Density profile conservative and non-conservative form of 2, 4, 6 minutes in a 10 km highway 
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Fig-3(b)(i): Velocity profile conservative and non-conservative form of 2, 4, 6 minutes (linear) in a 10 km highway 

 

 
Fig-3(b)(ii): Velocity profile conservative and non-conservative form of 2, 4, 6 minutes (non-linear) in a 10 km 

highway 

 

 
Fig-3(c)(i): Flux profile conservative and non-conservative form of 2, 4, 6 minutes (linear) in a 10 km highway 
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Fig-3(c)(ii): Flux profile conservative and non-conservative form of 2, 4, 6 minutes (non-linear) in a 10 km highway 

 

In figure-4(i) and 4(ii) plot the computed 

velocity profile with respect to the computed density 

profile by the formula max

max

( ) 1v v





 
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 and 
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
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2

max

max 1



 vv of a traffic flow in 

conservative and non-conservative form. The figure 

shows that the velocity and density relationship is linear 

which agrees accurately with our assumptions. 

 

 
Fig-4(i): Traffic velocity as a function of density (linear case) conservative and non-conservative form 
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Fig-4(ii): Traffic velocity as a function of density (non-linear case) conservative and non-conservative form 

 

 
Fig-5(i): Traffic Flux as a function of density (linear case) conservative and non-conservative form 

 

 
Fig-5(ii): Traffic Flux as a function of density (non-linear case) conservative and non-conservative form 
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The computed flux is plotted with respect to the density 

profile by the flux-density relationship formula: linear 

case  
2

max

max

q v


 


 
  

 
 and non-linear case 

 
3

max 2

max

,q v


 


 
  

 
which is parabolic and 

concave function in the range max0    . Figure-5(i) 

and 5(ii) present the graphs of flux with respect to the 

density in conservative and non-conservative form of a 

traffic flow model. 

 

5.1 Error Estimation of Numerical Scheme 

In order to perform error estimation, we 

consider exact solution (4) with initial condition i.e. 

non-linear function 
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4
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We prescribe the corresponding boundary value for 

EUDS by the equation 

 
( ) ( , ) 15sin 16

4

a

a a

x c t
t t x 

 
   

 
 

We compute the relative error in 1L -norm 

defined by 1

1

1

e n

e

e
 




 for all time e is the 

exact solution and n is the numerical solution 

computed by finite difference scheme. 

 

Figure-6 shows the comparison of relative 

errors between explicit upwind difference scheme of 

conservative and non-conservative form. From figure 

we see that the relative error EUDS of conservative 

form, which remains 0.006 and the relative error non-

conservative form remains 0.005 which is quite 

acceptable. So, non-conservative form provides more 

accurate results than conservative form. Figure-7 

presents that the density ( ) error is decreasing with 

respect to the smaller discretization parameters t  and 

x which shows the convergence of explicit upwind 

difference scheme of conservative and non-conservative 

form. We observe that as we increase number of grid 

points the error is decreasing and also shows the rate of 

convergence of the numerical solutions. 

 

 
Fig-6: Comparison of relative errors between conservative and non-conservative form 
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Fig-7: Comparison of convergence errors between conservative and non-conservative form 

 

CONCLUSION 
The finite difference scheme has been used to 

solve the traffic flow model. We have demonstrated 

numerical solution by using EUDS of conservative and 

non-conservative form. We establish stability 

conditions of EUDS. The numerical simulation results 

verified some qualitative traffic flow behavior for 

various traffic parameters. The outcome of different 

parameters has also been presented. Also we observe 

that the relative error EUDS of non-conservative form 

is much less than that of conservative form and the rate 

of convergence of EUDS non-conservative form is 

much higher than that of EUDS conservative form. 
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