
Citation: Xiaoqin Fan. Parallel Genetic Algorithm Based on Construction of Gene Pool in the Ordinary Network for TSP. Sch J Eng

Tech, 2022 May 10(5): 75-81.

75

Scholars Journal of Engineering and Technology

Abbreviated Key Title: Sch J Eng Tech

ISSN 2347-9523 (Print) | ISSN 2321-435X (Online)

Journal homepage: https://saspublishers.com

Parallel Genetic Algorithm Based on Construction of Gene Pool in the

Ordinary Network for TSP
Xiaoqin Fan

1*

1General Education Department, Guangzhou Panyu Polytechnic, Guangzhou 511583, China

DOI: 10.36347/sjet.2022.v10i05.002 | Received: 11.04.2022 | Accepted: 16.05.2022 | Published: 20.05.2022

*Corresponding author: Xiaoqin Fan
General Education Department, Guangzhou Panyu Polytechnic, Guangzhou 511583, China

Abstract Review Article

Though using parallel evolutionary algorithm to solve large-scale TSP problems is efficient, the parallel computer

costs too much and the algorithm is not easy to expand. To address this issue, I propose a parallel genetic algorithm

based on a gene pool under the existing network. To replace the group-genes in the evolutionary algorithm with the

genes from the gene pool, the algorithm conducts greedy algorithm. The host process conducts greedy algorithm and

improved evolutionary algorithm of Inver-over operator while the child process performs the improved hybrid genetic

algorithms. Simulation results demonstrate that this algorithm achieves a better solution.

Keywords: TSP; Reverse; Greedy gene pool; Parallel algorithms.
Copyright © 2022 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original

author and source are credited.

INTRODUCTION
TSP (Travelling Salesman Problem), as an

ideal problem，its research findings are not to be

applied directly, but widely translated into many

combinatorial optimized problems, such as cargo

distribution of large chain stores, PCB drilling, genetic

detection and etc.. They can be all abstracted to TSP

problem. Therefore, the study of TSP problems and

their solutions are of great significance both

theoretically and practically.

The perfect method to solve the TSP problem

is global search method. Due to the limitation of

computer operating ability, when n is relatively big,

with global search method, it seems impossible to find

out the accurate optimal solution but only approximate

solution. So far, there is no effective algorithm to solve

this kind of problem, thus any simplified method to

solve TSP will attract much attention and evaluation.

Many scholars have great interest in TSP and many

methods solving TSP emerg, including evolutionary

algorithm [1,2].

Genetic Algorithm for TSP is of higher

efficiency [3, 4], but because of the increasing “n”, the

numbers of the cities, using genetic algorithm to solve

TSP resulting worse solution and decreased

convergence rate. Here I propose parallel genetic

algorithm to address this issue. However, huge

investment in large parallel computer system is the

barrier for expansion. When the number of cities in a

TSP is relatively big, a certain number of parallel

computers are needed for the tasks.

So this paper focuses on the construction of

local gene pool and greedy gene pool under the

common computer network, by using greedy algorithm

and the improved Inver-over operator [5] in the child

process, implementing dynamic optimization to the

gene pool. In the main process, hybrid genetic

algorithm based on the gene pool is applied to

dynamically update the elite groups, replacing genes

from the gene-group with genes from gene-library to

improve the speed of evolutionary algorithms and the

quality of the result.

This paper is divided into five sctions. The

first section introduces the research background, the

main contents, the purpose and the significance of the

research.

The Second section is background knowledge.

TSP, genetic algorithm, the present situations and the

existing problems of using genetic algorithm to solve

TSP are briefly introduced.

The third section deals with the method to

construct gene pool. It mainly introduces the method to

Xiaoqin Fan., Sch J Eng Tech, May, 2022; 10(5): 75-81

© 2022 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 76

build partial gene pool and greedy gene pool, and the

algorithm thought of greedy gene pool.

The fourth section describes improvement of

Inver - over operator. The fifth section presents the

thought of greedy gene pool and the method of

implementing parallel algorithm.

Based on normal computer simulation

experiment under the general network, the sixth section

selects some samples from TSP case library (TSPLIB)

which is internationlly agreed, to verify the validity of

the algorithm described.

The last section comes to a conclusion, and

points out the deficiency of this article and the direction

of further research.

Introduction of tsp and genetic algorithms

TSP long-standing problem is a typical

combinatorial optimization problem and has proven to

be NP-complete problem. The study has attracted many

scholars and there have been a large number of

algorithms for solving TSP.

Among them is evolutionary algorithm [1, 2].

Known as the traveling salesman problem or Wayfaring

Salesman Problem, TSP problem may be summarized

as follows: There are n cities. Starting from a given city,

how does a traveling salesman find out the shortest way

back to the starting city after having visited all the n

cities? Its mathematical model is as follows: Given a

graph),(EVG , the edge Ee , a non-negative

weights)(eW , find sG' Hamiltonian cycle C ,

making C the total weight)(CW the smallest, where

EEe

eWCW
'

)()([3,4].

It is well-known combinatorial optimization problems

of mathematics field.

TSP was first mentioned in 1800. Between

1920s and 1950s of the 20th century, people began to

realize that TSP is an NP problem [5, 6]; in 1954,

optimal solution to TSP of 42 cities is obtained. Since

1954, the scale of optimal solutions to TSP is larger and

larger. Instances with up to 13509 towns were managed

to be exactly solved in the United States in 1998. An

optimal tour through a 15,112-town instance in

Germany is computed in 2001. Nevertheless, the cost of

the project is huge. According to the report, to solve the

TSP problem between 15112 towns in the United

States, 110 computers with 500 MHZ compaq

Ev6Alpha processor from Rice University and

Princeton University were put into the process. These

110 connected computers spent 22.6 years in total. In

May 2004, the Swedish obtained the optimal solution of

24978 towns.

TSP problem became increasingly popular in

scientific circles in Europe and the USA. Notable

contributions were made by George Dantzig, Delbert

Ray Fulkerson and Selmer M. Johnson at the RAND

Corporation in Santa Monica, who expressed the

problem as an integer linear program and developed the

cutting plane method for its solution. With these new

methods they solved an instance with 49 cities to

optimality by constructing a tour and proving that no

other tour could be shorter. In the following decades,

the problem was studied by many researchers from

mathematics, computer science, chemistry, physics, and

other sciences [6].

Richard M. Karp showed in 1972 that the

Hamiltonian cycle problem was NP-complete, which

implies the NP-hardness of TSP. This supplied a

mathematical explanation for the apparent

computational difficulty of finding optimal tours.

Great progress was made in the late 1970s and

1980, when Grötschel, Padberg, Rinaldi and others

managed to exactly solve instances with up to 2392

cities, using cutting planes and branch-and-bound.

In the 1990s, Applegate, Bixby, Chvátal, and

Cook developed the program Concorde that has been

used in many recent record solutions. Gerhard Reinelt

published the TSPLIB in 1991, a collection of

benchmark instances of varying difficulty, which has

been used by many research groups for comparing

results. In 2006, Cook and others computed an optimal

tour through an 85,900-city instance given by a

microchip layout problem, currently the largest solved

TSPLIB instance. For many other instances with

millions of cities, solutions can be found that are

guaranteed to be within 2-3% of an optimal.

The total number of possible paths of TSP and

the number of cities are increased by factorial number;

therefore, it is difficult to find out the optimal solution.

As for this problems, no matter the traditional dynamic

programming, branch and bound method, greedy

method or other recent methods, like intelligent

optimization algorithms (tabu search, simulated

annealing, genetic algorithm and artificial neural

networks, ant algorithm) and their hybrid algorithm are

of lower efficiency, and higher cost.

Genetic algorithm is a stochastic simulation of

biological evolutionary mechanisms global search and

optimization methods [6]. It automatically obtains and

optimizes the search space, and adaptively control the

search process in order to achieve the optimal solution.

General procedures for genetic algorithm optimization

problems are as follows:

1) Initialization

The population size depends on the nature of

the problem, but typically contains several hundreds or

Xiaoqin Fan., Sch J Eng Tech, May, 2022; 10(5): 75-81

© 2022 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 77

thousands of possible solutions. Often, the initial

population is generated randomly, allowing the entire

range of possible solutions (the search space).

Occasionally, the solutions may be "seeded" in areas

where optimal solutions are likely to be found [7].

2) Selection

During each successive generation, a

proportion of the existing population is selected to

breed a new generation. Individual solutions are

selected through a fitness-based process, where fitter

solutions (as measured by a fitness function) are

typically more likely to be selected. Certain selection

methods rate the fitness of each solution and

preferentially select the best solutions. Other methods

rate only a random sample of the population, as the

former process may be very time-consuming.

The fitness function is defined over the genetic

representation and measures the quality of the

represented solution. The fitness function is always

problem dependent. For instance, in the knapsack

problem one wants to maximize the total value of

objects that can be put in a knapsack of some fixed

capacity.

3) Genetic operators

The next step is to generate a second

generation population of solutions from those selected

through a combination of genetic operators: crossover

(also called recombination), and mutation.

4) Termination

This generational process is repeated until a

termination condition has been reached. Common

terminating conditions are:

1. A solution is found that satisfies minimum criteria.

2. Fixed number of generations is reached.

As genetic algorithm is not affected by the

limitation of search space, requirements such as

continuity, conductivity and unimodality are not

necessary. Its robustness and implicit parallelism make

it is widely used in solving the complex problems that

are difficult to solve with the traditional methods

[7],

such as combinatorial optimization, pattern recognition,

computer network optimization, etc. People have been

using genetic algorithm to solve large-scale traveling

salesman problem [6].

The most efficient way to solve TSP is to use

genetic algorithm and other similar algorithm.

Compared to the traditional algorithms, genetic

algorithm doesn’t take the process into consideration

but directly focus on the shortest distance so as to

obtain the solution as soon as possible. But its large

search space takes long time, and it is sensitive to the

initial value, so genetic algorithm effects slowly on the

large-scale TSP problem [8]. Local optimization

algorithm is very efficient when applied in local optimal

TSP. It solves instances with up to hundreds of cities in

a very short period of time, but it is easy to be trapped

in local optimal solution.

CONSTRUCTION OF GREEDY GENE POOL

Set that
k

n

kk

k VVVP 21 is a feasible path

for point nVVV ,,, 21 , the total length of the loop kP

is),(),()(1

1

1

1

kk

n

n

i

k

i

k

ik VVdVVdPf

 , where,

k

jV is the j
th

 point,),(1

k

i

k

i VVd is the Euclidean

distance between point
k

iV and point
k

iV 1
. By using

this algorithm, the total length)(kPf of the loop kP

can be used to evaluate the individual [9].

Set

VjijiEnVEVG ,|),{(},,,2,1{),,(,

the coordinates of point i and point j are),(ii yx and

),(jj yx respectively, then the Euclidean distance

between i and j is

22)()(),(jiji yyxxjid . Set that

}},({ jidD , then D is the square of nn .

Set

)1(

)1(

1321

421

431

432

)(

nn

nnij

n

n

n

n

aA

. For each point i , according to the size of

),(jid , sort the i th line of the corresponding

elements in A in accordance with the order from small

to large, and insert
Tn],,3,2,1[into the first column

in A , expand A to a phalanx nn , calling the

phalanx local gene pool 1A . After the generation of

local gene pool 1A , the first m columns were selected

from 1A to compose n-6 new matrixes

Xiaoqin Fan., Sch J Eng Tech, May, 2022; 10(5): 75-81

© 2022 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 78

,1,,7,6, nmBm this matrixes mB vary in the

number of points, for example, there are m total

different points in mB , which respectively reflects the

local situation in the name of a certain point as the

center, while the i th line in mB constitutes point i’s

neighbor set points. In the algorithm, each mB can be

optimized by using greedy algorithm, and according to

the computer distribution, it can be separately placed on

different computers to run independently, and thus get a

new mB , that is, the greedy gene pool. This n-6 matrix

point number which varies, for example, a total of 6 B6

in different points 7 points different from B7, They are

represented in the center of which is a point of local

conditions, such as matrix Bm constitute the first line of

the point i i neighbor point set. Algorithm runs, for each

matrix greedy algorithm implementation, and according

to the actual situation of the computer running the

distribution will be different on different computers Bm

run independently greedy algorithm, matrix mC , where

mC is greedy gene pool. TSP problem with the greedy

algorithm, the time required does not exceed)(2mO .

In general, solution obtained with greedy algorithm is

not the optimal for TSP problem. It is necessary to

optimize the greedy gene pool in the child process, and

to get the best genes from the main process for dynamic

update of the local gene pool.

Since in the evolvement process, the genes

involved in genetic operators promoter is mainly from

the individuals, thus the quality of the evolved

individual determines the efficiency of the algorithm. If

individual’s fitness values are poor, the overall

performance of the algorithm will be affected,

especially for TSP. Although the greedy algorithm does

not guarantee optimal solution, we can use it to generate

relatively good initial population, and thus greatly

improve parallel TSP algorithm performance of the sub-

process evolution, solving the speed, quality solution

[10].

Paper [11] presents the evolution algorithm for

TSP by constructing the gene pool which improves both

the accuracy and the speed. But its point-centered gene

pool constructs gene chip from the near points, without

considering the relationship among the points which are

among the gene fragments. So the algorithm is running

fast early, but in the latter part of the evolution of

computing, the gene pool almost had no effect on

group.

Because the front part of the gene constructed

in the algorithm is of fine locality, only the first m

individual genes are extracted to construct local gene

library, reducing the length of the gene, thereby

improving the efficiency of the algorithm.

IMPROVED INVER-OVER OPERATOR
Guo's algorithm [12-14] is one of the fastest

algorithms for solving TSP which proposed Inver-over

operator. Inver-over operator has characteristics of both

crossover and mutation which takes full advantage of

the information community, and it is much higher in

speed and quality than other simple crossover. But the

experiment also shows that when the number of cities

becomes relatively larger, its global optimization

capability dramatically declines. As a result, many

scholars have studied Inver-over operator and try to

improve it [5, 10]. This paper improves Inver-over

operator by labeling the all points near every vertex as

its neighboring point set, initializing each point set,

choosing the next search space instructively [11]. The

main steps are as follows:

Initialize the group P using the neighbor set of points

While (stop condition not satisfied)

{

For (each individual Si of groups)

 {

S’= Si;

Select a vertex c from S randomly;

While (true)

{

Generate a random number p (0 ≤ p ≤ 1);

if (p<pc) /*pc is a constant*/

{

Select vertex c’ from the remaining selected vertices from S’;

}

else

{

Randomly choose an individual from P;

Mark the selected-individual c’s next vertex as c;

 }

if (the vertices c and c’ in S’ are adjacent)

{

Xiaoqin Fan., Sch J Eng Tech, May, 2022; 10(5): 75-81

© 2022 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 79

break;

}

else

{

Flipped vertex c to the next vertex to the vertices between c’, c = c';

}

} /* end while*/

if (the fitness value of S’≤ Si)

{

Si = S’;

}

} / * end for*/

} / * end while*/

Parallel algorithm basing on the greedy gene pool

Based on the greedy evolution of the gene

pool, parallel algorithm sets a computer as the

mainframe of the entire system, which runs the main

process and as the center of data exchange in the

evaluation process. The main process optimizes the elite

by using the hybrid genetic algorithm based on gene

pool and Guo Tao algorithm [11]. The basic steps are as

follows:

(1) to generate an initial local gene pool and

6n greedy gene pool, and to deposit these genes

into the database for sharing;(2) to write the initial

control information into an asynchronous control

information database, to prohibit the work machines to

read 1A and mB when the algorithm starts; (3) to

generate 1A and mB , and deposit them into their

corresponding database;(4) to divide the working

machines based on the n-size of the TSP problem so

that it can deal separately with one or more lines in 1A

and mB ;(5) to write control information into an

asynchronous control information database, allowing

working machine to read 1A and mB ; and store the best

individuals in the elite group into the database for the

sharing of the working machines;(6) to read from the

database the evolution elite groups and generate the

optimal solution, and then deposit it into its database s

after setting every other algebra.

Other computers in the network as a working

machine run sub-process and read the TSP from the

mainframe and obtain the corresponding gene pool. Sub

process only solves point-centered domain.

The main steps are

(1) to copy all the data from the mainframe to

the working machine and extract genes from the

corresponding local gene pool according to the task

assigned or set (2) to generate a number m randomly,

implement the greedy algorithm on mB , so that it

becomes greedy gene pool mC ;(3) to implement

improved Inver-over algorithms on mC ;(4) to store

mC in the mainframe to obtain the optimal solution;(5)

to obtain the gene chip with the length of m and mC

for hybridization [15]; store optimal gene in the

mainframe, turn to (3).

SIMULATION

Multiple TSP problems are selected for testing

from the paper[16]

and international general TSP

instance library TSPLIB[17]. Algorithm uses the C #

programming language in Microsoft Visual Studio 2019

Preview platform, which is configured to host CPU

Intel Core i7-1165G7@4.70GHz, memory is 16 GB.

The operating system is Windows10. The database

software is Microsoft SQL Server 2019. The working

machine connects mainframe database through

ADO.NET, carrying out the process on 50 computers in

LAN. Table 1 lists the optimal value. The optimal paths

for the first 6 problems are as in Figure 1-6, while the

optimal paths for problem pr2392 are too many to be

listed.

Fig-1: Oliver30 optimal path

Fig-2: Att48 optimal path

Fig-3: Eil76 optimal path

Xiaoqin Fan., Sch J Eng Tech, May, 2022; 10(5): 75-81

© 2022 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 80

Fig-4: Chn144 optimal path

Fig-5: A280 optimal path

Fig-6: TSP pcb442 optimal path

Judging from the simulation, the proposed

algorithm is particularly suitable for handling large-

scale TSP. As in Table 1, the algorithm for smaller-

scale TSP is of less advantage. Many papers propose

optimal solution to small-scale TSP problem, but the

algorithm proposed now is appropriate for large-scale

TSP problem. Nevertheless, the results of large-scale

TSP is rare, they are not listed in Table 1.

 Table-1: TSP algorithm running results

TSP optimum Size of the group Average time

oliver30 423.740563133203 50 0.2617

att48 33523.7085074356 50 0.372s

eil76 544.369052670828 50 1.374s

chn144 30353.4474810516 100 2.836s

a280 2587.80879066408 100 83s

pcb422 50935.5635917108 100 128s

pr2392 386606.457689425 100 1993.064s

CONCLUSION
This paper proposes an algorithm to solve the

problems using computers in general network instead of

parallel computer, which is economic convenient and

fast.

Simulation shows that the proposed algorithm

is feasible. When the computer configuration is low, it

is an effective way to solve tough problems. When the

scale of TSP is too large, the algorithm converges

relatively slow and the algorithm needs further

improvement.

REFERENCES
1. Baraglia, R., Hidalgo, J. I., & Perego, R. (2001). A

hybrid heuristic for the traveling salesman

problem. IEEE Transactions on evolutionary

computation, 5(6), 613-622.

2. Wen, Yi., PanDa-zhi. (2016). Improved Genetic

Algoithm for Traveling Salesman Problem [J].

Computer Science, (S1): 90-92.

3. Sun Wen-bin,Wang, J. (2016). An Algorithm for

TSP Problem Based on Genetic Algorithm and

Multi-optimization Operration [J]. Geography and

Geo-Information Science, 32(4); 1-4.

4. Hui, Y., Li-shanf, K., & Yu-Ping, C. (2003). A

gene-pool based genetic algorithm for TSP. Wuhan

University Journal of Natural Sciences, 8(1), 217-

223.

5. Zhai, F., Xie Xian-hua. (2020). Study on optimal

robot task scheduling based on genetic algorithms

[J]. Mathematics in practice and thory, 50(15); 143-

154.

6. Clarke. (1964). G, Wright J W. Scheduling of

vehicles from a central depot to a number of

delivery points. Opera 鄄 tions Research, 12(4),

568.

7. Dan, L. M. K. J. L., Quan, L. S., Ming-Qiang, L.,

& Song, K. J. (2004). The basic theory and

application of genetic algorithms. The publisher of

science. Beijin.

8. Simin, Y., Fengjun, W. (2020). Research on

Solving TSP with Genetic Algorithm or Branch

and Bound Method[J]. Computer Science and

Application, 10(9); 1609-1617.

9. Luo, Z., Feng, S., Liu, X. (2020). Method of area

coverage path planning of multiunmanned cleaning

vehicles based on step by step genetic algorithm [J].

Journal of Electronic Measurement and

Instrumentation, 32(8); 43-50.

10. TAN, N. B., WANG, J., & MOU, L. M. (2009).

Improved genetic algorithm for solving TSP

problem. Journal of Jiamusi University (Natural

Science Edition).

11. Chen, S., LIN Piyuan, HUANG, P. (2020). Pointer

Network Improved Genetic Algorithm for Solving

Xiaoqin Fan., Sch J Eng Tech, May, 2022; 10(5): 75-81

© 2022 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 81

Traveling Salesmen Problem [J]. Computer

Engineering and Applications, 56(19):231-236.

12. Hassanat, A. B., Prasath, V. B., Abbadi, M. A.,

Abu-Qdari, S. A., & Faris, H. (2018). An improved

genetic algorithm with a new initialization

mechanism based on regression

techniques. Information, 9(7), 167.

13. Fu, C., Zhang, L., Wang, X., & Qiao, L. (2018,

May). Solving TSP problem with improved genetic

algorithm. In AIP Conference Proceedings (Vol.

1967, No. 1, p. 040057). AIP Publishing LLC.

14. Agrawal, M., & Jain, V. (2020, July). Applying

Improved Genetic Algorithm to Solve Travelling

Salesman Problem. In 2020 Second International

Conference on Inventive Research in Computing

Applications (ICIRCA) (pp. 1194-1197). IEEE.

15. Akter, S., Nahar, N., ShahadatHossain, M., &

Andersson, K. (2019, February). A new crossover

technique to improve genetic algorithm and its

application to TSP. In 2019 International

Conference on Electrical, Computer and

Communication Engineering (ECCE) (pp. 1-6).

IEEE.

16. http://www.iwr.uniheidelberg.de/groups/co mopt

/software/TSPLIB95/

