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Abstract  Review Article 
 

This paper presents a concrete method to construct uninorms via closure operators and interior operators on an 

arbitrary bounded lattices, where some sufficient and necessary conditions on the underlying t -norms and t -conorms 

are required. Finally, we illustrate how our new construction method is different from some existing methods for the 

constructions on bounded lattices. 
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1. INTRODUCTION 

Uninorms on the unit interval [0,1]  were 

introduced by Yager and Rybalov [1]. The uninorms as 

a generalization of t -norms and t -conorms [2] were 

applied to various fields, such as fuzzy logic, fuzzy set 

theory, expert systems, neural networks and so on [3-5]. 

 

Due to the fact that the bounded lattices [6] 

case in more general, uninorms [7-23] on the bounded 

lattices were defined and extensively studied. Uninorms 

on an arbitrary bounded lattice were first proposed by 

Karaçal and Mesiar [7]. Particularly, they constructed 

the weakest and the strongest uninorms. Then the new 

methods for constructing uninorms were obtained by 

Çaylı et al., [14, 15, 17]. Subsequently, some methods 

to construct uninorms via closure (interior) operators on 

some bounded lattices were first proposed by Ouyang 

and Zhang [18]. Then, some other methods to construct 

uninorms via t -subnorms ( t -subconorms) on some 

appropriate bounded lattices L  with a neutral element 

\{0,1}e L  were first introduced by Ji [21]. 

 

Uninorms on bounded lattices are conjunctive 

or disjunctive. In this paper, we introduce a new method 

which changes the disjunctive and conjunctive 

properties of uninorms on L  for constructing uninorms 

based on a t -norm eT  on [0, ]e  and t -conorm eS  on 

[ ,1]e  under some additional constraints. Our method is 

different from some existing methods for the 

constructions on bounded lattices. By concretizing 

Theorem3.1, we can get Theorem 3 and Theorem 4 in 

[18]. 

 

The rest of this paper is organized as follows. 

Section 2, we recall some preliminaries. Section 3, we 

introduce a new method for constructing uninorms on 

bounded lattices. Finally, some conclusions are made in 

Section 4. 

 

2. Preliminaries 

In this following, we recall some basic notions 

and results related to lattices and aggregation functions 

on bounded lattices. 

 

Definition 2.1([6]) A lattice ( , )L  is bounded if it has 

top and bottom elements, which are written as 1  and 0

, respectively, that is, there exit two elements 1,0L  

such that 0 1 x  for all x L . 

 

Throughout this article, unless stated 

otherwise, we denote L  as a bounded lattice with the 

top and bottom elements 1  and 0 , respectively. 

 

Definition 2.2([6]) Let L  be a bounded lattice, 

, a b L  with a b . A subinterval [ , ]a b  of L  is 

defined as 

 [ , ] : .   a b x L a x b ………. (1) 

 

Similarly, we can define

   , :   a b x L a x b , 
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   , :   a b x L a x b  and 

   , :   a b x L a x b . If a  and b  are 

incomparable, then we use the notation a b . For 

\{0,1}e L , we denote the set of all incomparable 

elements with e  by eI , that is, { } eI x L x e . 

 

Definition 2.3([2]) Let ( , ,0,1)L  be a bounded 

lattice. 

(i) An operation 
2:T L L  is called a t -norm on L  

if it is commutative, associative, and increasing with 

respect to both variables, and it has the neutral element 

1 L , that is, (1, )T x x  for all x L .  

(ii) An operation 
2:S L L  is called a t -conorm on 

L  if it is commutative, associative, and increasing with 

respect to both variables, and it has the neutral element 

0 L , that is, (0, )S x x  for all x L .  

 

Definition 2.4 ([7]) Let ( , ,0,1)L  be a bounded 

lattice. An operation 
2:U L L  is called a uninorm 

on L  (a uninorm if L  is fixed) if it is commutative, 

associative, and increasing with respect to both 

variables, and it has the neutral element e L , that is, 

( , )U e x x  for all x L . 

 

Proposition 2.1 ([7]) Let ( , ,0,1)L   be a bounded 

lattice and U be a uninorm on L with neutral element 

 \ 0,1e L . Then we have the following: 

(i)      
2 2

0, : 0, 0,eT U e e e   is a t -norm on 

 0,e . 

(ii)      
2 2

,1 : ,1 ,1eS U e e e   is a t -conorm on 

 ,1e . 

 

eT  and eS  given in proposition 2.1 are called the 

underlying t -norm and t -conorm of a uninorm U  on 

a bounded lattice L  with the neutral element e , 

respectively. Throughout this study, we denote eT  as 

the underlying t -norm and eS  as the underlying t -

conorm of a given uninorm U  on L . 

 

Definition 2.5 ([2]) Let L  be a lattice.  

(i)A mapping :cl L L  is called a closure operator 

on L  if, for all ,x y L , it satisfies the following 

three conditions: 

(1) ( )x cl x ; 

(2) ( ) ( ) ( )cl x y cl x cl y   ; 

(3) ( ( )) ( )cl cl x cl x . 

(ii)A mapping int : L L  is called an interior 

operator on L  if, for all ,x y L , it satisfies the 

following three conditions: 

(1) int( )x x ; 

(2) int( ) int( ) int( )x y x y   ; 

(3) int(int( )) int( )x x . 

 

Theorem 2.1([23]) Let ( , ,0,1)L   be a bounded 

lattice with  \ 0,1e L .  

(i)If eT  is a t -norm on  0,e  and R  is a t -

subconorm on L , then the function 
2

,0 ( , ) : RU x y L L  defined by 

 

       

 

 

2

,0

( , )   ( , ) 0,

       ( , ) 0, ,1 ,1 0,

             ( , ) 0,
( , )

             ( , ) 0,

0             ( , ) {0} {0} {0} ] ,1] ] ,1] {0}

( , )    ,

e

e
R

e

e e

T x y x y e

x y x y e e e e

y x y e I
U x y

x x y I e

x y I I e e

R x y otherwise

 


   

  

 
 


    




…………… (2) 

 

is a uninorm on L  with the neutral element 

\{0,1}e L  iff ( , ) 0eT x y  for all , 0x y . 

(ii)If eS  is a t -conorm on  ,1e  and F  is a t -

subnorm on L , then the function 
2

,1( , ) : FU x y L L  defined by 
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 

       

 

 

   

2

,1

( , )    ( , ) ,1

        ( , ) 0, ,1 ,1 0,

              ( , ) ,1
( , )

              ( , ) ,1

1              ( , ) {1} 0, 0, {1} {1} {1}

( , )    ,

e

e
F

e

e e

S x y x y e

x y x y e e e e

y x y e I
U x y

x x y I e

x y e e I I

F x y otherwise

 


   


 
 

 


    



……………… (3) 

is a uninorm on L  with the neutral element \{0,1}e L  iff ( , ) 1eS x y  for all , 1x y . 

 

Theorem 2.2([18]) Let ( , ,0,1)L   be a bounded lattice with  \ 0,1e L .  

(i)If eT  is a t -norm on  0,e  and cl  is a closure operator on L , then the function 
2( , ) : clU x y L L  is a uninorm 

on L  with the neutral element e , where 

 

       

 

 

2
( , )            ( , ) 0,

                ( , ) 0, ,1 ,1 0,

( , )                       ( , ) 0,

                      ( , ) 0,

( ) ( )    .

e

cl e

e

T x y x y e

x y x y e e e e

U x y y x y e I

x x y I e

cl x cl y otherwise

 


   


  


 
 


………….. (4) 

 

(ii)If eS  is a t -conorm on  ,1e  and int  is an interior operator on L , then the function 
2

int ( , ) : U x y L L  is a 

uninorm on L  with the neutral element e , where 

 

       

 

 

2

int

( , )              ( , ) ,1

                  ( , ) 0, ,1 ,1 0,

( , )                         ( , ) ,1

                        ( , ) ,1

int( ) int( )    .

e

e

e

S x y x y e

x y x y e e e e

U x y y x y e I

x x y I e

x y otherwise

 


   


  


 
 


 …………….. (5) 

 

Theorem 2.3([12]) Let ( , ,0,1)L   be a bounded lattice with  \ 0,1e L .  

(i)If eS  is a t -conorm on  ,1e  such that ( , ) 1eS x y  for all , 1x y , then the function 
2

1 : U L L  is a uninorm 

on L  with the neutral element \{0,1}e L , where 

 

 

 

   

2

1

( , )    ( , ) ,1

              ( , ) ,1

( , )               ( , ) ,1

        ( , ) {1} 0, 0, {1} {1} {1}

         .

 


 


  


     
 


e

e

e

e e

S x y x y e

x x y I e

U x y y x y e I

x y x y e e I I

x y otherwise

……………. (6) 

 

(ii)If eT  is a t -norm on  0,e  such that ( , ) 0eT x y  for all , 0x y , then the function 
2

2( , ) : U x y L L  is a 

uninorm on L  with the neutral element \{0,1}e L , where 
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 

 

 

   

2

2

( , )    ( , ) 0,

              ( , ) 0,

( , )               ( , ) 0,

        ( , ) {0} {0} {0} ,1 ,1 {0}

         .

 


 


  


     
 


e

e

e

e e

T x y x y e

x x y I e

U x y y x y e I

x y x y I I e e

x y otherwise

………….. (7) 

 

3. New methods to construct concrete uninorms on bounded lattices 

In this section, we introduce a new method which changes the disjunctive and conjunctive properties of 

uninorms on L  for constructing uninorms on an arbitrary bounded lattices with a neutral element \{0,1}e L . Our 

results can be used to enrich the classes of uninorms on bounded lattices. 

 

Theorem 3.1 Let ( , ,0,1)L   be a bounded lattice with  \ 0,1e L .  

(i)If eT  is a t -norm on  0,e  and cl  is a closure operator on L , then the function 
2

,0 ( , ) :clU x y L L  defined by 

 

       

 

 

2

,0

( , )          ( , ) 0,

              ( , ) 0, ,1 ,1 0,

                    ( , ) 0,
( , )

                    ( , ) 0,

0                     ( , ) {0} {0} {0} ] ,1] ] ,1]

e

e
cl

e

e e

T x y x y e

x y x y e e e e

y x y e I
U x y

x x y I e

x y I I e e



   

 


 

    {0}

( ) ( )    ,cl x cl y otherwise










 

……… (8) 

is a uninorm on L  with the neutral element \{0,1}e L  iff ( , ) 0eT x y  for all , 0x y . 

(ii)If eS  is a t -conorm on  ,1e  and int  is an interior operator on L , then the function 
2

int,1( , ) :U x y L L  defined 

by 

 

       

 

 

   

2

int,1

( , )           ( , ) ,1

               ( , ) 0, ,1 ,1 0,

                     ( , ) ,1
( , )

                      ( , ) ,1

1                       ( , ) {1} 0, 0, {1} {1}

e

e

e

e

S x y x y e

x y x y e e e e

y x y e I
U x y

x x y I e

x y e e I



   

 


 

    {1}

int( ) int( )    ,

eI

x y otherwise











 

…………… (9) 

is a uninorm on L  with the neutral element \{0,1}e L  iff ( , ) 1eS x y  for all , 1x y . 

 

Proof. We give the proof of the fact that 
,0clU  

is a uninorm iff ( , ) 0eT x y  for all , 0x y . The 

same result for 
int,1U  can be obtained using similar 

arguments. 

 

Necessity. Let the function 
,0clU  be a uninorm 

on L  with the neutral element \{0,1}e L . We 

prove that ( , ) 0eT x y  for all , 0x y . Assume that 

there are some elements ]0, [x e  and ]0, [y e  such 

that ( , ) 0eT x y  . If ez I , then we obtain 

,0 ,0 ,0( , ( , )) ( , )cl cl clU x U y z U x z z   and 

,0 ,0 ,0( ( , ), ) ( ( , ), ) 0cl cl cl eU U x y z U T x y z  . Since 

( , ) 0eT x y  , the associativity property is violated. 

Then 
,0clU  is not a uninorm on L  which is a 

contradiction. Hence, ( , ) 0eT x y  for all , 0x y . 

 

Sufficiency. ( , ) ( ) ( )R x y cl x cl y  . 

Observe that R  is a t -subconorm on L . Thus, we 
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obtain that 
,0clU  is a uninorm on L  with a neutral 

element \{0,1}e L  by Theorem 2.1. 

 

It is worth pointing out that the bounded 

conditions in Theorem 2.3 are sufficient and necessary.  

 

Theorem 3.2 Let ( , ,0,1)L   be a bounded lattice with 

 \ 0,1e L .  

(i)If eT  is a t -norm on  0,e , then the function 

2

,0 ( , ) :clU x y L L  defined by 

 

 

 

 

   

2

1

( , )    ( , ) ,1

              ( , ) ,1

( , )               ( , ) ,1

        ( , ) {1} 0, 0, {1} {1} {1}

         ,

e

e

e

e e

S x y x y e

x x y I e

U x y y x y e I

x y x y e e I I

x y otherwise

 


 


  


     
 


 (10) 

is a uninorm on L  with the neutral element \{0,1}e L  iff ( , ) 0eT x y  for all , 0x y . 

(ii)If eS  is a t -conorm on  ,1e , then the function 
2

int,1( , ) :U x y L L  defined by 

 

 

 

 

   

2

2

( , )    ( , ) 0,

              ( , ) 0,

( , )               ( , ) 0,

        ( , ) {0} {0} {0} ,1 ,1 {0}

         ,

e

e

e

e e

T x y x y e

x x y I e

U x y y x y e I

x y x y I I e e

x y otherwise

 


 


  


     
 


 (11) 

is a uninorm on L  with the neutral element \{0,1}e L  iff ( , ) 1eS x y  for all , 1x y . 

 

Proof. We give the proof of the fact that 
1U  is 

a uninorm iff ( , ) 0eT x y  for all , 0x y . The same 

result for 
2U  can be obtained using similar arguments. 

 

Necessity. Let the function 
1U  be a uninorm 

on L  with the neutral element \{0,1}e L . We 

prove that ( , ) 0eT x y  for all , 0x y . Assume that 

there are some elements ]0, [x e  and ]0, [y e  such 

that ( , ) 0eT x y  . If ez I , then we obtain 

1 1 1( , ( , )) ( , )U x U y z U x z z   and 

1 1 1( ( , ), ) ( ( , ), ) 0eU U x y z U T x y z  . Since 

( , ) 0eT x y  , the associativity property is violated. 

Then 
1U  is not a uninorm on L  which is a 

contradiction. Hence, ( , ) 0eT x y  for all , 0x y . 

 

Sufficiency. The result can be proved in a 

manner similar to the proof of Theorem 2.3. 

 

Corollary 3.1 Let ( , ,0,1)L   be a bounded lattice 

with  \ 0,1e L  and ( )cl x x  in Theorem 3.1, 

then 
,0clU  in Theorem 3.1 is equal to 

1U  in Theorem 

3.2. 

 

Corollary 3.2 Let ( , ,0,1)L   be a bounded lattice 

with  \ 0,1e L  and int( )x x  in Theorem 3.1, 

then 
int,1U  in Theorem 3.1 is equal to 

2U  in Theorem 

3.2. 

 

4. CONCLUSION 
In this article, we investigate the construction 

of uninorms on arbitrary bounded lattices with 

 \ 0,1e L , where some sufficient and necessary 

conditions on the underlying t -norms and t -conorms 

are required. Then we investigate the relation between 

introduced methods and some other approaches. By 

concretizing Theorem 3.1, we can get Theorem 3.2. In 

the future, we well continue to construct new uninorms. 
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