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The structure of the nullnorms are the basis for the study of nullnorms. This paper presents two concrete methods to
construct nullnorms via triangular subconorms (triangular subnorms) and triangular norms (triangular conorms) on
bounded lattices, then gets two constructions of nullnorms on bounded lattices via triangular subconorms (triangular

subnorms) and triangular norms (triangular conorms).
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1. INTRODUCTION
The concept of nullnorm on unit interval

[0,1] was introduced by Calvo [1]. From a theoretical

point of view, nullnorm is important. Meanwhile, it is
also widely used in many fields, such as expert systems,
fuzzy quantifiers, neural networks, fuzzy logic [2].

Since bounded lattices [3] are more general
than unit intervals [2-9], most studies of nullnorms
focus on bounded lattices [10-12]. Based on the
existence of t-norms and t-conorms on bounded lattices,
Karacal et al. [10] defined nullnorms on bounded
lattices and proposed three construction methods of
nullnorms on bounded lattices with an arbitrary zero
element ae< L\{0,1}. Later, some construction

methods of nullnorms on bounded lattices were also
proposed by Ertugr et al., [11, 19, 20]. For the first
time, Xie, Ji [18] constructed nullnorms via triangular
subconorms (triangular subnorms) on bounded lattices.

In order to complete the structure of nullnorms
on bounded lattices, two concrete methods to construct
nullnorms via triangular subconorms (triangular
subnorms) and triangular norms (triangular conorms) on
bounded lattices are presented in this paper.

2. Preliminaries
In this section, we will recall some basic
definitions and theorems which will be applied to this

paper.

Definition 2.1.[13] A lattice (L,<) is bounded if it
has top and bottom elements, which are written as 1
and O, respectively; that is, two elements 0,1€ L
existsuchthat 0 < x <1 forall xeL.

Throughout this paper, unless stated otherwise,
we denote L as a bounded lattice with the top and
bottom elements 1 and O, respectively.

Definition 2.2.[13] Given a bounded lattice (L,<,0,1)
and a,be L, a<b, asubset [a,b] of L is defined

as [a,b] = {X € L|a£ X < b} . Similarly, denote
[a,b) = {xeLla<x<b}. (a,b]={xeLla<x<b}
and (a,b)={Xe L|a<x<b}. If a and b are

incomparable, we use the notation a[Jb . The set of all
elements which are incomparable with a are denoted

by I, .

Definition 2.3.[14] Let (L,<,0,1) be a bounded
lattice.
(1) An operation T:L”> — L is called a triangular

norm (t-norm for short) if it is commutative,
associative, increasing with respect to both

variables and has the neutral element 1€ L such
that T (x,1) =X forall Xe L.
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(2) An operation S:L*> — L s called a triangular
conorm (t-conorm for short) if it is commutative,
associative, increasing with respect to both
variables and has the neutral element O € L such

that S(X,0) =X forall XxeL.

Definition 2.4.[15] Let (L,<,0,1) be a bounded
lattice. A commutative, associative, non-decreasing in

each variable function V :L> > L is called a
nullnorm if an element a<L exists such that
V(x,0)=x for all x<a and V(x,1) =x for all
X=a.

It is easy to see that V (X,a) =a for all Xe L, thus
a is the zero element for V .

Theorem 2.1.[16] Let (L,<,0,1) be a bounded lattice

and V :L?> — Lbe a nullnorm on L with the zero
element @ . Then,

S(x,Y) (x,y) €[o0, a]2
VS - T(x,Y) (X, y)e[a,l]2

S(xAna,ynra)

a otherwise,

S(x,Y) (x,y) €[0, a]2
VI = T(x,Y) (X, y)e[a,l]2

T(xAa,ysa)

a otherwise,
And they are nullnorms on L with zero element a.

@ V._ ,:[0,a]* —=[0,a] isat-conormon [0,a];

[o.af
(2) V[al]2 :[a,1] —[a,1] isat-normon [a,1].

Definition 2.5.[14] Let (L,<,0,1) be a bounded
lattice.
(1) An operation F:L”> — L is called a t-subnorm

on L if it is commutative, associative, increasing
with  respect to both  variables and

F(X,y)<xAay forall X,yelL.

(2) An operation R:L* — L is called a t-subconorm

on L if it is commutative, associative, increasing
with  respect to  both  variables and

R(x,y)=>xvy forall X,yelL.

Theorem 2.2.[17] Let (L,<,0,1) be a bounded lattice,
ae L\{0,1}, S isat-conormon [0,a],and T isa
t-norm on [a,1] .Then, the functions V;* VJ : 12 —L
can be defined as:

(x,y)e[0,a]x1,Ul,x[0,a]Ul,xI,

(x,y)e[al]x1,Ul,x[a1]Ul, xI,

In order to reduce the complexity in the proof of associativity, we introduce the following theorem.

Theorem 2.3.[21] Let S be a nonempty set and A,B,C,D be subsets of S. Let H be a commutative binary
operationon S. Then H isassociative on AUUBUC D both of the following statements hold:
1) H(H(Yy).z)=H(xH(y,2)) forall (x,y,z) (A A A)U(B,B,B)U(C,C,C)
U(D,D,D)U(A, A,B)U(A, B,B)U(A, A,C)U(A,C,C,)U(A, A,D)U(A,D,D)U
(B,B,C)U(B,C,C)U(B,B,D)U(B,D,D)U(C,C,D)U(C,D,D).
@ H(H(XYy),z)=H(xH(y,z))=H(H(x2),y) forall (x,y,z) (A B,C)U

(A,B,D)U(A,C,D)U(B,C,D).

3. New Constructions of Nullnorms on Bounded Lattices

In this section, we will recall some basic definitions and theorems which will be applied to this paper.
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Theorem 3.1. Let (L,<,0,1) be a bounded lattice, @ € L\{0,1}, R is a t-subconorm on [0,a], and T is a t-norm

on [@,1] .Then, the function V" : > — L can be defined as:

R(X, ) (x,y) €(0,a]’
XV'Yy (X, y)e{O}x[O,a]U[O,a]x{O}
VR =<T(xY) (X,Y) e[a,l]2
(xna)v(yna) (x,y)e[0,a]xI,Ul,x[0,a]ul,xI,
a otherwise,

And it is nullnorm on L with zero element @, ifand only if “X Aa =0 forall X € Ia”.

Proof. Sufficiency: The commutativity of VTR can be proven directly based on its description. Similarly, we can express
VR (X,O) =X forall xe[0,a] and V" (x,1)=xforall xe [a,1]. Now, we only need to proof monotonicity and

associativity.

Monotonicity: Let us prove that if X <Y, then V% (X, z) <V¥(y, ) forall ze L.
1. Itis obvious that V" (X,2) <V (y,z), if x=0.

2. xe(0,a]
2.1. y=(0,a]
211. z2=0
Vi (0 2) =x<y =V(y,2)
2.1.2. 7¢(0,a]
VR (x,2) =R(x,2) <R(Y, 2) =V (Y, 2)
2.13. z€[a1]
Vi 2)=a=V(y,2)
214.2¢€l,
VE(x,2)=(xra)v(zra)=x<y=(yra)v(zaa)=V(y,2)
22. ye[al]
221.2=0
VD) =x<a=Vi (5,2
222.2¢(0,a]
VR (x,2) =R(x,z) <a=V(y,2)
223 2€[a,1]
Vi (x2)=a<T(y,2) =V (¥.2)
224. 7€,
VR (x,2) = (xA@)v(zra)=x<a =V (y,2)
3. xelal]
3.1 ye[al]
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311.z=0
VE(x,2)=a=V(y,2)
3.1.2. 2¢(0,a]
Vii(x,2) =a=\,"(y,2)
3.13. z€[a,1]
Vi (x2) =T(x,2) <T(y,2) =Vr (Y, 2)
314. 7€,
Vii(x,2) =a=\,"(y,2)
4. xel,
41 yel,
411.2=0
VR(x,z)=(xra)v(zra)=0=(yra)v(zaa)=V{(y,2)
412.2¢(0,a]
VR(x,z)=(xra)v(zra)=z=(yra)v(zra)=V;(y,2)
413. z€(a1]
Vi'(x,z)=a=\,"(y,2)
414.2¢€l,
Vii(x,z) =(xnra)v(zra)=0=(yra)v(zra)=Vi(y,2)
42.yelal]
42.1.2=0
Vi (x,2)=(xra)v(zra)=0<a=\V(y,2)
422.2¢(0,a]
Vi (x,z) =(xra)v(zra)=z<a=V{(y,2)
423. 2€al]
Vii(x,2)=a<T(y,2) =y (y,2)
424. 7€,
Vi (x,2)=(xra)v(zra)=0<a=V](y,2)

Associativity: It can be shown that V" (VTR (x,Y), z) =VF (x,VTR(y, Z)) for all X, Y, Z € L. By Theorem 2.3, We

only need to consider the following cases:
1. x=0,y=0,z=0

A (VTR (X, ), z) =V(0,2) =0=V"(x,0) =V} (x,VTR (y, z))
2. xe(0,a],ye(0,a],ze(0,a]
Vi (VR (%, ), 2) = VR (R(%, ¥), 2) = R(R(X, Y), 2)
=R(X,R(Y,2)) =V (%, R(y,2)) =V* (X (y,2))
3. xe[al],yel[al],ze[a]]

| © 2022 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India [ 72 |




Zheng Xu., Sch J Phys Math Stat, May, 2022; 9(4): 69-75

VE (VR (6 ), 2) =VF (T (% Y), 2) =T (T (%, Y), 2)

=TT (¥,2) =V (T (¥, 2) =V (x5 (¥, 2))
4. xel,,yel,  zel,

VAL (VTR (%, Y), z) =V}(0,2) =0 =V (x,0) =V} (x,VTR (y, z))
5.x=0,y=0, Ze(O,a]

A (VTR (X, ), z) =V(0,2) =z =V (x,2) =V} (x,VTR(y, z))
6. x=0,ye(0,a], z¢(0,a]

VR (VF (6 9),2) =VE (v, 2) =R(Y, 2) =V (, R(Y, 2)) =Vi° (% Vi (1, 2) )
7.x=0,y=0,z€[a]]

VAL (VTR (%, Y), z) =V}(0,2) =a=V}(x,a) =V," (x,VTR (y, z))
8. x=0,ye[al],ze[a]

VE (V) 2) =V (@ 2) =a =V (X T(y, 2)) =V (x5 (v, 2))
.x=0,y=0,z¢l,
VS (VTR (X, y), z) =V;7(0,2) =0=V;"(x,0) =" (x,VTR(y, z))

10. x=0,yel,, zel,

Vi (VR (), 2) =V (%,2) = 0=V (%, 0) = V7 (X, V7 (v, 2) )
11. xe(0,a],ye(0,a],z€[a/]

VE (VR (), 2) =VR (R(% Y), 2) =a =V (x,8) = V7 (VR (. 2))
12. X e(O, a], ye [a,l], Ze [a,l]

VE (VR () 2) =V (@ 2) =a=VF (T (Y, 2) =V (X V5 (1. 2))
13. xe(0,a],ye(0,a],zel,

VE (VR (6, ), 2) =R (R(X Y), 2) = R(%, ) =V (%, ) =ViF (ViR (v, 2))
14. xe(0,a],yel,, zel,

VE (VR (%, ), 2) = ViR (%, 2) = x =V (%, 0) =VF (x VR (v, 2))
15. xe[al],ye[al] zel,

VE (VR (), 2) =VF (T (x y), 2) =a =V (x,8) =V (VR (v, 2))
16. xe[al],yel, zel,

VE (VR (%, ), 2) =V (a,2) =a =V (%,0) =V (X, V7 (v, 2) )
17. x=0,y<(0,a], ze[a,1]

VE (VR (), 2) =V (v, 2) =a= Vi (x, @) =V XV (Y, 2) )

=V (a,y)=V" (VTR (x,2), y)
18. x=0,ye(0,a], zel,

©
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VE (V06 9, 2) =V (v,2) = y =V (%, ) =V (xR (y, )

OV ()
19. x=0,ye[al].zel,

V(W (), 2) =V (@, 2) =a =V (x,.) =V (x Vi (1, 2)

=V (0,y) =V (V' (x.2), y)
20. xe(0,a],yela1] zel,

VTR (VTR (x,y), Z) :VTR (a,z)=a :VTR (x,a) :VTR (X’VTR (v, Z))

V=V (V)

Therefore, VTR is a nullnorm on L with the zero element a .

Necessity: Let VTR is a nullnorm on L with the zero element a and xnrae(0,a) forall xel,.Let xe(0,a), y=0,

zel,, R(x,y)=xvyva, then we get VF (VTR(x, y),Z)=VTR(X,Z)=XV(Z/\a) andvF (x Vi (y,2)) =V} (x,.zra) =

R(x,zAaa)=xv(zAa)va=a. We know that xv(zAa)<a, so VTR(VTR(X,y),z)ivTR(x,vTR(y,Z)). This is

contradictory to the associativity of nullnorm. Therefore, it is mustbe X Aa=0 forall X & Ia.

Theorem 3.2. Let (L,<,0,1) be a bounded lattice, a € L\{0,1}, S is a t-conorm on [0,a], and F is a t-subnorm

on [@,1] .Then, the function V| :L* — L can be defined as:

F(X,Y) (x,y) e [a,l)2
XAY (x,y) e {1} x[a,1)U[a,1)x {1}
V& =<S(x,y) (x,y)€[0,a ?

a otherwise,

And it is nullnorm on L with zero element @, if and
onlyif“xva=1forall Xel,

Proof. This proof is similar to the proof of theorem 3.1.

Remark 3.11 The biggest difference between the
construction methods of nullnorm proposed in this
paper and the construction methods of nullnorm
proposed in theorem 2.2 is that: We replace the
triangular conorm (triangular norm) with the triangular
subconorm  (triangular subnorm), and the most
important thing is that we give the necessary and
sufficient condition for those construction methods.

4. CONCLUSION

In previous studies, nullnorms on bounded
lattices have been defined and studied extensively.
Moreover, the concrete construction of nullnorm on
bounded lattices is still an active research field.

]
(xva)a(yva) (x,y)elal]xI,Ul,x[a1]Ul,xI,

In this paper, we consider the particularity of
specific bounded lattices, and according to the concrete
constructions of nullnorms form theorem 2.2, we
present two concrete methods to construct nullnorms
via triangular subconorms (triangular subnorms) and
triangular norms (triangular conorms) on bounded
lattices. In the following research, we will continue to
find and use different aggregation operators to construct
new nullnorms on bounded lattices, so as to make the
structure of nullnorms on bounded lattices more
complete.
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