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Abstract: This study examines whether the consistency and the efficiency can be improved in estimating panel data 

models when the sample size is realistically finite. In various cases we compare the quasi- and the first-differencing 

approach which are designed to control for unit-specific effects. The equations transformed by the two approaches are 

estimated by instrumental variables. Empirical results from simulated data support that the quasi-differencing approach 

dominates the first-differencing one in estimating and testing panel data models, particularly for small-sized samples. 
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INTRODUCTION 

Panel data models are widely employed in empirical research because they can control for time- and unit-

specific effects. In many panel data the number of cross-sectional units is large and the time period is short. So, a main 

issue is how to control for unit-specific effects as time-specific effects are easily accounted for by a small number of 

dummy variables. Two approaches are compared in this study, the first-differencing (FD) and the quasi-differencing 

(QD) approach. The FD approach, most widely employed one in practice, eliminates the unit-specific effects by 

subtracting the equation for time period t-1 from the one for t. However, this approach is valid only when the unit-

specific effects are constant over time. The QD approach includes a product term of unit-specific effects multiplied by a 

time-varying coefficient and then eliminates the product term by a transformation[1-2].   

  

The main objective of this study is to compare the QD and the FD approach with a focus on estimation 

efficiency. When eliminating the unit-specific effects, we are concerned about a loss of efficiency which could inflate 

standard errors. The efficiency and thus standard errors are determined by variations in panel data; the unexplained 

variation in the dependent variable and the variation in the regressors. 

  

In the next section, we present a panel data model and compare the QD and the FD approach along with their 

instrumental variables. In section 3, after describing the simulated data for various cases, we report and discuss the 

estimation results. Concluding remarks are provided in section 4.  

 

QUASI- AND FIRST-DIFFERENCING APPROACHES 

The model considered in this study is from a two-variable vector autoregressive regression of lag order one, 

VAR(1). Since the main issue is how to consistently and efficiently estimate a panel data regression model, we focus on 

only one equation of VAR(1). For cross-sectional unit i (=1,..., M) and time period t (=2, ..., T), this model allows for 

time-specific and unit-specific effects.
1
 

 

ititttitiit ufxyy    1,11,1         (1) 

where the error term itu  satisfies the orthogonality conditions 0][][  itisitis uxEuyE  )( ts   and the time-specific 

effects ( t ) are common to all cross-sectional units. This model allows for unit-specific effects to vary over time as the 

                                                           
1
 This study considers a dynamic panel data model, but the same discussion also applies to static panel data models. 

https://saspublishers.com/journal/sjebm/home
https://mail.google.com/mail/h/fnmxli3ynmxh/?&cs=wh&v=b&to=cmin@hufs.ac.kr
https://mail.google.com/mail/h/fnmxli3ynmxh/?&cs=wh&v=b&to=minchungki@gmail.com


 
DOI : 10.36347/sjebm.2015.v02i02.001 

Available Online:  https://saspublishers.com/journal/sjebm/home   140 

 

  
 
 

time-invariant unit-specific effects if  are multiplied by a time-varying coefficient t  [2]. In this study we consider two 

cases of t ; one is time-varying and the other is time-constant ( 1t )
2
.  

  

To eliminate the time-varying unit-specific effects, we let 1/  tttr   and apply the quasi-differencing 

transformation suggested by Chamberlain [1]; after multiplying Eq.(1) for time period t-1 by tr , we subtract the result 

from the equation for time period t. 

 

itttittittititit vdxyxyy   2,32,21,11,1         (2) 

 

where tt r 11  , tt r12   , tt r13   , 1 tttt rd   and 1,  tititit uruv . The orthogonality 

conditions of Eq.(1) imply that the error term itv satisfies 0][][  itisitis vxEvyE  for 1 ts  because of the 

presence of 1, tiu  in itv . Thus, the   instrumental variables which can be used to identify the parameters of Eq.(2) are 

included in the following )32(1  t  vector. 

 

  ]1,,,,,,[ 12,12, itiitiit xxyyz     

 

Since there are five variables on the right-hand side in Eq.(2), including a constant for td , the necessary condition for 

identification requires that there be at least five instrumental variables, 5)32( t  i.e., 4t  [2]. Thus, the first 

observation for Eq.(2) starts at 4t . 

  

Using vector notation we can express Eq.(2) more compactly. For time period t, 

 

tttt VBWY              (3) 

 

where ]',,[ 1 Nttt yyY   and ]',,[ 1 Nttt xxX   are 1M  vectors of observations for time period t; 

]1,,,,[ 2211 Mttttt XYXYW   is a 5M  matrix with M1  being a 1M  vector of ones; ]',,[ 1 Nttt vvV   is a 

1M  vector of the transformed disturbances; and ]',,,,[ 3211 ttttt dB   is a 15  vector of coefficients. The 

instrumental variables for time period t are ]1,,,,,,[ 1212 Mttt XXYYZ   . 

  

We can stack all observations from the entire period.
3
 

 

VWBY              (4) 
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Because of the time-varying coefficients, the orthogonality conditions are defined separately for each t.  

 

                                                           
2
 This coefficient can be set to any constant, only a matter of scale. With 1t , Eq.(1) becomes a typical panel data 

model.  
3
 The first observation for Eq.(2) starts at t=4 because of the necessary condition for identification. 
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Thus, the instrumental variables for Eq.(4) are ],,[ 4 T
diag ZZdiagZ   where diag[ ] denotes a block diagonal matrix 

with the given entries.  

  

By applying the nonlinear generalized method of moment (GMM), we estimate the lag coefficients ),( 11   

and the ratios of the time-varying coefficients of the unit-specific effects )/( 1 tttr  .
4
 The transformed time-

specific effects, td )( 1 ttt r , are estimated as the coefficients of time dummies; the original time-specific effects 

)( t  are nuisance parameters and not of our interest.  

  

If t  is constant over time, then 1tr  and Eq.(2) becomes the first-differenced specification. 

 

itttitiit uxyy    1,11,1         (6) 

 

where   denotes the difference between time period t and t-1. This specification includes two time-invariant coefficients 

),( 11   and time-specific effects )( t . Letting ]',,[ 1 Nttt yyY   , ]',,[ 1 Nttt xxX   , 

],[ 11   ttt XYW , ]',[ 11 B  and ]',,[ 1 Nttt uuU   , we compactly express Eq.(6) for each t. 

 

ttMtt UBWY  1          (7) 

 

The first-differenced time-specific effects t , which are usually nuisance parameters and controlled for by 

time dummies, are separated from the time-invariant coefficients. Ignoring the nuisance parameters, the instrumental 

variables for time period t are ],,,,,[ 2222 XXYYZ ttt    . Stacking all observations from the entire 

period, we let 
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Then, for the entire period, the first-differenced specification Eq.(6) is expressed as  

 

UdiagBWY M  ]1[          (8) 

 

where ]1[ Mdiag  represents time dummies. Since the regressors W  are a matrix stacked by each period’s tW , the 

instrumental variables for W  are also formed by stacking each period’s tZ . The instrumental variables 
stackZ  satisfy 

the orthogonality conditions for the entire period, not period by period.  

 

                                                           
4
 Since any changes in t  correspond to changes in if , individual coefficients ( t ) are not identified but only their 

ratios ( tr ) are identified [2].  
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In panel data the number of time period (T) is usually finite but the number of cross-sectional units (M) is 

sufficiently large. Thus, consistent estimation becomes possible as M increases to infinity. 

  

The first-differenced specification, Eq.(8), has time-invariant coefficients and its orthogonality conditions are 

thus defined for the entire observations, Eq.(9). In contrast, since the quasi-differenced specification, Eq.(4), includes 

time-varying parameters, its orthoganality conditions are defined separately for each time period t, as shown in Eq.(5). 

So, the QD instrumental variables, ],,[ 4 T

diag ZZdiagZ  , are block-diagonally formed after the entire 

observations are divided into each time period. By choosing estimates of time-varying parameters separately for each 

period, 
diagZ  can satisfy the orthogonality conditions more closely than 

stackZ . Since the deviations from the 

orthoganality conditions are used for the calculation of standard errors, the quasi-differencing approach is expected to 

produce smaller standard errors than the first-differencing approach. Even when 1t  (also 1tr ) and the 

coefficients ),( 11   are time-invariant, the quasi-differencing can still outperform the first-differencing for small-sized 

samples because of sampling errors.
5

 Using simulated data, we present empirical evidence favoring the quasi-

differencing approach in the next section. 

 

EMPIRICAL RESULTS FROM SIMULATED DATA 

To compare the estimation results of the QD and the FD approach, we generate data using the following 

VAR(1) specification. 

 

ittitiit

ititttitiit

wxyx

ufxyy









1,21,1

1,11,1




        (10) 

 

Since this study focuses on the first equation on ity , we generate }{ itx  series without including time- and 

unit-specific effects. After we generate data for t = -19 to 12, we discard the first 20 observations (t = -19 to 0) to 

minimize any effects of starting values. We assign values for the parameters as follows: 7.01  , 3.01  , 

1.01  , 7.02  , 2.0y , 1x , and t ’s are independently drawn from a uniform distribution between -0.5 

and 0.5. When we assign values for the unit-specific effects )( if , we consider that they need to be correlated with the 

lagged regressors, 1, tiy  and 1, tix . To impose the correlations, we generate values for if  using a linear relation such 

that ii if  05.0  where )5.0,5.0(~ Uniformi . Values for the rest of the parameters are assigned 

appropriately in the following cases. 

  

After the QD and the FD transformation are applied, we estimate the parameters using the GMM. In doing so, 

we need to account for serial correlation of the transformed disturbances, 1,  tititit uruv  in QD and 

1,  tiitit uuu  in FD. Since the main issue of this study is to compare the QD and the FD approach in terms of 

consistency and efficiency, we skip the serial correlations by using observations from every other period; the 

observations used for estimation are from t = 4, 6, 8, 10, 12. 

 

                                                           
5
 Of course, when the sample size is large enough for convergence, the estimates in one period will be the same as the 

ones in another period. Then use of diagZ  has no advantage over use of stackZ . 
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Table-1: Estimation results when the coefficient for unit-specific effects is constant at 1t . 

  Quasi-differencing First-differencing se(FD) -

se(QD)   estimate se(QD) estimate se(FD) 

Case 1: M increases 

 [1] M=100        1  0.640 0.043 0.679 0.060 0.017 

                  1  0.250 0.033 0.294 0.052 0.019 

 [2] M=200        1  0.624 0.033 0.624 0.041 0.008 

                  1  0.254 0.028 0.242 0.038 0.011 

 [3] M=500        1  0.668 0.027 0.669 0.025 -0.002 

                  1  0.274 0.024 0.271 0.022 -0.001 

Case 2: T increases 

 [4] T=4           1  0.751 0.115 0.715 0.113 -0.002 

                  1  0.375 0.079 0.336 0.066 -0.013 

 [5] T=6           1  0.576 0.070 0.586 0.080 0.010 

                  1  0.279 0.053 0.278 0.062 0.009 

 [6] T=12          1  0.640 0.043 0.679 0.060 0.017 

                  1  0.250 0.033 0.294 0.052 0.019 

1. The true values for 1  and 1  are 0.7 and 0.3, respectively.  

2. Number of observations used for estimation: Case 1 (t= 4, 6, 8, 10, 12), Case 2 (M=100; t= 4, 6, .., T). 

 

 In the following cases, we compare the QD and the FD standard errors when the unit-specific effects are 

constant at if  over time with 1t . In such cases, the FD transformation is appropriate for eliminating the unit-

specific effects. However, as shown below, the QD could produce smaller standard errors than the FD for small-sized 

samples. 

 

(1) Case 1: M increases 

 Row [1] in Table 1 shows that when the number of units (M) is finite with 100, the standard errors of QD are 

smaller than the ones of FD; the differences are 0.017 for 1  and 0.019 for 1 . As M increases to 200 and 500, the 

differences become smaller. 

  

Even when the parameters are constant over time, their estimates in one period could be different from the ones 

in another period because of sampling errors for finite-sized samples. If so, the QD is expected to produce smaller 

standard errors than the FD because 
diagZ  of QD can satisfy the orthogonality conditions more closely than 

stackZ  of 

FD. Row [1] supports this prediction.  

  

However, when M is large enough for convergence, the estimates in one period become the same as the ones in 

another period. If so, use of 
diagZ  has no advantage over use of 

stackZ . Row [5] shows that with M=500, the differences 

in standard errors decrease to -0.002 and -0.001. The reason why the QD standard errors are slightly bigger is probably 

because the QD has more parameters ),,,,( 1210864 rrrrr  to estimate.  

 

(2) Case 2: T increases 

 For a finite number of units (M=100), we compare the standard errors when the number of time periods (T) 

changes. Since the first observations in Eqs.(4) and (8) start at t=4 and observations from every other period are used for 

estimation, the observations in each unit come from t=4, 6,..., T. So, T=4 indicates one observation for each unit (i.e., one 

time period), T=6 indicates two observations, and so on; the maximum number of observations in each unit is five with 

T=12. 
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As explained above, the QD can produce smaller standard errors than the FD because 
diagZ  of QD has more 

flexibility in satisfying the orthogonality conditions defined for each time period but 
stackZ  of FD has to satisfy the 

orthogonality conditions defined for the entire period. When there is only one time period (T=4), however, the QD has no 

more flexibility and thus its standard errors would not be smaller than the ones of FD. Row [4] in Table 1 shows that the 

standard errors of QD are even bigger than the ones of FD; the differences are -0.002 and -0.013. The reason why the QD 

standard errors are slightly bigger is probably because the QD has one more parameter )/( 344 r  to estimate.  

  

As T increases to 6, 8, 10 and 12, the standard errors of both QD and FD become smaller with more 

observations, but the QD standard errors decrease more sharply than the FD ones; the differences of their standard errors 

increase from (0.010, 0.009) to (0.017, 0.019). These results support the above explanation that the QD has more 

flexibility in satisfying the orthogonality conditions because they are defined separately for each time period. Therefore, 

the advantage of QD over FD becomes bigger as the number of periods increases. 

 

CONCLUSIONS 

We have examined whether the consistency and the efficiency can be improved in estimating panel data 

models when the sample size is realistically finite. In this study we have applied the quasi-differencing (QD) approach by 

assuming that unit-specific effects vary over time. We have also applied the first-differencing (FD) approach which is 

valid only when unit-specific effects are constant over time. Overall, the QD approach has produced more accurate 

estimates than the FD approach in all cases considered in this study. 
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