Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch J Phys Math Stat ISSN 2393-8056 (Print) | ISSN 2393-8064 (Online) Journal homepage: <u>https://saspublishers.com</u>

KKM Type Theorems in GFC-Spaces and Their Applications

Rui-Jiang Bi^{1*}, Rong-Hua He²

^{1,2}College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, Sichuan, P. R. China

DOI: <u>10.36347/sjpms.2022.v09i07.001</u>

| Received: 11.08.2022 | Accepted: 18.09.2022 | Published: 22.09.2022

*Corresponding author: Rui-Jiang Bi

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, Sichuan, P. R. China

Abstract Review Article

In this paper, GFC-KKM maps with compactly closed (or compactly open) values are established in GFC-space, and some KKM-type theorems are given. Finally, as applications, some fixed point theorems and inequalities are proved. These theorems generalize some related results in the recent literature.

Keywords: GFC-space; GFC-KKM mapping; KKM-type theorems.

Copyright © 2022 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

In 1929, Knaster and other three Polish mathematicians initiated the research on KKM theory, and later many people improved and developed the KKM theorem in many aspects. Since 1987, after Horvath [11] gave H-space without linear structure by replacing convex hull with contractible set, Park and Kim [16] introduced G-convex spaces, Ben-El-Mechaiekh *et al.*, [13] introduced L-convex spaces, Ding [14] introduced FC-space without any convexity structure, Khanh [2] introduced GFC-space, and in this paper, GFC-KKM maps are established in GFC-space, and some KKM-type theorems are given. Finally, as applications, some fixed point theorems and inequalities are proved. These theorems generalize some related results in the recent literature.

1. Preliminaries

Let X be a nonempty set. We denote by 2^X and $\langle X \rangle$ the family of all subsets of X and the family of all nonempty finite subsets of X. Let Δ_n be the standard (n-1) simplex with vertices $\{e_1, e_2, ..., e_n\}$ in \mathbb{R}^n . For any nonempty subset J of $\{1, 2, ..., n\}$, let $\Delta_J = (\{e_j : j \in J\})$.

Definition 1.1. ([2])

Let X be a topologic space, Y be a nonempty set, and Φ be a family of continuous mappings $\varphi: \Delta_n \to X$, $n \in N$. Then a triple (X, Y, Φ) is said to be a generalized finitely continuous topological space (GFC-space in short) if for each finite subset $N = \{y_1, y_2, ..., y_n\} \in \langle Y \rangle$, there is $\varphi_N : \Delta_n \to X$ of the family Φ .

Definition 1.2. ([8])

Let
$$(X, Y, \Phi)$$
 be a GFC-space and

$$\begin{split} T: Y &\to 2^X \text{ is a multivalued mapping.} T \text{ is said to be} \\ \text{a} & \text{GFC-KKM} & \text{mapping} & \text{if} & \text{for} & \text{any} \\ N &= \left\{ y_1, y_2, ..., y_n \right\} \in \left\langle Y \right\rangle \text{ there} & \text{exists } \varphi_N \in \Phi \text{ such} \\ \text{that for any} & \left\{ y_{i_1}, y_{i_2}, ..., y_{i_k} \right\} \in \left\{ y_1, y_2, ..., y_n \right\}, \text{ we} \\ \text{have} \end{split}$$

$$\varphi_N(\Delta_k) \subset \bigcup_{j=1}^k T(y_{i_j}).$$

Definition 1.3. ([8])

Let (X, Y, Φ) be a GFC-space, $S, T : Y \to 2^X$ are two set-valued mappings. *S* is called relative GFCconvex with respect to *T*, if $\forall y \in Y$,

$$\forall N = \{ y_1, y_2, \cdots , y_n \} \in \langle Y \rangle,$$

$$\forall \{ y_{i_1}, y_{i_2}, \cdots , y_{i_k} \} \in \langle N \cap T(y) \rangle, \text{ then }$$

$$\varphi_N(\Delta_k) \subset S(y).$$

Definition 1.4. ([7])

Let
$$(X, Y, \Phi)$$
 be a GFC-space, Y is a

nonempty subset of X, and D is a nonempty

Citation: Rui-Jiang Bi & Rong-Hua He. KKM Type Theorems in GFC-Spaces and Their Applications. Sch J Phys Math Stat, 2022 Sept 9(7): 102-108.

subset of *Y*. *D* is called to GFC-convex, if $\forall N = \{y_1, y_2, \dots, y_n\} \in \langle Y \rangle$, $\forall \{y_{i_1}, y_{i_2}, \dots, y_{i_k}\} \in \langle N \cap D \rangle$, then we have $\varphi_N(\Delta_k) \subset D$.

Let A be a subset of X. A is said to be compactly open (or compactly closed) in X if for each nonempty compact subset K of X, $A \cap K$ is open (or closed) in K.

Let X and Y be two sets and $S: Y \to 2^X$ be a set-valued mapping, then $S^{-1}: X \to 2^Y$ and $S^*: X \to 2^Y$ are defined as $S^{-1}(x) = \{ y \in Y : x \in S(y) \}$ and $S^*(x) = Y \setminus S^{-1}(x)$, respectively. Obviously,

 $y \in S^*(x)$ when and only when $x \notin S(y)$.

2. GFC-KKM Type Theorems

Theorem 2.1. Let (X, Y, Φ) be a GFC-space, and $T: Y \to 2^X$ be a set-valued mapping with compactly closed values.

- 1. If *T* is a GFC-KKM mapping, then the family $\{T(y): y \in Y\}$ has the finite intersection property.
- 2. If the family $\{T(y): y \in Y\}$ has the finite intersection property, there exists $x \in X$ such that $x \in \bigcap_{i=1}^{n} T(y_i)$ and $\varphi_{\{x\}}(e_0) = \{x\}$, then *T* is a GFC-KKM mapping.

Proof.

(1) Suppose that the family $\{T(y): y \in Y\}$ has not the finite intersection property, then $\bigcap_{i=1}^{n} T(y_i) = \emptyset$. Since T is a GFC-KKM mapping, there exists a continuous mapping φ_N such that $\varphi_N(\Delta_k) \subset \bigcup_{j=1}^{k} T(y_{i_j})$ for any $\{y_{i_1}, y_{i_2}, ..., y_{i_k}\} \in \{y_i, y_2, ..., y_n\}$, especially, $\varphi_N(\Delta_n) \subset \bigcup_{i=1}^{n} T(y_i)$. Hence,

 $\varphi_N(\Delta_k) \subset \bigcup_{i=1}^n (X \cap T(y_i)),$ because φ_N is continuous, then $\varphi_N(\Delta_n)$ is a compactly set, and since

T is a set-valued mapping with compactly closed values, and hence, $\varphi_N(\Delta_n) \cap T(y_i)$ is closed in $\varphi_N(\Delta_n)$ for $\forall i \in \{1, 2, ..., n\}$, then

 $\varphi_N(\Delta_n) \setminus (\varphi_N(\Delta_n) \cap T(y_i)) \text{ is open in } \varphi_N(\Delta_n).$ Then we have $\varphi_N(\Delta_n) = \bigcup_{i=1}^n (\varphi_N(\Delta_n) \setminus (\varphi_N(\Delta_n) \cap T(y_i))).$

Hence, $\{\varphi_N(\Delta_n) \setminus (\varphi_N(\Delta_n) \cap T(y_i))\}_{i=1}^n$ is an open cover of $\varphi_N(\Delta_n)$. Let $\{\psi_i\}_{i=1}^n$ be the continuous partition of unity subordinate to the open covering, then we have that for each $i \in \{1, 2, ..., n\}$ and $x \in \varphi_N(\Delta_n)$

$$\psi_i(x) \neq 0 \Leftrightarrow x \in \varphi_N(\Delta_n) \setminus (\varphi_N(\Delta_n) \cap T(y_i)).$$

Define a mapping $\Psi : \varphi_N(\Delta_n) \to \Delta_n$ by $\Psi(x) = \sum_{i=1}^n \psi_i(x) e_i$, $\forall x \in \varphi_N(\Delta_n)$. Obviously, $\Psi \circ \varphi_N : \Delta_n \to \Delta_n$ is continuous. By the Brouwer fixed-point theorem, there exists a point $z_0 \in \Delta_n$ such that $z_0 = \Psi \circ \varphi_N(z_0)$. Let $z^* = \varphi_N(z_0)$, then we have $z^* = \varphi_N(z_0) = \varphi_N \circ \Psi \circ \varphi_N(z_0) = \varphi_N \circ \Psi(z^*)$. and $\Psi(z^*) = \sum_{i=1}^n \psi_i(z^*) e_i = \sum_{j \in \Delta_{J(z^*)}} \psi_j(z^*) e_j \in \Delta_{J(z^*)}$

where $J(z^*) = \left\{ j \in \{1, 2, ..., n\} : \psi_j(z^*) \neq 0 \right\}$ and $\Delta_{J(z^*)} = co\left\{ e_j : j \in J(z^*) \right\}$. We know that, $z^* \in \varphi_N\left(\Delta_n\right) \setminus (\varphi_N\left(\Delta_n\right) \cap T(y_j)), \forall j \in J(z^*),$ then $z^* \notin T(y_j)$. Since *T* is a GFC-KKM mapping, therefore, we have $z^* = \varphi_N(z_0) = \varphi_N \circ \Psi(z^*) \in \varphi_N(\Delta_{J(z^*)}) \subset \bigcup_{j \in J(z^*)} T(y_j)$. Thus, there exists $j_0 \in J(z^*)$ such that $z^* \in T(y_{j_0}),$ this is contradictory. Therefore, the family $\{T(y) : y \in Y\}$ has the finite intersection property.

(1) Suppose that the family $\{T(y): y \in Y\}$ has the finite intersection property, then for any $\{y_1, y_2, ..., y_n\} \in \langle Y \rangle, \bigcap_{i=1}^n T(y_i) \neq \emptyset$. Let $x^* \in \bigcap_{i=1}^n T(y_i)$ and $x^* = x_i, i = 1, 2, ..., n$. Then for any $\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\}$, we have $\{x^*\} = \{x_{i_1}, x_{i_2}, ..., x_{i_k}\}$. Thus, $\varphi_N(\Delta_k) = \varphi_{\{x^*\}}(e_0) = \{x^*\} \subset \bigcup_{j=1}^k T(y_{i_j})$.

Therefore, T is a GFC-KKM mapping.

Remark 2.1. Theorem 2.1 generalizes Theorem 2.1 of [1] and Theorem 1 of [5] from L-convex space to GFC-space.

Theorem 2.2. Let (X, Y, Φ) be a GFC-space, and $T: Y \to 2^X$ be a set-valued mapping with compactly open values.

- 1. If *T* is a GFC-KKM mapping, then the family $\{T(y): y \in Y\}$ has the finite intersection property.
- 2. If the family $\{T(y): y \in Y\}$ has the finite intersection property, there exists $x \in X$ such that $x \in \bigcap_{i=1}^{n} T(y_i)$ and $\varphi_{\{x\}}(e_0) = \{x\}$, then *T* is a GFC-KKM mapping.

Proof.

(1) Suppose that the family {T(y): y ∈ Y} has not the finite intersection property, then ∩_{i=1}ⁿT(y_i)=Ø, then we have φ_N(Δ_n) ∩ (∩_{i=1}ⁿT(y_i)) = Ø. It follows that

 $\varphi_N(\Delta_n) = \bigcup_{i=1}^n \left(\varphi_N(\Delta_n) \setminus (T(y_i) \cap \varphi_N(\Delta_n)) \right).$

Since φ_N is continuous, then $\varphi_N(\Delta_n)$ is a compactly set, and since T is a set-valued mapping with compactly open values, and hence, $\varphi_N(\Delta_n) \cap T(y_i)$ is open in $\varphi_N(\Delta_n)$ for $\forall i \in \{1, 2, ..., n\}$. For each $z \in \Delta_n$, let $I(z) = \{i \in \{1, 2, ..., n\} : \varphi_N(z) \notin T(y_i)\}$ and $S(z) = co(\{e_i : i \in I(z)\})$. If for some $z \in \Delta_n$, $I(z) = \emptyset$. Then we have $\varphi_N(z) \in T(y_i)$ for all $i \in \{1, 2, ..., n\}$ which contradicts the assumption $\varphi_N(\Delta_n) \cap (\bigcap_{i=1}^n T(y_i)) = \emptyset$.

Therefore we can assume that $I(z) \neq \emptyset$ for each $z \in \Delta_n$ and hence S(z) is a nonempty compact convex subset of Δ_n . Since $\bigcup_{i \notin I(z)} (\varphi_N(\Delta_n) \setminus (T(y_i) \cap \varphi_N(\Delta_n)))$ is closed in we $\varphi_{N}(\Delta_{n}),$ have that $U = \Delta_n \setminus \varphi_n^{-1}(\bigcup_{i \notin I(z)} (\varphi_N(\Delta_n) \setminus (T(y_i) \cap \varphi_N(\Delta_n))))$ is an open neighborhood of z in Δ_n . For $\forall z' \in U$, we have $\varphi_N(z') \in T(y_i), i \notin I(z)$, and hence, $I(z') \subset I(z)$, It follows that $S(z') \subset S(z)$.

This shows that $S: \Delta_n \to 2^{\Delta_n}$ is an upper semicontinuous set-valued mapping with nonempty compact convex values. By the Kakutani fixed point theorem, there exists $z_0 \in \Delta_n$ such that $z_0 \in S(z_0)$. Note that T is a GFC-KKM mapping, then we have $\varphi_N(z_0) \subset \bigcup_{i \in I(z_0)} T(y_i)$, Hence there exists a $i_0 \in I(z_0)$ such that $\varphi_N(z_0) \in T(y_{i_0})$. By the definition of $I(z_0)$, we have $\varphi_N(z_0) \notin T(y_i)$ for each $i \in I(z_0)$, which is a contradiction. Therefore the family $\{T(y): y \in Y\}$ has the finite intersection property.

(2) The proof is the same as Theorem 2.1.

Remark 2.2. Theorem 2.2 generalizes Theorem 2.3 of [1] from L-convex space to GFC-space.

Theorem 2.3. Let (X, Y, Φ) be a GFC-space, $S: Y \to 2^X$ and $T: X \to 2^X$ are two multivalued mappings such that:

(i) S(y) is closed for all $y \in Y$;

(ii) For any $x \in X$, $N = \{y_1, y_2, \dots, y_n\} \in Y$ and $\{y_{i_1}, y_{i_2}, \dots, y_{i_k}\} \in \{y_1, y_2, \dots, y_n\}$, if $\{y_{i_1}, y_{i_2}, \dots, y_{i_k}\} \in \langle Y \setminus S^{-1}(x) \rangle$ can deduce $\varphi_N(\Delta_k) \subset X \setminus T^{-1}(x)$; (iii) $x \in T(x)$ for all $x \in X$;

Then the family $\{S(y): y \in Y\}$ has the finite intersection property.

Proof. By Theorem 2.1, it is only necessary to prove that $S: Y \to 2^X$ is a GFC-KKM mapping. Suppose $S: Y \to 2^X$ is not a GFC-KKM mapping, there exists $N = \{y_1, y_2, \dots, y_n\} \in Y$ and

$$\left\{ y_{i_1}, y_{i_2}, \dots, y_{i_k} \right\} \in \left\{ y_1, y_2, \dots, y_n \right\} \text{ such } \text{ that } \\ \varphi_N \left(\Delta_k \right) \not\subset \bigcup_{j=1}^k S\left(y_{i_j} \right). \text{ There exists } x^* \in \varphi_N \left(\Delta_k \right) \\ \text{such } \text{ that } x^* \not\in \bigcup_{j=1}^k S\left(y_{i_j} \right), \text{ hence, for each } \\ j \in \left\{ 1, 2, \dots, k \right\}, \text{ we have } y_{i_j} \notin S^{-1}(x^*). \text{ Therefore } \\ \left\{ y_{i_j}, y_{i_j} \in Y_j \right\} \in \left\{ X \setminus S^{-1}(x^*) \right\} = \mathbb{R}$$

 $\{y_{i_1}, y_{i_2}, ..., y_{i_k}\} \in \langle Y \setminus S^{-1}(x^*) \rangle$. By condition(ii), $x^* \in \varphi_N(\Delta_k) \subset X \setminus T^{-1}(x^*)$, that is, $x^* \notin T(x^*)$, this contradicts condition (iii). Therefore the family $\{S(y): y \in Y\}$ has the finite intersection property. **Remark 2.3.** Theorem 2.3 generalizes Theorem 2.2 in [10] from FC-space to GFC-space.

Theorem 2.4. Let (X, Y, Φ) be a GFC-space, $S: Y \to 2^X$ and $T: X \to 2^X$ are two multivalued mappings such that: (i) S(y) is open for all $y \in Y$; (ii) For any $x \in X$, $N = \{y_1, y_2, \dots, y_n\} \in Y$ and $\{y_{i_1}, y_{i_2}, \dots, y_{i_k}\} \in \{y_1, y_2, \dots, y_n\}$, if $\{y_i, y_i, \dots, y_i\} \in \langle Y \setminus S^{-1}(x) \rangle$ can deduce

 $\varphi_{N}(\Delta_{k}) \subset X \setminus T^{-1}(x);$

(iii)
$$x \in T(x)$$
 for all $x \in X$;

Then the family $\{S(y): y \in Y\}$ has the finite intersection property.

Proof. From the proof part of Theorem 2.3, it is easy to know that the conclusion is valid.

Remark 2.4. Theorem 2.4 proves that Theorem 2.3 also holds under the condition of compactly opening.

3. Applications

Theorem3.1. Let (X, Y, Φ) be a GFC-space, and $T: Y \to 2^X$ be a set-valued mapping with compactly closed values. If T is a GFC-KKM mapping, then we have $\varphi_N(\Delta_n) \cap (\bigcap_{i=1}^n T(y_i)) \neq \emptyset$.

Proof. Since *T* is a GFC-KKM mapping, then there is a continuous mapping φ_N , then for any $\{y_{i_1}, y_{i_2}, ..., y_{i_k}\} \in \{y_1, y_2, ..., y_n\}$, we have $\varphi_N(\Delta_k) \subset \bigcup_{j=1}^k T(y_{i_j})$. Let $A_i = \varphi_N^{-1}(\varphi_N(\Delta_k) \cap T(y_i))$ for $\forall z \in \Delta_k$, then we have $\varphi_N(z) \in \varphi_N(\Delta_k) \subset \varphi_N(\Delta_n)$ and $\varphi_N(z) \in \varphi_N(\Delta_k) \subset \bigcup_{j=1}^k T(y_{i_j})$, hence, there exists $j_0 = \{1, 2, ..., k\}$ such that $\varphi_N(z) \in T(y_{i_{j_0}})$, then $\varphi_N(z) \in \varphi_N(\Delta_n) \cap T(y_{i_{j_0}})$, therefore, we have $z \in \varphi_N^{-1}(\varphi_N(\Delta_n) \cap T(y_{i_{j_0}}))$, thus, $\Delta_k \subset \bigcup_{j=1}^k \varphi_N^{-1}(\varphi_N(\Delta_n) \cap T(y_{i_j})) = \bigcup_{j=1}^k A_{i_j}$. Since $\varphi_N(\Delta_n)$ is compact and *T* is a GFC-KKM

mapping, and hence, $\varphi_N(\Delta_n) \cap T(y_i)$ is a closed set,

by the continuity of φ_N , then it is clear that

Remark 3.1. Theorem 3.1 generalizes Theorem 2.1 in [1] from L-convex space to GFC-space.

Theorem 3.2. Let (X, Y, Φ) be a GFC-space, and $T: Y \to 2^X \setminus \{\emptyset\}$ be a set-valued mapping with compactly closed values, there exists $M \in \langle Y \rangle$ and $N = \{x_1, x_2, \dots, x_n\} \in \langle X \rangle$ such that $\varphi_N(\Delta_n)$ is a compact set, and $\bigcap_{y \in M} T(y) \subset \varphi_N(\Delta_n)$, then $\varphi_N(\Delta_n) \cap (\bigcap_{y \in Y} T(y)) \neq \emptyset$.

Proof. Let $G(y) = T(y) \cap (\bigcap_{y \in M} T(y)), \forall y \in Y$, then $G(y) \subset \bigcap_{y \in M} T(y) \subset \varphi_N(\Delta_n)$, and hence, $G(y) = G(y) \cap \varphi_N(\Delta_n) = \bigcap_{z \in \{y\} \cap M} (T(z) \cap \varphi_N(\Delta_n))$. By theorem $3.1, \varphi_N(\Delta_n) \cap (\bigcap_{i=1}^n T(y_i)) \neq \emptyset$, then we have $\bigcap_{i=1}^n G(y_i) \neq \emptyset$. Then the family $\{G(y) : y \in Y\}$ has the finite intersection property, thus, $\bigcap_{y \in Y} G(y) \neq \emptyset$, then $\varphi_N(\Delta_n) \cap (\bigcap_{y \in Y} T(y)) \neq \emptyset$.

Remark 3.2. Theorem 3.2 generalizes Theorem 3 in [5] from FC-space to GFC-space, and T is a GFC-KKM mapping instead of S-G-FC-KKM mapping.

Theorem 3.3. Let (X, Y, Φ) be a GFC-space, $\{A_i\}_{i=1}^n$ be a family of compactly closed subsets of X such that $\bigcup_{i=1}^n A_i = X$ and $y_1, y_2, ..., y_n$ be n points of Y. Then for any n points $x_1, x_2, ..., x_n$ in X there exists $\{x_{i_1}, x_{i_2}, ..., x_{i_k}\} \subset \{x_1, x_2, ..., x_n\}$ such that $\varphi_N(\Delta_n) \cap (\bigcap_{j=1}^k A_{i_j}) \neq \emptyset$.

Proof. Let $Y_1 = \{y_1, y_2, \cdots, y_n\}$, for any

 $A = \{x_1, x_2, \dots, x_n\} \subset X, \text{ define a set-valued}$ mapping $G: Y_1 \to 2^X$ by $G(y_i) = X \setminus A_i$ for each $i = 1, 2, \dots, n$. Since each A_i is compactly closed, then G is a set-valued mapping with compactly open values. Suppose that the conclusion is false, then for any $\{x_{i_1}, x_{i_2}, \dots, x_{i_k}\} \subset \{x_1, x_2, \dots, x_n\}$, we have $\varphi_N(\Delta_n) \cap (\bigcap_{j=1}^k A_{i_j}) = \emptyset$ and so $\varphi_N(\Delta_n) \subset \bigcup_{j=1}^k (X \setminus A_{i_j}) = \bigcup_{j=1}^k G(y_{i_j})$, i.e., $G: Y_1 \to 2^X$ is a GFC-KKM mapping. By theorem

2.2, $\bigcap_{i=1}^{n} G(y_i) \neq \emptyset$. It follows that $\bigcup_{i=1}^{n} A_i \neq X$ which contradicts the assumption $\bigcup_{i=1}^{n} A_i = X$. Hence, the conclusion holds.

Remark 3.3. Theorem 3.3 generalizes Theorem 3.1 in [3] from L-convex space to GFC-space.

Theorem3.4. Let (X, Y, Φ) be a GFC-space, $\{A_i\}_{i=1}^n$ be a family of compactly open subsets of X such that $\bigcup_{i=1}^n A_i = X$ and $y_1, y_2, ..., y_n$ be n points of Y. Then for any n points $x_1, x_2, ..., x_n$ in X there exists $\{x_{i_1}, x_{i_2}, ..., x_{i_k}\} \subset \{x_1, x_2, ..., x_n\}$ such that $\varphi_N(\Delta_n) \cap (\bigcap_{j=1}^k A_{i_j}) \neq \emptyset$.

Proof. Let $Y_1 = \{y_1, y_2, \dots, y_n\}$, for any $A = \{x_1, x_2, \dots, x_n\} \subset X$, define a set-valued mapping $G: Y_1 \to 2^X$ by $G(y_i) = X \setminus A_i$ for each i = 1, 2, ..., n. Since each A_i is compactly open, then G is a set-valued mapping with compactly closed values. Suppose that the conclusion is false, then for any $\{x_{i_{i}}, x_{i_{i}}, \cdots, x_{i_{k}}\} \subset \{x_{1}, x_{2}, \cdots, x_{n}\},\$ we have $\varphi_N(\Delta_n) \cap (\bigcap_{i=1}^k A_i) = \emptyset$ and so $\varphi_N(\Delta_n) \subset \bigcup_{i=1}^k (X \setminus A_{i_i}) = \bigcup_{i=1}^k G(y_{i_i}),$ i.e., $G: Y_1 \rightarrow 2^X$ is a GFC-KKM mapping. By theorem 2.2, $\bigcap_{i=1}^{n} G(y_i) \neq \emptyset$. It follows that $\bigcup_{i=1}^{n} A_i \neq X$ which contradicts the assumption $\bigcup_{i=1}^{n} A_i = X$. Hence,

Remark 3.4. Theorem 3.4 generalizes Theorem 3.2 in [3] from L-convex space to GFC-space.

the conclusion holds.

Theorem 3.5. Let (X, Y, Φ) be a GFC-space, and $T: Y \to 2^X$ be a set-valued mapping with compactly closed values. Suppose that there exists *n* points $y_1, y_2, ..., y_n$ in *Y* such that $X = \bigcup_{i=1}^n T(y_i)$, and for

 $\forall x \in X, T^{-1}(x) = \left\{ y \in Y : x \in T(y) \right\}$ is GFCconvex. Then *T* has a fixed point in *X*.

Proof. By theorem 3.3, there exists $\{y_{i_1}, y_{i_2}, ..., y_{i_k}\} \in \{y_1, y_2, ..., y_n\}$ such that $\varphi_N(\Delta_n) \cap (\bigcap_{j=1}^k T(y_{i_j})) \neq \emptyset$. Let $_{x*} \subset \varphi_N(\Delta_n) \cap (\bigcap_{j=1}^k T(y_{i_j}))$, then $y_{i_j} \in T^{-1}(x*)$ for all $j = 1, 2, \cdots k$. Since $T^{-1}(x*)$ is GFC-convex, we have $x* \in \varphi_N(\Delta_k) \subset T^{-1}(x*)$, i.e., T has a fixed point in X.

Remark 3.5. Theorem 3.5 generalizes Theorem 3.3 in [1] from L-convex space to GFC-space.

Theorem 3.6. Let (X, Y, Φ) be a GFC-space, and $T: Y \to 2^X$ be a set-valued mapping with compactly open values. Suppose that there exists *n* points $y_1, y_2, ..., y_n$ in *Y* such that $X = \bigcup_{i=1}^n T(y_i)$, and for $\forall x \in X, T^{-1}(x) = \{y \in Y : x \in T(y)\}$ is GFC-convex. Then *T* has a fixed point in *X*.

Proof. By theorem 3.4 and theorem 3.5, it is easy to prove that the conclusion holds.

Remark 3.6. Theorem 3.6 generalizes Theorem 3.4 in [1] from L-convex space to GFC-space.

Theorem 3.7. Let (X, Y, Φ) be a GFC-space, $S: Y \to 2^X$ and $T: X \to 2^X$ are two multivalued mappings such that: (i) S(y) is compactly closed for all $y \in Y$;

(ii) For any $x \in X$, $N = \{y_1, y_2, \dots, y_n\} \in Y$ and $\{y_{i_1}, y_{i_2}, \dots, y_{i_k}\} \in \{y_1, y_2, \dots, y_n\}$, if $\{y_{i_1}, y_{i_2}, \dots, y_{i_k}\} \in \langle S^{-1}(x) \rangle$ can deduce $\varphi_N(\Delta_k) \subset T^{-1}(x)$; (iii) There exists $N = \{y_1, y_2, \dots, y_n\} \in Y$ such that $S^{-1}(x) \cap N \neq \emptyset$ for any $x \in X$.

Then there exists $x^* \in X$ such that $x^* \in T(x^*)$.

Proof. Define two set-valued mapping $A: Y \to 2^X$ by $A(y) = X \setminus S(y)$ for $\forall y \in Y$ and $B: X \to 2^X$ by $B(x) = X \setminus T(x)$ for $\forall x \in X$. Then A(y) is compactly open for $\forall y \in Y$, and for $\forall x \in X$, we have

 $Y \setminus A^{-1}(x) = S^{-1}(x) \text{ and } X \setminus B^{-1}(x) = T^{-1}(x)$. By condition(iii), $(Y \setminus A^{-1}(x)) \cap N \neq \emptyset, \forall x \in X$. Take $y^* \in (Y \setminus A^{-1}(x)) \cap N,$ then we have $x \in X \setminus A(y^*)$, that is, $X = \bigcup_{y \in N} (X \setminus A(y))$, i.e., $\bigcap_{y \in N} A(y) = \emptyset$. By theorem 2.2, T is not a GFC-KKM mapping, then there exists $N = \{y_1, y_2, \cdots, y_n\} \in Y$ and $\{y_{i_1}, y_{i_2}, \dots, y_{i_k}\} \in \{y_1, y_2, \dots, y_n\}$ such that $\varphi_N(\Delta_k) \not\subset \bigcup_{i=1}^k A(y_{i_i})$, that is, there exists $x^* \in \varphi_N(\Delta_k)$ such that $x^* \notin \bigcup_{i=1}^k A(y_{i_i})$, then $y_{i_{1}} \notin A^{-1}(x^{*}), \forall j \in \{1, 2, \cdots, k\},\$ i.e., $\left\{y_{i_{i}}, y_{i_{i}}, ..., y_{i_{k}}\right\} \in \left\langle Y \setminus A^{-1}(x^{*})\right\rangle.$ condition(ii), $\varphi_N(\Delta_k) \subset T^{-1}(x)$, Bv that is.

 $\varphi_N(\Delta_k) \subset X \setminus B^{-1}(x)$. Therefore $x^* \in \varphi_N(\Delta_k) \subset X \setminus B^{-1}(x)$, that is, $x^* \notin B(x^*) = X \setminus T(x^*)$. Hence, the conclusion holds.

Remark 3.7. Theorem 3.7 generalizes Theorem 2.3 in [10] from FC- space to GFC-space.

Theorem3.8. Let (X, D, Φ) be a GFC-space, $f: D \times X \to R$ and $g: X \times X \to R$ two functions, let $v = \sup_{x \in X} \inf_{y \in X} (x, y)$. If (i) $\{y \in X : f(x, y) < \lambda\}$ is compactly open for any $x \in D$; (ii) $\{x \in X : g(x, y) > \lambda\}$ is GFC-convex for any $y \in X$; (iii) f(x, y) < g(x, y) for any $(x, y) \in C = \{(x, y) \in D \times X : f(x, y) > v\}$; (iv) $g(x, x) \le v$ for any $x \in X$.

Then $\sup_{N \in \langle D \rangle} \inf_{y \in X} \sup_{x \in N} f(x, y) \le \sup_{x \in X} \inf_{y \in X} (x, y)$.

Proof. If $v = +\infty$, then this Theorem is obviously true, hence we may assume $v < +\infty$. For any fixed $\lambda \in R$ such that $\lambda > v$, define two maps as follows: $S: D \to X, S(x) = \{ y \in X : f(x, y) < \lambda \}, \forall x \in D;$

$$T: X \to X, T(x) = \{ y \in X : g(x, y) \le \lambda \}, \forall x \in X;$$

Then by condition(i), S(x) is compactly open for any $x \in D$, if $N \in \langle D \setminus S^{-1}(y) \rangle$ for any $y \in X$, then $N \in \langle D \rangle$, and $y \notin S(x)$ for any $x \in N$, that is, $f(x, y) \ge \lambda$. i.e., by condition(iii), $g(x, y) > f(x, y) \ge \lambda > v$ for $\forall x \in N$, then we have $N \subset \{x \in D : g(x, y) > \lambda\} \subset \{x \in g(x, y) > \lambda\}$. Then by condition(ii),

$$\begin{split} \varphi_N(\Delta_k) &\subset \left\{ x \in X : g(x, y) > \lambda \right\} = X \setminus T^{-1}(y); \\ \text{by condition(iv), } g(x, x) &\leq v < \lambda \text{ for any } x \in X, \\ \text{therefore } x \in T(x). \text{ Hence } S \text{ and } T \text{ satisfy all the } \\ \text{conditions of Theorem 2.3, then the family} \\ \left\{ S(x) : x \in D \right\} \text{ has the finite intersection property,} \\ \text{therefore } \bigcap_{x \in N} S(x) \neq \emptyset \text{ for any } N \in \langle D \rangle. \text{ Take any} \\ y_0 \in \bigcap_{x \in N} S(x), \text{ then } f(x, y_0) < \lambda, \forall x \in N, \text{ i.e.,} \\ \inf_{y \in X} \sup_{x \in N} f(x, y) \leq \lambda. \text{ Since } N \text{ is arbitrary, then we} \\ \text{have } \sup_{N \in \langle D \rangle} \inf_{x \in N} \sup_{x \in N} f(x, y) \leq \lambda. \text{ And } \lambda \text{ is arbitrary, let} \\ \lambda \to v, \text{ hence } \sup_{N \in \langle D \rangle} \inf_{y \in X} \sup_{x \in N} f(x, y) \leq v = \sup_{x \in X} \inf_{y \in X} (x, y) \\ \end{split}$$

Remark 3.8. Theorem 3.8 generalizes Theorem 2.4 in [10] from FC- space to GFC-space.

Theorem 3.9. Let (X, D, Φ) be a GFC-space, $f: D \times X \to R$ and $g: X \times X \to R$ two functions, let $v = \sup_{x \in X} \inf_{y \in X} (x, y)$. If (i) $\{y \in X : f(x, y) < \lambda\}$ is compactly closed for any $x \in D$; (ii) $\{x \in X : g(x, y) > \lambda\}$ is GFC-convex for any $y \in X$; (iii) f(x, y) < g(x, y) for any $(x, y) \in C = \{(x, y) \in D \times X : f(x, y) > v\}$; (iv) $g(x, x) \le v$ for any $x \in X$.

Then $\sup_{N \in \langle D \rangle} \inf_{y \in X} \sup_{x \in N} f(x, y) \le \sup_{x \in X} \inf_{y \in X} (x, y)$.

Proof. From the proof part of Theorem 2.3, it is easy to know that the conclusion is valid.

Remark 3.9. Theorem 3.9 proves that Theorem 3.8 also holds under the condition of compactly closed.

REFERENCES

- Ding, X. P. (2002). Generalized L-KKM type theor ems in L-convex spaces with applications [J]. *Com puters & Mathematics with Applications*, 43(10-11) : 1249-1256.
- Khanh, P. Q., Quan, N. H., & Yao, J. C. (2009). Ge neralized KKM-type theorems in GFC-spaces and applications [J]. *Nonlinear Analysis: Theory, Meth ods & Applications*, 71(3-4): 1227-1234.
- Fang, M., & Ding, X. P. (2003). Generalized L-R-KKM Type Theorems and Applications in L-conve x spaces [J]. *Journal of Sichuan Normal University*, (5), 461-463.
- Cai-Yun, J., & Cao-Zong C. (2005). S-G-L-KKM t heorems in L-convex space and their applications t o minimax inequalities [J]. *Computers and Mathem atics with Applications*, 50(1).
- Wang, T. (2007). G-FC-KKM Type Theorems in F C-space [J]. *Journal of Chongqing Jiaotong Univer sity*, (5):158-160.
- 6. George Xian-Zhi, Y. (1999). The Characterization of Generalized Metric KKM Mappings with Open Values in Hyperconvex Metric Spaces and Some A pplications [J]. *Journal of Mathematical Analysis a nd Applications*, 235(1).
- Wen Kai-ting. (2018). Intersection Theorems in GF C-metric Spaces with Applications to System of Ge neral Quasiequilibrium Problems [J]. *Journal of Gu izhou University of Engineering Science*, 36(03):55 -62.
- Kai-Ting, W., & He-Rui, L. (2015). A GFC-KKM Theorem in GFC-spaces with the Application to Fi xed Points [J]. *Journal of Sichuan Normal Universi ty*, 38(03):386-390.
- Wen Kai-ting. (2010). R-KKM Theorems in FC-M etric spaces with Application to Variational inequal ities and fixed point [J]. ACTA Analysis Functional is Applicata, 12(3), 266-273.
- Wang, B., & Liu, H. (2013). Fixed point theorem a nd supinfsup inequalities in FC-space without com pactness [J]. *Journal of NeiJiang Normal Universit* y, 28(10):4-7.
- 11. Horvath, C. (1987). Some reults on multivalued ma ppings and inequalities without convexity [J]. *Pure and Appl Math Series*, 106: 99-106.
- 12. Verma, R. U. (1999). G-H-KKM type theorems an d their applications to a new class of minimax ineq ualities [J]. Computers and Mathematics with Appli

cations, 37(8).

- Ben-El-Mechaiekh, H., Chebbi, S., & Florenzano, M. (1998). Abstract convexity and fixed points [J]. *Journal of Mathematical Analysis and Applications* , 222(1): 138-150.
- Ding, X. P. (2005). Maximal element theorems in p roduct FC-spaces and generalized games [J]. *Journ al of Mathematical Analysis and Applications*, 305(1): 29-42.
- 15. Xie Ping Ding., & Lei Wang. (2007). Fixed points, minimax inequalities and equilibria of noncompact abstract economies in FC –spaces [J]. *Nonlinear An alysis*, 69(2).
- Sehie, P., & Hoonjoo, K. (1997). Foundations of th e KKM Theory on Generalized Convex Spaces [J]. *Journal of Mathematical Analysis and Applications* , 209(2).
- Ding, X. P. (2002). Generalized G-KKM theorems in generalized convex spaces and their applications [J]. *Journal of Mathematical Analysis and Applicat ions*, 266(1): 21-37.
- Park, S. H. (2000). Fixed points of better admissibl e maps on generalized convex spaces [J]. *Journal o f the Korean Mathematical Society*, 37(6): 885-899.
- 19. Ding, X. P. (2006). Generalized KKM type theore ms in FC-spaces with applications (I) [J]. *Journal o f Global Optimization*, 36(4): 581-596.
- Ding, X. P. (2007). Generalized KKM type theore ms in FC-spaces with applications (II) [J]. *Journal* of Global Optimization, 38(3): 367-385.
- Li Hong-mei. (2002). On Some Versions of KKM Principle in G-H-space [J]. *Journal of Sichuan Nor mal University*, 25(2): 115-117.
- Lassonde, M. (1983). On the use of KKM multifun ctions in fixed point theory and related topics [J]. J ournal of Mathematical Analysis and Applications, 97(1): 151-201.
- Ding, X. P., Liou Y. C., & Yao, J. C. (2005). Gener alized R-KKM type theorems in topological spaces with applications [J]. *Applied mathematics letters*, 18(12): 1345-1350.
- Ding, X. P., & Ding, T. M. (2007). KKM type theo rems and generalized vector equilibrium problems i n noncompact FC-spaces [J]. *Journal of Mathemati cal Analysis and Applications*, 331(2): 1230-1245.
- Verma, R. U. (1999). Some results on R-KKM map pings and R-KKM selections and theirapplications [J]. *Journal of Mathematical Analysis and Applicat ions*, 232(2), 428-433.