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Abstract: As a powerful tool, ontology even employed in various subjects, such as neuroscience, medical science, 

pharmacopedia, chemistry, education and other social science. In this short communication, we report an ontology 

algorithm using the special loss function. 
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INTRODUCTION 

Ontology, a knowledge representation and conceptual shared model, has proved itself to be useful in image retrieval, 

knowledge management and information retrieval search extension. What’s more, as an effective concept semantic 
model, ontology also finds its place in the other disciplines like social science, medical science, biology science, 

pharmacology science and geography science. Actually, the ontology model is a graph G=(V,E), each vertex v in an 

ontology graph G stands for a concept and each edge e=
i jv v of an ontology graph G stands for a relationship between 

concepts 
iv and

jv .  

 
Concerning ontology similarity measure and ontology mapping, several effective learning tricks work well. Wanget 

al., [1] tended to learn a score function to map each vertex to a real number. Then, according to the difference of the real 

number which the two vertices correspond to, we can measure the similarity between them. Huang et al., [2] worked out 

a fast ontology algorithm to calculate the ontology similarity within a short time. Gao and Liang [3] reported that the 

optimal ontology function can be determined by optimizing NDCG measure. And they also took the idea to physics 

education. Gao and Gao [4] deduced the ontology function through the regression approach. Moreover, based on half 

transductive learning, Huang et al., [5] obtainedontology similarity function. Gao et al., [6] raisednew ontology mapping 

algorithm by means of harmonicanalysis and diffusion regularization on hypergraph. Gao and Shi [7] proposed new 

ontology similarity computation technology. As a result, the new calculation model considering operational cost in the 

real implement. Few years ago, Gao and Xu [8] presented the ontology similarity measuring and ontology mapping 

algorithms on basis of minimum error entropy criterion. Several theoretical analysis of ontology algorithm can refer to 
Gao et al., [9], Gao and Xu [10],Gao and Zhu [11] and Gao et al., [12]. 

 

Gao and Gao [4] introduced the regression based ontology learning framework, and we continue employ this 

framework here. The different between [4] and our short communication is that we use the special loss function in the 

regression framework.  

 

Algorithm Description 

Let V be an instance space. For each vertex in ontology graph, a p dimension vector expresses information including 

its name, instance, attribute and structure, and semantic information of the concept which corresponds to the vertex and 

that is contained in name and attributes components of its vector. To promote the representation, we try confusing the 

notations and using v to denote both the ontology vertex and its corresponding vector. The ontology learning algorithm s 

are set to get an optimal ontology (score) function f:V  , and the similarity between two vertices is judged by the 

difference between two corresponding real numbers. 
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Correntropy is a generalized similarity measure between two scalar random variables 
1U  and

2U , which is defined 

by 
1 2( , )U U =

1 2E ( , )K U U . Here K is a Gaussian kernel given by 
1 2( , )K u u =

2
1 2

2

( )u u

e 




with the scale 

parameter  >0, 
1 2( , )u u being a realization of

1 2( , )U U . For given ontology data set z=
1{( , )}m

i i iv y 
, the maximum 

correntropy criterion for regression models the output ontology function via maximizing the empirical estimator of   

as follows: 

zf =
1

arg max ( , ( ))i i
f H

y f v
m




 , 

Where H is a ontology function space. 

The correntropy induced regression loss l :    [0, )  is defined as 

( , )l y t =

2

2

( )

2 (1 )

y t

e 




 ,  ,y Y t  , 

 

with >0 being a scale parameter. We use correntropy induced regression loss to the ontology framework 

described in [4], then the ontology algorithm becomes 

zf =
1

arg max ( , ( ))i i
f H

l y f v
m




,                          (1) 

where the ontology space H is assumed to be a compact subset of C(V). 

 

Simulation Studies 

In this section, we designed two simulation experiments which are related to ontology similarity measure and 

ontology mapping, respectively. 
 

First, we use “PO” ontology (constructed in http: //www.plantontology.org.) to check the efficiency of our ontology 

algorithm (1)in ontology similarity measuring. P@N standard [13] is used for this experiment. Taking N=3, 5 and 10, the 

results are P@3=37.51%, P@5=39.11% and P@10=60.32%. Thus, the ontology algorithm (1) has high effective on 

plant science data. 

 

Second, we use physics ontology (constructed in [3]) to check the efficiency of our ontology algorithm (1) in 

ontology mapping. P@N standard is also used for this experiment. Taking N=1, 3 and 5, the results are P@1=35.48%, 

P@3=44.09% and P@5=66.45%. Thus, the ontology algorithm (1) has high effective on physics data. 

 

DISCUSSION 

If the ontology function is assumed to be linear, i.e., ( )f v =
Tv   for some linear vector   p . Then, the ontology 

optimization problem can be stated as 

̂ =

T

1

arg min ( )
p

m
i i

i

y v






 






, 

 

where > 0 is the scale parameter and   is a robust loss function that down weights large residual errors. In fact, 

by using the above robust loss function , we have the following robust nonparametric ERM-based ontology regression 

scheme 

ˆ
zf =

1

( )
arg min ( )

m
i i

f H i

y f v


 


 . 

Denoting ( )t = ( )
t




, besides the l ontology loss, several frequently employed robust ontology loss functions 

include: 

Huber’s loss: ( )t =
2 2{ } (2 ) { }t I t t I t       ; 

 Cauchy loss: ( )t =

2
2

2
log(1 )

t



 ; 
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 Tukey’s biweight loss: ( )t =

2 2
2 3(1 (1 ( ) ) ) { } { }

6 6

t
I t I t

 
 


     . 
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