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Abstract: Maize (Zea mays L.) is one of the most important crops in the world. Quantitative trait locus (QTL) mapping 

must depend on statistical analysis on phenotypic data of traits in a segregation population. In this presented study, a 

recombinant inbred line (RIL) population derived from the cross Mo17 × Huangzao4 were used to investigate the trait 

ear number per plant (ENPP) under two nitrogen regimes. Based on the phenotypic data of the two parental inbred lines 

and RIL population in the trait ENPP, SPSS version 11.5 software was selected to perform descriptive statistics, analysis 

of variance and correlation analysis. The results could be further used for QTL identification for the agronomic trait 

ENPP in maize breeding program. 
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INTRODUCTION 

Carrying out quantitative trait locus (QTL) 

identification must depend on a population consisting of 

lots of individuals [1]. To this date, there were many 

types of population used for QTL mapping, among 

them, F2 and backcross populations is the most widely 

applied in plant breeding [2-7]. The two populations 

have many merits, including less-time consuming, low 

cost and codominance. But there is a deficiency in QTL 

mapping, no continuous plants used for phenotypic 

investigation and DNA extraction, so the two kinds of 

populations are named temporal segregation 

populations [8]. Relatively, recombinant inbred line 

(RIL) population is immortal, and can be applied in 

different time and regions, owing to its homogenous 

individuals. Nevertheless, constructing this population 

will cost longer time and higher investments. Up to 

now, RIL population has been widely used for QTL 

mapping in many crops, including rice [9-11], wheat 

[12-14] and sorghum [15-17], but only limited reports 

were found in maize (Zea mays L.) [18-20]  

 

It is generally known that maize is one of the 

most important crops in the world. From literature, it is 

easily found that many agronomic traits have been 

studied on QTL mapping, including yield [21-23], virus 

resistance [24-26], plant characteristics [27-29] related 

traits. But, the trait ear number per plant (ENPP) related 

to yield was hardly studied on QTL detection. 

Furthermore, the QTL number, location and genetic 

effects of same trait probably show differences in 

different studies by different researchers, caused by 

different mapping parents, genetic maps or segregation 

population types. 

 

In our study, a RIL population derived from the 

two elite inbred lines Mo17 and Huangzao4 was 

selected to investigate and analyzed the trait ENPP. 

This objective is to provide some data which can be 

used for QTL mapping. 

 

MATERIAL AND METHODS 

Experimental Materials 

The experimental materials involved in this study 

consisted of parental maize inbred lines Mo17 (a 

representative line in USA) and Huangzao4 (a 

representative line in China), and an F9 RIL population 

composed of 221 RILs. The RIL population was bred 

from the cross between Mo17 and Huangzao4. 

 

Field measurement and Statistical Analysis 

The two parental lines and their RIL population 

were sown in a randomized complete block design with 

six replicates at the experimental farm of Shanxi 

Academy of Agricultural Sciences, Xinzhou City, 

Shanxi Province, China, with single-plant planting and 

15 plants per row in one replicate, every line is 

designed three replicates under same nitrogen regime. 

Before harvest, the agronomic trait ENPP was 

observed. The data for the parents and RIL population 

were analyzed using Statistical Package for Social 

Scientists (SPSS) software version 11.5, including 
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descriptive statistics, analysis of variance (ANOVA) 

and correlation analysis. 

 

RESULTS AND DISCUSSION 

Descriptive Statistics for Parents and Population 

For parental materials, the average values of Mo17 

were higher than Huangzao4 under HNR, but under 

LNR, the statistic result is adverse (Table 1). The 

results of descriptive statistics for the RIL population 

were shown in Table 2. The RIL population under HNR 

possessed lower values than those under LNR for range, 

maximum, skewness and kertosis, while for mean, 

standard deviation (SD), coefficient of variation (CoV), 

there were reverse results. Minimum is a special 

parameter, same value was found under HNR and LNR. 

From the frequency distribution graphs of the RIL 

population (Figures 1 and 2), both of the two group data 

displayed normal distribution approximately, which 

suggested that the trait NBETP is a quantitative trait 

and its phenotypic value is controlled by multiple 

genes. 

 

Table 1. Mean of the two parental lines in the trait ENPP 

N regimes Mo17 Huangzao4 

HNR 1.33  1.10  

LNR 1.11  1.33  

HNR = high nitrogen regime;  

LNR = low nitrogen regime. 

 

Table 2. Descriptive statistics of the RIL population in the trait ENPP 

N 

regimes 

Ran

ge 

Minimu

m 

Maximu

m 

Mea

n 

S

D 

CoV 

(%) 

Skewnes

s 

Kurto

sis 

  

HNR 0.87  0.93  1.80  1.11  0.

17  

15.32  1.85  3.31    

LNR 1.02  0.93  1.96  1.10  0.

16  

14.55  2.25  6.09    

SD = standard deviation;  

CoV = Coeffeicient of variation;  

HNR = high nitrogen regime;  

LNR = low nitrogen regime. 

 

 
Figure 1. Frequency distribution of the RIL population under HNR for the trait ENPP. Lateral axis for the values 

of ENPP and vertical axis for the number of RILs. 
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Figure 2. Frequency distribution of the RIL population under LNR for the trait ENPP. Lateral axis for the values 

of ENPP and vertical axis for the number of RILs. 

 

ANOVA of the RIL population 

The RIL population under two nitrogen 

environments was performed ANOVA according to the 

observed phenotypic values of ENPP for the 221 

individuals. The results were indicated in table 3. 

According to the data in table 3, it was found that the 

221 RILs under both N regimes presented significant 

differences between them in ENPP at 0.01 probability 

level (P﹤0.001). 

 

Table 3 ANOVA of the RIL population across two nitrogen regimes in ENPP. 

N regimes Variation source Sum of Squares Df
*
 Mean Square F Sig. 

HNR Between Groups 15.505 219 0.071 2.721** 0.000 

  Within Groups 10.721 412 0.026     

  Total 26.227 631       

LNR Between Groups 15.853 219 0.072 2.656** 0.000 

  Within Groups 11.176 410 0.027     

  Total 27.029 629       
*
excluded missing data;  

 **significant difference at 0.01 probability level,  

HNR = high nitrogen regime;  

LNR = low nitrogen regime. 

 

Correlation analysis of the RIL population between 

two nitrogen regimes 

Based upon the observed values of every RIL of 

the population under two nitrogen regimes, correlation 

analysis was performed. The results provided that they 

were positively correlated at 0.01 probability level for 

the trait ENPP, and the value was up to 0.474. 

 

CONCLUSIONS 

The RIL population bred from Mo17 × Huangzao4 

was investigated the trait ENPP in field together with 

their parental lines Mo17 and Huangzao4. According to 

the results of descriptive statistics, ANOVA and 

correlation analysis using SPSS11.5 software, it was 

concluded that the agronomic trait ENPP was 

quantitative and affected by multiple genes. The 

obtained data here could be used to map the QTLs for 

the trait and breed by marker-assisted selection. 
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