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Abstract  Review Article 
 

Currently, fixed orthodontic treatment requires a long duration of about 2–3 years which is a great concern and poses 

high risks of caries, external root resorption, and decreased patient compliance. Thus, accelerating orthodontic tooth 

movement and the resulting shortening of the treatment duration would be quite beneficial. To date, several novel 

modalities have been reported to accelerate orthodontic tooth movement, including low-level laser therapy, pulsed 

electromagnetic fields, electrical currents, corticotomy, distraction osteogenesis, and mechanical vibration. However, 

pertinent results are inconclusive, and some are unreliable, which may bias clinician‟s understandings and mislead 

clinical practice. The aim of this review article is to conduct a review of current literature in order to update the 

knowledge about the methods of accelerating orthodontic tooth movement. 
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INTRODUCTION 

Comprehensive orthodontic treatment usually 

lasts for more than 1 year and a half when fixed 

appliances are used to treat moderate to severe cases of 

malocclusion [1], with a significant difference which 

can be affected by various factors [2, 3]. Accelerating 

orthodontic tooth movement has long been desired for 

its multiple potential benefits, including shorter 

treatment duration, reduced side effects such as oral-

hygiene related problems, root resorption, and open 

gingival embrasure spaces [4-8], enhanced envelope of 

tooth movement, differential tooth movement, and 

improved posttreatment stability[9]. Moreover, most 

adult patients want to finish their treatment at the 

earliest opportunity due to social and aesthetic concerns 

[10]. Thus, accelerating orthodontic tooth movement 

and the resulting shortening of the treatment duration 

would be quite beneficial. Attempts have been made to 

accelerate alveolar bone remodeling which is crucial for 

the speed of orthodontic tooth movement. For that 

purpose, pharmaceuticals and various physical methods 

have been applied. Furthermore, surgical interventions 

at the alveolar process are supposed to cause an 

activation of the bone metabolism and consequently, 

speed up the orthodontic tooth movement [11].  

 

 

 

Molecular mechanism 

To achieve OTM, mechanical forces are 

applied on teeth. This initially causes fluid movement 

within the periodontal ligament (PDL) space and 

distortion of the PDL components (cells, extracellular 

matrix, and nerve terminals), setting into motion the 

process of release of a multitude of molecules 

(neurotransmitters, cytokines, growth factors, 

arachidonic acid metabolites etc.) which initiate 

alveolar bone remodeling. Orthodontic load strains 

nerve endings present in the PDL. These release in 

response a number of neuropeptides (substance P, 

vasoactive intestinal polypeptide, and calcitonin gene-

related peptide-CGRP), which act on capillaries and 

cause the adhesion and migration of blood leukocytes 

into the area of compression [12]. Local hypoxia 

(unavoidably caused in areas of compression by 

occlusion of the PDL vessels) activates hypoxia-

inducible transcription factor (HIF)-1a in endothelial 

cells and osteoblasts .And this leads to expression of 

downstream genes including VEGF (vascular 

endothelial growth factor) and receptor activator of NF-

kB ligand (RANKL), which mediate the recruitment of 

peripheral blood mononuclear cells/osteoclast lineage 

cells from PDL capillaries and their 

conversion/activation into osteoclasts, respectively. 

Subsequently induce osteoclast terminal differentiation 

possibly through their action on RANK and RANKL 

expression [13]. Another chemokine ligand expressed 
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in the PDL under mechanical loading, CCL3, exerts its 

effects by interacting with chemokine receptors 1 and 5 

(CCR1 and CCR5) present on the surface of osteoclasts 

and osteoblasts. The effects of chemokines seem to be 

of different nature depending on the receptor to which 

they bind, as the CCL3-CCR1 interaction leads to the 

induction of bone resorption by osteoclast recruitment, 

differentiation/activation [14]. Prostaglandins and 

leukotrienes are additional players in the process of 

tooth remodeling.  PGE2 has different effects 

depending on the type of transmembrane receptor to 

which it binds. PGE2 can drive RANKL expression in 

osteoblasts (by binding to the EP2 or EP4 receptors), 

which subsequently leads to osteoclast activation [15], 

or drive bone mineralization by osteoblasts when 

binding to the EP1 receptor [16]. In addition, PGE2 has 

been shown to aid osteoclast formation [17] or lead to 

transient osteoclast inhibition when added to osteoclasts 

in vitro [18]. The two leukotrienes shown to be 

involved in tooth movement are LTB4 (leukotriene B4) 

and LTD4 (a cysteinyl leukotriene) [19], Both 

leukotrienes were found to significantly boost the 

recruitment and terminal differentiation/activation of 

osteoclasts through their effect on cytokine synthesis 

and in the presence of RANKL. Osteoblasts express IL-

1b, IL-6, IL-11, TNFa and their receptors in response to 

compressive stress. IL-b shows an autocrine effect and 

enhances the phenomenon [20] plus induces osteoblasts 

to promote osteoclast activity (through induction of 

RANKL expression). IL-6 is involved in osteoclast 

recruitment and differentiation. TNFa directly 

stimulates the differentiation of osteoclast precursors to 

osteoclasts in the presence of M-CFS (which is a 

glycoprotein produced by fibroblasts and endothelial 

cells in response to growth factors and cytokines, such 

as PDGF, FGF, IL-1, and IL- 6). IL-11 enhances the 

expression of RANKL, a key molecule in osteoclast 

precursor differentiation, in osteoblasts. In areas of 

tension, growth factors (e.g., TGF-b) and cytokines 

(e.g., OPG) produced by PDL cells can induce 

apoptosis of osteoclasts [21] and tip the balance toward 

bone formation. One of the immediate responses of the 

PDL at sites of compression is also the rise in the level 

of matrix metalloproteinases (MMPs) which are 

produced by activated fibroblasts. MMPs either degrade 

collagen fibers (MMP-1 and MMP-8) or eliminate the 

degraded collagen (MMP-9 and MMP-2) to allow tooth 

movement [22, 23]. Chemokines mediate chemotaxis of 

leukocytes and bring about cellular differentiation. In 

the PDL, interaction between CCL2 (chemokine ligand 

2) and CCR2 (chemokine receptor 2) have been found 

to mediate osteoclast precursor attraction to the sites of 

orthodontic force application and to osteoclasts and 

through secretion of cytokines such as IL-10 and TGF-b 

also play a key role in suppressing osteoclastic 

activity[24]. Balanced osteoclast activity is necessary to 

prevent uncontrollable osteolysis and control bone 

metabolism during OTM 

 

Pharmacological Agents to Modulate Orthodontic 

Tooth Movement (OTM) 

Pharmacological agents have the potential to 

interfere with the biochemical processes which govern 

tooth movement during, and stability after, orthodontic 

treatment. As a result, the possibility to 

accelerate/enhance OTM where needed (such as in 

areas of space closure) and to halt tooth movement 

where desired (to provide anchorage or to ensure 

positional tooth stability during the initial retention 

period) has attracted considerable interest in the field 

 

Arachidonic acid metabolites 

Among the arachidonic acid metabolites, 

PGE2 is by far the most widely tested substance in 

terms of its capacity to modify OTM. Evidence, mainly 

derived from animal studies, points toward a positive 

effect of PGE2 with respect to enhancing bone 

resorption and accelerating tooth movement [25, 26]. 

Specific synthases are involved in the pathway of the 

synthesis of each type of prostaglandins (e.g., PGE and 

PGD synthases) and many of them have been cloned 

and could provide drug targets for the regulation of the 

synthesis of specific prostaglandins, such as PGE2 in 

the case of OTM [27]. In addition, it is possible that 

other PGs such as PGI2 may be involved in bone 

resorption providing further targets for drugs [28]. 

Another obvious group of drug targets are the identified 

receptors of specific prostaglandins (such as the 

receptors EP1, EP2, or EP4 of prostaglandin PGE2) and 

the design of selective agonists can provide 

pharmacological methods of modifying OTM through 

these receptors. 

 

Intravenous immunoglobulin (IVIg) 

preparations were shown to induce COX-2 mediated 

PGE2synthesis and cytokine production [29-31]. It is 

possible that local administration of these IVIg 

preparations could be used to modulate bone modeling 

through PEG2 induction and bypass some of the 

limitations of PEG2 injections The mode of application 

of PGE2 is a major limitation as it involves repeated 

injection (due its short half-life) in combination with an 

anesthetic solution to alleviate the hyperalgesia caused 

by injection of PGE2. Potential adverse effects (e.g., 

root resorption) linked to long-term administration of 

PGE2, as required in the context of orthodontic 

treatment, are possible given its mode of action but 

have not been evaluated so far[32]. 

 

Carageenan 

Carrageenan (CGN) is a common 

polysaccharide food additive derived from seaweeds 

and is used for stabilizing, emulsifying and thickening 

processed food and dairy products, as well as in non-

food products, such as pharmaceuticals, toothpaste, 

room deodorizers, or cosmetics [36]. CGN can activate 

inflammatory cells (such as resident or recruited 

macrophages, lymphocytes, dendritic cells, and other 

myeloid cells which respond to IL-8 or other 
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cytokine/chemokine stimuli and produce TNF-a, as well 

as other cytokines, potentiating the inflammatory 

response), while inhibiting apoptosis [33,36,37]. 

Temporary increases of subchondral osteoclasts have 

been observed following subcutaneous CGN injection 

[38]. This and the above-mentioned properties of 

carrageenan predispose CGN as a potential local drug to 

facilitate orthodontic tooth movement. Study conducted 

by Kavoli et al. indicated that injection of carrageenan 

can speed up tooth movement by about 58% and 

increase the presence of osteoclasts by 40%, after 21 

days and carrageenan was introduced as an intervention 

capable of speeding up OTM, by increasing the 

inflammatory response and osteoclastic activity. 

 

Parathormone 

Parathormone (PTH) is a compound secreted 

by the parathyroid gland which binds to receptors on 

osteoblasts, activating them and leading to the 

expression of insulin-like growth factor 1 (IGF-1; 

somatomedin).This results in the proliferation of 

osteoblasts and, with the participation of the RANK 

ligand, osteoclast activation[39]. Depending on the 

frequency of administration, PTH may stimulate bone 

formation (intermittent therapy) or its resorption 

(exposure longer than 1–2 years)[40]. Two 12-day 

studies in rats confirmed that intermittent administration 

of PTH accelerated the mesialization of the 1st molar 

1.6 times after administration of a dose of 0.25 μg/100 g 

into the subperiosteal area and 1.4 times as a result of 

subcutaneous administration of 4 μg/100 g m.c.10,11 

 

Vitamin D 

Another agent that may affect tooth movement 

is vitamin D. 1, 25-dihydroxycholecalciferol is the most 

active metabolite of this vitamin. It mainly has an 

anabolic effect on the bone tissue (to a small extent also 

catabolic)[41]. Similarly to PTH, sub-periosteal 

administration of vitamin D enhances the activity and 

proliferation of osteoblasts [42]. Collins et al. used 

calcitriol dissolved in DMSO (dimethylsulfoxide) − a 

compound that readily penetrates cell membranes, as 

well as has a high solubility coefficient for vitamin D) − 

administered daily into the periosteum [43-44]. After 3 

weeks, the retraction range of the canines was 60% 

higher compared to the control group. Other researchers 

came to similar conclusions, this time testing the action 

of this vitamin on rats. They noticed an increased 

number of both osteoclasts and osteoblasts [45-47]. 

Kawakami and Takano-Yamamoto emphasized the 

continuation of intensified remodeling during the 

retention period as well.19 In turn, Kale et al. observed 

that distalization of the maxillary incisors increased by 

23%.20 in a few clinical trials, acceleration of 

orthodontic tooth movement was also demonstrated 

[48]. 

 

Nicotine 

Nicotine is generally absorbed into the human 

body by the inhalation of cigarette smoke within a few 

seconds, where its systemic stimulatory and 

psychoactive effect unfolds by binding to cell 

membrane-based nicotinic acetylcholine receptors 

(nAChR) of the nervous system[49,50]. Several in vivo 

and in vitro studies have found that nicotine can have a 

proinflammatory effect on periodontal tissues and 

influence bone metabolism. Nicotine has been shown to 

dose-dependently increase the expression of 

cyclooxygenase 2 (COX-2) in human gingival and 

periodontal ligament fibroblasts [51, 52]. Furthermore, 

several studies have indicated that prostaglandin E2 

enhances the expression of proinflammatory cytokines 

by fibroblasts, in particular of IL-1β, IL-6 and IL-8 [53, 

54]. A nicotine-induced increase in the production of 

prostaglandin E2 could thus provide an explanation for 

the significant nicotine-induced increase in interleukin 

expression observed. The major mechanism for 

osteoclast activation and differentiation is the 

interaction of RANKL with the RANK-receptor of 

osteoclast precursor cells [55]. Orthodontic tooth 

movement, on the other hand, is also enabled by a 

similar, but controlled (pseudo)inflammatory process 

within the periodontal ligament and bone. This leads to 

an increase in osteoclastogenesis and bone resorption in 

compression zones of the periodontal ligament, whereas 

the recruitment of osteoblasts with corresponding 

osteogenesis is increased in tensile zones, thus enabling 

stable tooth movement overall. The nicotine-induced 

increase in osteoclast activity and osteoclastogenesis 

explains the observed nicotine-induced increase of 

OIIRR as well as acceleration of orthodontic tooth 

movement within 14 and 28 days Research on suitable 

pharmacological substances and their safe delivery and 

usage to this end is currently intensively pursued 

[56,57]. Although nicotine could be administered 

systemically in a controlled fashion via a nicotine patch 

or administered locally by injection into the periodontal 

ligament [57], the severe detrimental side effects 

observed and to be expected (root resorptions, 

periodontal bone loss) as well as the clinically limited 

acceleration achieved (about 50%) most likely exclude 

nicotine as suitable drug for possible adjuvant 

therapeutic use in orthodontics 

 

Surgical Methods for the Acceleration of the 

Orthodontic Tooth Movement 

Orthodontic treatment aims to improve 

dentofacial function and aesthetics but patients often 

complain that it takes a long time to achieve optimal 

results. To overcome this, surgical techniques have 

been developed, 1, 2and 2approaches have been 

reported to facilitate the movement of teeth. The first is 

corticotomy in which cortical bone is cut to improve 

bony remodeling. Periodontally accelerated osteogenic 

orthodontics, which is a combination of selective 

alveolar decortications and alveolar augmentation, 3–

5can be modified using selective piezosurgery to 

circumscribe theroots, 6and more recently, techniques 

for minimally invasive flapless corticotomy have been 

introduced.1, 2 The second approach is based on 
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distraction osteogenesis is a method described by 

Ilizarov to induce new bone to form by the mechanical 

stretching of pre-existing bone 

 

Corticotomy 

The aim of corticotomy is to cut the cortical 

layer of alveolar bone in order to induce local 

temporary osteopenia. The origins of the method date 

back to the end of the 19th century; however, Kole, who 

discussed the procedure in 1959, is considered the 

pioneer of corticotomy [58, 59]. According to his 

claims, cortical bone is the main obstacle to the 

orthodontic movement of teeth. This theory, referring to 

osteotomy, was to a certain extent rejected in 1983, 

when Frost discovered the regional acceleratory 

phenomenon (RAP), and in 1994 Yaffe et al. introduced 

this concept to periodontal literature [60, 61]. Small 

harmful stimuli (such as shallow bone incisions) 

activate the RANK/RANKL system. 

 

In “weakened” bone tissue, 10–50 times faster 

remodeling is expected. This effect lasts for about 4 

months (though it can last up to 6–24 months), with 

peak efficiency reached 1 or 2 months after surgery 

[62].The field of the procedure depends on the defect: 

vertical incisions are made between the roots of the 

teeth, horizontally, 2–3 mm above the apices, in order 

not to damage the bundles. The advantage of the 

method lies in the creation of a more stable anchorage, 

not involving teeth/ arches in the procedure. The 

brackets of the fixed appliance are bonded before the 

surgery. The cuts, after earlier retraction of the muco-

periosteal flap, can be made with traditional rotational 

tools or a piezoelectric knife. Dibart et al. recommend 

the use of the latter, due to limited traumatization of 

tissues, greater precision of execution, and more 

extensive bone demineralization, which induces 

prolonged RAP [63]. 

 

Periodontally accelerated osteogenic orthodontics 

Described by Wilcko et al. in 2001, the 

technique referred to as periodontally accelerated 

osteogenic orthodontics (PAOO) or accelerated 

osteogenic orthodontics (AOO) is a combination of 

conventional corticotomy with the implantation of bone 

graft material.3Wilcko et al. observed the process of 

remodeling remineralization and demineralization of 

the bone and demonstrated its relationship with the 

RAP, as described earlier [64]. After retraction of the 

muco-periosteal flap and incisions in selected areas, 

allogenic frozen and dried material is placed in the scars 

[65]. Insertion of the material allows bone density and 

mass to increase. This increases the possible range of 

tooth movement, the apical base and the arch envelope, 

and minimizes gum recessions, relapses and the need 

for extraction [66]. One indication is the presence of 

shortened roots, which could become shorter during 

traditional treatment [66]. Wilcko et al. presented many 

cases demonstrating the effectiveness of the method in 

accelerating the movement of teeth while improving the 

condition of periodontal tissues [68, 69]. 

 

Piezocision 

To initiate the RAP phenomenon, one needs to 

perform a cut to the cortical layer of bone. In the 

traditional technique, this stage is preceded by the 

detachment of the muco- periosteal flap. This increases 

the risk of discomfort and postoperative pain. Park et al. 

and Kim et al. proposed performing the procedure 

without the flap retraction, but directly through the gum 

[70, 71]. An alternative combining limited invasiveness, 

enhanced precision and treatment of periodontal 

problems is piezosurgery (the piezocision technique), 

described in 2009 by Dibart et al. [72]. It combines cuts 

in the bone through the gingiva with a piezoelectric 

knife to create of submucosal tunnels for bone 

substitute material. 

 

Micro-osteoperforations 

This is another treatment modality based on 

the RAP.102. Micro-osteoperforations can also be 

combined with standard corticotomy or the PAOO 

technique. Clinically, the use of micro-

osteoperforations significantly increases the expression 

of cytokines, which leads to a 60% shorter treatment 

time compared to a control group, and 2.3 times faster 

retraction of canines [73]. The procedure itself is 

described as effective, convenient, and less invasive 

than standard corticotomy [74]. Experiments conducted 

on an animal model show both a shorter therapy time 

and increased remodeling occurring within the 

cancellous bone [75-77]. Similar results were obtained 

during the treatment of mild crowding (a study on 24 

patients resulted in a 47% shorter treatment time), 

orthodontic extrusion of palatally impacted canines (6 

patients) and retroinclination of upper incisors with 

sufficient bone support [78-80]. Al-Naoum et al. in a 

group of 30 patients obtained an average speed of 0.74 

mm/week (compared to 0.2 mm/week on the control 

side) during retraction of canines [112]. 

 

Accelerated tooth movement induced by physical 

stimulus 

In recent years, numerous surgical and 

nonsurgical adjunctive procedures to accelerate OTM 

have been introduced. Surgical techniques like 

corticotomy have been reported to facilitate tooth 

movement in short term via inducing regional 

acceleratory phenomenon. However, the invasiveness 

and postoperative discomfort make patients less 

receptive to these techniques and restrict the routine 

application in clinics. Several nonsurgical adjuncts 

including laser therapy, electric current, pulsed 

electromagnetic fields and photobiomodulation are 

suggested to promote tooth movement.  
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Effect of laser therapy on orthodontic tooth 

movement 

Low level laser therapy, at a cellular level, 

causes an increase in RANKL (Receptor Activator of 

Nuclear Factor Kappa B Ligand) in the periodontal 

ligament which, in turn, increases the differentiation of 

precursor cells into activated osteoclasts and potentially 

increases the rate of orthodontic tooth movement. Most 

clinical trials investigating canine retraction into 

premolar extraction sites reported a positive effect 

caused by laser irradiation on the rate of canine 

movement [82]. However, a well-designed study with a 

low risk of bias, found no difference between the laser 

and control groups [83]. This contradictory finding may 

be due to the different laser application protocols with 

the energy density being lower compared with the other 

studies [82]. The inclusion of this trial affects the results 

of meta-analysis as one paper indicated that low-

intensity laser application had no effect on the rate of 

orthodontic tooth movement [84] whereas the other 

concluded that there was weak evidence that low laser 

therapy plus a corticotomy were associated with 

accelerated orthodontic tooth movement. However, 

further research is required before the dual therapy 

achieves routine application [82]. An additional issue 

requiring consideration is the possibly that the 

wavelength used was less important than the energy of 

the laser and this may vary with different animal 

species [85]. For example, in dogs, photoradiation 

seems to accelerate orthodontic movement at a radiant 

exposure of 5.25 J/cm2, whereas a higher dosage (35.0 

J/cm2) movement is delayed [86]. 

 

Photobiomodulation (PBM) 

Photobiomodulation, also known as low-level 

light therapy (LLLT), attempts to use low energy lasers 

(previously discussed) or light-emitting diodes (LED) to 

modify cellular biology by the exposure to light in the 

red to near-infrared (NIR) range (600–1000 nm). The 

evidence regarding PBM is limited to one trial using the 

OrthoPulseTM appliance which was conducted by a 

consulting orthodontist for the company (Biolux 

Research Ltd.). The study concluded that intraoral PBM 

increased the average rate of tooth movement resulting 

in a 54 per cent average decrease in alignment duration 

compared with a control [87]. However, there were 

confounding variables including the use of different 

brackets in the two test groups. The design of the study 

was poor, lacking appropriate and complete reporting, 

so that the overall quality of evidence supporting this 

intervention is currently very low [82]. 

 

Electric Currents 

Exogenous electric currents have been 

employed in the last two decades. Both experimentally 

and clinically, in successful attempts to initiate 

osteogenesis in intact bones or to enhance bone 

apposition in healing of uncomplicated or 

nonunionfractures. In spite of this encouraging clinical 

evidence By using immunohistochemical techniques, 

we discovered that external electric currents increased 

bone and PDL cyclic nucleotide contents.“„; a step 

leading toward heightened enzymatic phosphorylation 

reactions, synthetic and secretory activities, and an 

enhanced rate of tissue remodeling. Earlier”, 2X we 

studied the involvement of adenosine 3‟.5‟-

monophosphate (cyclic AMP. CAMP) in the 

periodontal tissue response to orthodontic treatment and 

concluded that mechanical forces might not be the most 

efficient means to activate PDL and alveolar bone cells. 

That conclusion, coupled with the recent observation 

that electric current can activate a large number of cells 

in a small, well-delineated area,„)‟ led us to hypothesize 

that the application of electric currents to periodontal 

tissues during orthodontic treatment will potentiate the 

effect of the mechanical forces and lead to an enhanced 

rate of cell activation, tissue remodeling, and tooth 

movement. Teeth treated by force and electricity moved 

significantly faster than those treated by force alone. 

Histologic examination of the involved tissues revealed 

that the enhanced tooth movement resulted from 

resorption of bone as a result of the compressive force 

and the presence of the anode near the PDL 

compression site. The degree of new bone formation (as 

judged by the length of the newly formed bony 

trabeculae in the PDL) at electrically treated tension 

sites was higher than at the corresponding sites of teeth 

treated by force alone. These results suggest that 

orthodontic tooth movement may be accelerated by the 

use of force in conjunction with other biologically 

potent means which can generate a local response. 

Specifically, this study has demonstrated that electric 

currents, in the range of 10 to 20 microamperes, can be 

used successfully for this purpose [88]. 

 

Tooth Movement-Induced Osteoclast Activation, 

Regulated By Sympathetic Signaling 

Orthodontic tooth movement changes the bone 

architecture through the stimulation of bone remodeling 

because bone is a dynamic tissue that can adapt its mass 

and architecture to mechanical loading [89-96]. The 

periodontal ligament is highly innervated by nerves, and 

experimental tooth movement (ETM) was shown to 

increase the number of nerve fibers containing 

neuropeptides, such as substance P and calcitonin gene-

related peptide (CGRP)
97-

[100]. Alteration of these 

nerve fibers is considered to be involved in pain 

transduction, inflammatory response, and periodontal 

ligament remodeling [101, 102]. These nerve fibers are 

also considered to be involved in bone remodeling. 

When a force was applied to a tooth, osteoclasts 

predominantly appeared in the alveolar bone within a 

few days [103,104]. Inferior alveolar nerve transection 

suppressed an increase in osteoclast appearance during 

ETM. This suggests that sensory nerves play an 

important role in bone resorptive activity during ETM 

[105]. Kondo et al. reported that bone loss induced by 

mechanical unloading is regulated by the sympathetic 

nervous system]. The sympathetic nervous system 

regulates bone remodeling through the β2-adrenergic 
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receptor [91, 92, 106, 107]. These studies have 

indicated that β2-adrenergic receptor mediates signaling 

in osteoblasts, which inhibits bone formation and 

increases osteoclastogenesis via receptor activator of 

nuclear factor kappa-B ligand (RANKL) expression 

[107,108]. 

 

Effectiveness of Vibrational Stimulus to Accelerate 

Orthodontic Tooth Movement 

Low-magnitude (LM; less than 1 g, where g = 

9.81 m/s2) high-frequency (HF; 20–90 Hz) vibrations, 

such a mechanical signal, can positively influence 

skeletal homeostasis and stimulate an anabolic response 

in both weight-bearing [109] and non-weight-bearing 

[110] bone. In dental practice, several prospective 

randomised controlled clinical trials have recently 

investigated the effect on orthodontic tooth movement 

of supplemental vibration applied with fixed appliances 

for 20 min/day using a vibration device which delivers 

a force of 0.25 N (25.49 g) at a frequency of 30 Hz to 

the dentition [11-113]. Although some of these studies 

reported an increase in the rate of tooth movement 

when vibration was applied as an adjunct to orthodontic 

treatment, others demonstrated that supplemental 

vibration did not increase the rate of tooth movement. 

The anabolic effects of supplemental vibrational 

therapy on bone metabolism have been long recognized 

[114]. Its effectiveness in promoting suture growth and 

remodeling in craniofacial region has also been 

identified 115. A recent study indicates that vibration 

could accelerate OTM through promoting alveolar bone 

remodeling [116]. However, another experiment found 

that mechanical vibration did not increase the number 

of osteoclasts or rate of tooth movement [117]. It should 

be noted that distinguished difference of vibration 

frequency exists in these two animal studies (60 vs 5–

20 Hz), indicating that vibratory stimulus could act in a 

frequency-dependent manner. Mechanical stimulation is 

known to activate NF-κB signals in osteoblasts and 

related cells and, thereafter, influences bone metabolism 

as a result of cellular and molecular interactions in 

osteoclasts, osteoblasts and osteocytes. Therefore, we 

hypothesised that a dynamic vibration force applied 

with a continuous static force would exert synergistic 

effects to activate bone modelling and remodeling 

through osteoclasts, osteoblasts and osteocytes, 

resulting in acceleration of orthodontic tooth movement 

Leethanakul et al. detected enhanced IL-1β secretion in 

gingival crevicular fluid in quadrant receiving 

vibrational stimulus compared to the control quadrant 

[118]. IL-1 could induce RANKL expression in 

osteoblasts and periodontal ligament cells, and also 

promote the differentiation of preosteoclast [119]. 

Interestingly, a well-designed animal study indicated 

that vibration could promote osteoclast formation via 

enhancing RANKL expression in periodontal tissue and 

thus facilitate alveolar bone remodeling and lead to 

faster tooth movement. These studies suggested that 

vibrational stimulus could accelerate OTM through 

promoting osteoclast formation and alveolar bone 

remodeling Vibratory stimulations have been proved to 

reduce pain perceptions in different fields ]120,121]. 

Root resorption is one of the main complications in 

orthodontic treatment [122]. DeBiase et al. assessed the 

changes of root lengths after orthodontic treatment 

using periapical radiographs [123]. Based on current 

information, weak evidence suggests that vibrational 

stimulus is effective for accelerating tooth movement in 

canine retraction but not in the alignment phase. The 

effects of vibration on pain intensity and root resorption 

during orthodontic treatment are inconclusive. 

 

Low frequency electromagnetic fields on orthodontic 

tooth movement 

The results of different in vivo and in vitro 

studies show that the application of exogenous 

electromagnetic fields (EMF) affect the bone 

metabolism [124, 125]. Studies demonstrated that EMF 

can regulate the osteoblast proliferation and 

differentiation which may lead to reduction in the loss 

of bone mass and accelerate the bone formation in 

animal models [126]. This study was to evaluate 

whether a 50 Hz extremely low frequency 

electromagnetic field (ELF-EMF) affects the extent of 

orthodontic tooth movement in rats.. The effects of 

EMF on cells as well as on tissues are on both cellular 

and transcriptional levels SEMF group was significantly 

greater than that of Cg-Cnt but the largest extent of 

tooth movement was achieved in the PEMF group. 

Although Tengku et al. [127] reported that SEMF 

application did not enhance the orthodontic tooth 

movement; Sakata et al. [128] reported that the 

application of SEMF can accelerate the tooth movement 

in rats. On the other hand Showkatbakhsh et al. [130] 

reported that the accumulative toot movement was 

significantly larger in the PEMF group. Stark and 

Sinclair [131] reported that the rate of orthodontic tooth 

movement and bone deposition was increased after 

PEMF application Darendeliler et al. [129] reported that 

under PEMF, the coil spring induced tooth movement at 

a significantly higher extent than that of coil–magnet 

combination. Although there were some differences in 

relation with the duration and the frequency of EMF 

applications, our results are in accordance with the 

results of several studies [132]. EMF enhances DNA 

[135], RNA [134] and protein production in cell 

cultures [133] and short-term EMF application is 

suggested to cause accelerated calcium uptake in 

cartilaginous embryonic chick limbs [136]. On the other 

hand studies which evaluated the effects of EMF on 

bone and cartilage reported that EMF increased the 

rates of cellular division and metabolism, and thus 

promoted increased healing of bony and cartilaginous 

defects [137,138]. Although the precise mechanism of 

accelerated tooth movement after EMF applications is 

unclear, the beneficial therapeutic and cellular effects 

are thought to be contributed to the process of 

orthodontic tooth movement [139].
 

 

 



 

    
Sharath Kumar Shetty et al., Sch J Dent Sci, March, 2019; 6 (3): 172–183 

© 2019 Scholars Journal of Dental Sciences | Published by SAS Publishers, India                                                                                          178 

 

 

CONCLUSION 

When reviewing the current evidence, one 

concluded that, of the non-surgical interventions, only 

low-level laser therapy provided some evidence of 

accelerating orthodontic tooth movement. However, a 

contrary review concluded that LLLT was unable to 

accelerate orthodontic tooth movement. Currently, the 

non-surgical methods are associated with very-low 

quality evidence. Further well-designed RCTs are 

required to determine whether non-surgical 

interventions may safely result in a clinically-important 

reduction in the duration of orthodontic treatment. Of 

the surgical interventions, a recent Cochrane review 

concluded that corticotomy appeared to show promise 

but the available evidence is of low quality indicating 

that future research is likely to change the estimate of 

any effect. A study in dogs, which investigated a 

corticotomy with a raised flap, demonstrated movement 

peaked at days and then decelerated. However, if a 

second surgery was performed, accelerated tooth 

movement was maintained. Similar results when 

performing a corticotomy with a raised flap were found 

in adults when canines were retracted following 

premolar extractions but the effect subsided four 

months following the procedure. As a result of these 

studies, the duration of the RAP seems to be in the 

range of two to three months, after which the rate of 

tooth movement returns to normal. Based upon the 

limited evidence available, the clinical significance of 

this temporary acceleration as part of the overall 

treatment time is questionable. In addition, there are 

significant additional surgical costs and associated 

morbidity and, combined with the short duration of the 

effect, this makes the application of corticotomies on a 

routine basis, unjustified. 
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