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Abstract  Original Research Article 
 

We examine the effect of unnecessary differencing (over-differencing) on the appropriateness of the proposed models 

(Autoregressive of order one AR(1), Autoregressive of order two AR(2), and Moving Average of order two MA(2)). 

Our interest arises from the fact that in practical applications the fitted model due to inappropriately differenced data 

can still suitably describe the data sample based on the goodness of fit test using residual analysis. Given that we use 

simulation study to detect the consequences of unnecessary differencing on the fitted model. While the simulation 

study can be controlled using different scenarios, it becomes more challenging when dealing with real data. The 

validity and performance of the fitted models was checked by observing the changes in the estimated coefficients, the 

associated standard errors (SE), the residual variance, and Akaike information (AIC) by comparing them with the true 

parameters of the system (true model). The uniqueness of this paper is to examine how the fitted model is sensitive 

(valid) to the over-differencing. 
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1. INTRODUCTION  
Data mining has recently found several 

research and development initiatives driven by time 

series. Time series is an important class of behavioral 

data that can be measured from scientific and financial 

applications (Montgomery and Johnson, 1976). It may 

be an hourly record of temperature at a given place or a 

quarterly record of gross national product, monthly 

sales totals, prices of stocks and mutual funds. A time 

series is number of observations are collected over 

excessive period. The time series data by its nature is 

huge in the data sample, highly dimensional, and 

collected continually. Additionally, time series data is 

distinguished by its numerical nature and continuously 

measured. There are various of time series data studies 

such as finding similar time series (Agrawal et al., 

1993; Berndt and Clifford, 1996; and Fu, 1999), time 

series sequence searching (Faloutsos et al., 1994), 

dimensionality reduction (Keogh, 1997; Keogh et al., 

2000) and segmentation (Abonyi et al., 2005). Based on 

those variety of time series domains, studies have 

received extensive attention from the database and 

pattern recognition communities (Keogh and Kasetty, 

2002). The literature has a variety of mining tasks based 

on time series, these tasks can be generally classified 

into four categories, rule discovery and summarization, 

pattern discovery, clustering, and classification. While 

some studies focus on one of these categories, the 

others may focus on more than one of the processes 

described above (Shukla, Amit K., Manvendra 

Janmaijaya, Ajith Abraham, and Pranab K. Muhuri, 

2019) [
1
]. Over-differencing a series will produce a loss 

of the performance of forecasting one-step-ahead [
2
]. 

Also, John Cochrane, (2012) illustrates the dangers of 

over-differencing. The paper’s contribution is an 

assessment of the sensitivity (validity) of the fitted 

model to over-differencing.  

 

2. THE DIFFERENCING METHOD 
Box and Jenkins (1976) argue that 

homogeneous nonstationary sequences    can be 

transformed into stationary sequences by taking 

successive differences of the series; that is, by 

considering the series      
       where  is the 

 
1
For details on the four categories, see Shukla et al., 

(2019). 
2
For details on Over-differencing, see De Gooijer et al., 

(2006). 
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backward difference operator      , and   is the 

backward shift operator which is defined by     
     . Deterministic polynomial trends are ones where 

the polynomial’s coefficients remain constant over 

time. The coefficient in stochastic trends is subject to 

random variation; thus, the trend fluctuates 

stochastically corresponding to random shocks that 

enter the system. By considering the following three 

linear trend models, the distinction may be explained in 

more detail. The first model (M1) is the deterministic 

linear trend model              where    is a 

white-noise sequence or more generally, a zero-mean 

stationary stochastic process. In M1 the level    
             grows in a deterministic linear 

fashion with respect to time. The second model (M2) 

entails the first differences of the series and a constant 

trend parameter   . It is given by                

or               . This model also indicates to a 

linear trend. The level of the series at   (or, more 

properly, the conditional expectation of    given 

           ) is           . The level is 

determined based on the previous observation. Since 

     is subject to random shocks, the trend changes 

stochastically. The third model (M3) requires the 

second differences of the data             or 

                . Since      and      in the 

level               are influenced by random 

shocks, both the intercept and the slope of the linear 

trend, which passes through      and      alter 

stochastically (Abraham and Ledolter, 1983). 

 

3. Identifying The Order of Differencing:  
We begin with the first step, which is a crucial 

step in fitting a time series model. This step is the 

determination of the order of differencing needed in the 

series. The purpose of this step is to stationaries the 

series. Generally, the lowest order of differencing that 

produces a time series fluctuates around a well-defined 

mean value and whose autocorrelation function (ACF) 

plot decline rapidly to zero, either from above or below. 

If the series still reveals a long-term trend, or otherwise 

lacks a tendency to return to its mean value, or if its 

autocorrelations are positive out to a high number of 

lags (i.e., 10 or more), then it requires a higher order of 

differencing. Next, we discuss the rule of differencing. 

Rule 1: A higher order of differencing is likely 

necessary if the series exhibits positive autocorrelations 

out to a high number of lags. Differencing tends to 

produce negative correlation: if the series primarily 

shows strong positive autocorrelation, then a 

nonseasonal difference will reduce the autocorrelation 

and the lag-1 autocorrelation to a negative value. In 

case of applying a second nonseasonal difference 

(which is occasionally necessary), the lag-1 

autocorrelation will be led even further negative 

direction. If the lag-1 autocorrelation is zero or even 

negative, then the series does not need additional 

differencing. The argue of differencing is due to a 

random pattern in the autocorrelations. One of the most 

common errors in time series modeling is to “over-

difference” the series that result in adding extra 

Autoregressive (AR) or Moving Average (MA) terms to 

solve the damage. If the magnitude of lag-1 

autocorrelation is more negative than -0.5 (and 

theoretically a negative lag-1 autocorrelation should 

never be greater than 0.5), which means the series has 

been over-differenced.  

Rule 2: If the lag-1 autocorrelation is zero or negative, 

or are all small and has random pattern, then the series 

does not need a higher order of differencing. If the lag-1 

autocorrelation is -0.5 or smaller, the series may be 

over-differenced. Also, a higher standard deviation is an 

indication of possible over-differencing rather than a 

reduction when the order of differencing is increased. 

Rule 3: Often, the optimal order of differencing is the 

order of differencing at which the standard deviation is 

lowest. 

Rule 4: A model with no orders of differencing 

assumes that the original series is stationary (mean-

reverting). A model with one order of differencing 

assumes a constant average trend for the original series. 

A model with two orders of total differencing assumes 

that the original series has a time-varying trend.  

Rule 5: A model with no orders of differencing 

normally contains a constant term (which represents the 

mean of the series). A model with two orders of total 

differencing typically does not include a constant term. 

In a model with one order of total differencing, a 

constant term should be included if the series has a non-

zero average trend (Beusekkom, 2003). 

 

4. Risk of Over-Differencing:  

Although further differences of stationary 

series will again be stationary, over-differencing can 

lead to serious difficulties. It can unnecessarily 

confound the autocorrelation structure and produce 

higher variance for the over-differencing series (Fuller, 

W.A., 1976). These difficulties are illustrated in the 

following subsections. 

 

4.1. Effect of over-differencing on the autocorrelation 

structure 

Consider the stationary MA(1) process 

             

 

And autocorrelation function of this process is given by 

indictor function as follows:  

   {

   

    
      

      
 ………………..………… (1) 

 

The first difference of the process is 

                      
     ………… (2)  

 

And the autocorrelations of this difference are given by 

   

{
 
 

 
 

        

         
  

     

  

         
  

     

      

 …………………… (3) 
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Eq.1 through Eq. 3 shows that structure of the 

ACF of the over-differenced series is more complicated 

than that of the original process. This leads to a non-

parsimonious representation, since it requires the 

estimation of two parameters as compared to one in the 

original MA(1) model. Furthermore, over-differencing 

will force the moving average operator to be of 

noninvertible form (Anderson, T.W., 1971). 
 

4.2. Effect of Over-Differencing on the variance 

The variance of the MA(1) process is given by 

           
    . The variance of the over-

differenced series                
     . Hence, 

which shows that the variance of the over-differenced 

process will always be larger than that of the original 

process.  
 

Next, consider the stationary AR(1) process 

            with variance                 , 

so the first difference    follows the Autoregressive 

Moving Average process (ARMA(1,1)):          
       . 

 

The variance of this process is given by 

      
        

     From             
       

    ; we 

find that for a < 0.5 over-differencing will increase the 

variance. Indeed, changing in the sample variances of 

successive differences help in determining the 

appropriate degree of differencing. For nonstationary 

sequences the sample variances will be higher, since the 

squared deviations are taken from its mean. The bias 

will be produced associated with nonstationary 

sequences that do not have a fixed level, therefore, 

Over-differencing will produce more variation and the 

sample variances will become higher (Abraham and 

Ledolter, 1983). 
 

5. DATA AND SAMPLE SIZE 
In this study we use data given by Priestley, 

M.B., (1981) [
3
] which generated from the following 

stationary models:  

 AR(1) model:                

 AR(2) model:                       

 MA(2) model:                        

 

Where    in each model is a normal white noise (i.e.    

~ N(0,1)).  

 

The main analysis is based on 500 

observations simulated from models AR (1), AR (2) 

and MA (2), Also the procedure of each model is based 

on three steps. 

i. A model with no orders of a nonseasonal 

difference (d = 0). 

ii. A model with one order of a nonseasonal 

difference (d = 1). 

iii. A model with two orders of a nonseasonal 

difference (d = 2). 

 

6. ANALYSIS AND RESULTS 
We present our analysis in next section, and 

the result of the effect of Over-differencing on AR(1) 

model are reported in Table 1. 

 

Table 1: The result of the effect of Over-differencing 

on AR(1) model in which the model with no order, 

one order, and two orders of a nonseasonal 

difference 

Estimates Order of Difference 

D = 0 D = 1 D = 2 

  ̂ 0.55 -0.21 -0.54 

SE  ̂ 0.037 0.043 0.037 

AIC 1410.01 1509.53 1800.13 

Residual Variance 0.97 1.20 2.16 

 

Table 1 shows that the Over-differencing has 

significant impact on the estimated coefficients and the 

associated standard errors. Table 1 also shows that there 

is a significant change in the sign of the estimated 

coefficients as well as the increase in the residual 

variance and Akaike information (AIC). Therefore, the 

result show that over-differencing is completely 

produce a different model. The following Figures show 

the time series plots, ACF, PACF, residuals, box plots, 

and histogram for the fitted models of AR(1) calculated 

respect to the differenced series. 
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Figure 1.1: Plot of AR (1) model with no orders of difference 

 
3For details on the data sample, see Priestly, M.B., (1981). 
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Plot of variable: x 499
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Figure 1.2: Plot of AR (1) model with one order of difference 
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Figure 1.3: Plot of AR (1) model with two orders of difference 

 

Autocorrelation Function
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Figure 1.4: The ACF for AR (1) model with no order of difference 
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Figure 1.5: The ACF for AR (1) model with one order of difference 
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Figure 1.6: The ACF for AR (1) model with two orders of difference 

 

Partial Autocorrelation Function
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Figure 1.7: The PACF for AR (1) model with no order of difference 
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Figure 1.8: The PACF for AR (1) model with one order of difference 
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Figure 1.9: The PACF for AR (1) model with two orders of difference 
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Figure 1.10: The ACF for AR (1) model residuals with no order of difference 
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Autocorrelation Function
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Figure 1.11: The ACF for AR (1) model residuals with one order of difference 
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Figure 1.12: The ACF for AR (1) model residuals with two orders of difference 
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Figure 1.13: The box plot for AR (1) model residuals with no order of difference 
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Figure 1.14: The box plot for AR (1) model residuals with one order of difference 
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Figure 1.16: The box plot for AR (1) model residuals with two orders of difference 
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Figure 1.16: The histogram of AR (1) model residuals with no order of difference 
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Figure 1.17: The histogram of AR (1) model residuals with one order of difference 
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Figure 1.18: The histogram of AR (1) model residuals with two orders of difference 

 

Figure 1.1 through Figure 1.18 show the time 

series plots of the differenced series, ACF, PACF as 

well as the ACF, the box plots, and the histograms for 

the residuals calculated from the fitted models AR(1) 

respect to over-differencing, these results reveal the 

following two important points 1) the plots of the 

differenced series still stationary, and 2) the histograms 

of the residuals look nearly symmetrical and the 

corresponding box plots have extreme symmetry of the 

central portion where the median is equidistant from the 

lower and upper limits, suggesting that the residuals 

computed from the fitted models to improperly 

differenced data are probably an approximate white 

noise which means that over-differencing can not be 

completely detected by just only examining the 

residuals which is a very important conclusion to draw 

from this study. 
 

Next, we report the result of the effect of Over-

differencing on AR(2) that are reported in Table 2. 

 

Table 2: The result of the effect of Over-differencing on AR(2) model in which the model with no order, one order, 

and two orders of a nonseasonal difference. 

 Order of Difference 

Estimates D = 0 D = 1 D = 2 

 ̂  0.35 0.41 - 0.21 

 ̂  - 0.69 - 0.69 - 0.61 

    ̂  0.066 0.032 0.035 

    ̂  0.067 0.032 0.035 

    1411.56 1667.25 2072.76 

Residual variance 0.97 1.64 3.73 
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Table 2 shows that the estimated coefficient  ̂  

is decreasing as the order differencing increases, more 

specifically, when D = 2, and the magnitude of  ̂  is 

largely affected when D = 0 and D =1 relative to D = 2 

(Positive effect 0.35, 0.41 to negative effect - 0.21). 

Conversely, Table 2 shows that the estimated 

coefficient  ̂  is increasing as the order differencing 

increases, especially when D = 2. Similarly, the AIC 

and residual variance measures are higher for higher 

order differencing. Taken all together, the results of 

over differencing for AR(2) indicate that over 

differencing lead to entirely different models. Figures 

2.1 through 2.18 show the time series plots, ACF, 

PACF, residuals, box plots, and histogram for the fitted 

models of AR(2) calculated respect to the differenced 

series. 
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Figure 2.1: Plot of AR (2) model with no order of difference 
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Figure 2.2: Plot of AR (2) model with one order of difference 
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Figure 2.3: Plot of AR (2) model with two orders of difference 
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Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.084 .0440

 14 -.001 .0440

 13 -.087 .0440

 12 -.063 .0441

 11 -.004 .0441

 10 +.086 .0442

  9 +.161 .0442

  8 -.015 .0443

  7 -.270 .0443

  6 -.138 .0444

  5 +.327 .0444

  4 +.306 .0445

  3 -.359 .0445

  2 -.622 .0445

  1 +.208 .0446

Lag Corr. S.E.

0

456.7 0.000

453.1 0.000

453.1 0.000

449.3 0.000

447.2 0.000

447.2 0.000

443.4 0.000

430.2 0.000

430.1 0.000

393.0 0.000

383.4 0.000

329.2 0.000

281.9 0.000

216.8 0.000

21.77 .0000

  Q p

 
Figure 2.4: The ACF for AR (2) model with no order of difference 

 

Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.088 .0440

 14 +.002 .0440

 13 -.068 .0441

 12 -.023 .0441

 11 -.021 .0442

 10 +.012 .0442

  9 +.156 .0443

  8 +.046 .0443

  7 -.242 .0444

  6 -.207 .0444

  5 +.307 .0445

  4 +.402 .0445

  3 -.255 .0445

  2 -.686 .0446

  1 +.025 .0446

Lag Corr. S.E.

0

470.8 0.000

466.9 0.000

466.9 0.000

464.4 0.000

464.2 0.000

464.0 0.000

463.9 0.000

451.4 0.000

450.3 0.000

420.5 0.000

398.9 0.000

351.1 0.000

269.5 0.000

236.9 0.000

  .30 .5830

  Q p

 
Figure 2.5: The ACF for AR (2) model with one order of difference 

 

Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.074 .0440

 14 -.008 .0441

 13 -.059 .0441

 12 +.022 .0442

 11 -.016 .0442

 10 -.057 .0443

  9 +.130 .0443

  8 +.091 .0444

  7 -.166 .0444

  6 -.245 .0445

  5 +.215 .0445

  4 +.385 .0445

  3 -.115 .0446

  2 -.585 .0446

  1 -.136 .0447

Lag Corr. S.E.

0

349.4 0.000

346.6 0.000

346.6 0.000

344.7 0.000

344.5 0.000

344.4 0.000

342.7 0.000

334.1 0.000

329.8 0.000

315.9 0.000

285.5 0.000

262.3 0.000

187.6 0.000

181.0 0.000

 9.30 .0023

  Q p

 
Figure 2.6: The ACF for AR (2) model with two orders of difference 
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Partial Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.036 .0447

 14 +.014 .0447

 13 -.029 .0447

 12 -.043 .0447

 11 +.103 .0447

 10 +.027 .0447

  9 -.027 .0447

  8 -.097 .0447

  7 -.002 .0447

  6 -.060 .0447

  5 -.055 .0447

  4 -.004 .0447

  3 +.010 .0447

  2 -.695 .0447

  1 +.208 .0447

Lag Corr. S.E.

 
Figure 2.7: The PACF for AR (2) model with no order of difference 
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-1.0 -0.5 0.0 0.5 1.0
0

 15 -.020 .0448

 14 -.018 .0448

 13 -.072 .0448

 12 -.033 .0448

 11 -.019 .0448

 10 -.182 .0448

  9 -.153 .0448

  8 -.135 .0448

  7 -.078 .0448

  6 -.199 .0448

  5 -.185 .0448

  4 -.240 .0448

  3 -.397 .0448

  2 -.687 .0448

  1 +.025 .0448

Lag Corr. S.E.

 
Figure 2.8: The PACF for AR (2) model with one order of difference 
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 14 -.140 .0448

 13 -.168 .0448

 12 -.138 .0448

 11 -.205 .0448

 10 -.276 .0448

  9 -.153 .0448

  8 -.182 .0448

  7 -.219 .0448

  6 -.340 .0448

  5 -.309 .0448

  4 -.414 .0448

  3 -.537 .0448

  2 -.615 .0448

  1 -.136 .0448

Lag Corr. S.E.

 
Figure 2.9: The PACF for AR (2) model with two orders of difference 
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Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.016 .0440

 14 -.044 .0440

 13 -.095 .0440

 12 +.023 .0441

 11 +.056 .0441

 10 -.019 .0442

  9 +.057 .0442

  8 +.012 .0443

  7 -.006 .0443

  6 -.111 .0444

  5 -.022 .0444

  4 -.035 .0445

  3 -.036 .0445

  2 -.000 .0445

  1 +.005 .0446

Lag Corr. S.E.

0

17.40 .2958

17.27 .2421

16.29 .2340

11.62 .4764

11.35 .4148

 9.71 .4665

 9.53 .3902

 7.89 .4440

 7.83 .3483

 7.81 .2526

 1.54 .9081

 1.29 .8627

  .67 .8807

  .01 .9935

  .01 .9094

  Q p

 
Figure 2.10: The ACF for AR (2) model residuals with no order of difference 
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 11 +.058 .0442

 10 +.045 .0442

  9 +.093 .0443

  8 -.111 .0443

  7 -.053 .0444

  6 -.004 .0444

  5 +.183 .0445

  4 -.044 .0445

  3 -.245 .0445

  2 -.059 .0446

  1 -.280 .0446

Lag Corr. S.E.

0

111.0 .0000

110.9 .0000

110.8 .0000

104.9 .0000

104.3 .0000

102.6 .0000

101.5 .0000

97.07 .0000

90.77 .0000

89.36 .0000

89.35 .0000

72.34 .0000

71.34 .0000

41.04 .0000

39.29 .0000

  Q p

 
Figure 2.11: The ACF for AR (2) model residuals with one order of difference 

 

Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.016 .0440

 14 +.055 .0441

 13 -.076 .0441

 12 -.056 .0442

 11 +.016 .0442

 10 +.044 .0443

  9 +.143 .0443

  8 -.111 .0444

  7 -.128 .0444

  6 -.065 .0445

  5 +.296 .0445

  4 +.123 .0445

  3 -.305 .0446

  2 -.115 .0446

  1 -.333 .0447

Lag Corr. S.E.

0

195.5 0.000

195.3 0.000

193.8 0.000

190.9 0.000

189.2 0.000

189.1 0.000

188.1 0.000

177.7 0.000

171.5 0.000

163.1 0.000

161.0 0.000

116.9 0.000

109.2 0.000

62.29 .0000

55.69 .0000

  Q p

 
Figure 2.12: The ACF for AR (2) model residuals with two orders of difference 

 



 

    
Nasir Elmesmari et al., Sch J Phys Math Stat, Nov, 2022; 9(8): 122-144 

© 2022 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          135 

 

 

 Median = -0.0489
 25%-75% 
= (-0.7258, 0.5887)
 Non-Outlier Range 
= (-2.4093, 2.437)
 Outliers

Var1
-4

-3

-2

-1

0

1

2

3

4

 
Figure 2.13: The box plot for AR (2) model residuals with no order of difference 
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Figure 2.14: The box plot for AR (2) model residuals with one order of difference 
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Figure 2.15: The box plot for AR (2) model residuals with two orders of difference 
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Figure 2.16: The histogram of AR (2) model residuals with no order of difference 
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Figure 2.17: The histogram of AR (2) model residuals with one order of difference 
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Figure 2.18: The histogram of AR (2) model residuals with two orders of difference 

 

Similarly, Figure 2.1 through Figure 2.18 show 

the time series plots of the differenced series, ACF, 

PACF as well as the ACF, the box plots, and the 

histograms for the residuals calculated from the fitted 

models AR(2) respect to over-differencing. Above 

Figures reveal the following two important points 1) the 
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plots of the differenced series still stationary, and 2) the 

histograms of the residuals still symmetrical and the 

corresponding box plots have extreme symmetry around 

its median, suggesting that the residuals computed from 

the fitted models to inappropriately differenced data are 

probably an approximate white noise which means that 

over-differencing may not be completely detected by 

the residuals analysis. 

 

Finally, the result of the effect of Over-

differencing on MA(2) model that are reported in Table 

3. 

 

Table 3: The result of the effect of Over-differencing on MA(2) model in which the model with no order, one 

order, and two orders of a nonseasonal difference 

 Order of Difference 

Estimates D = 0 D = 1 D = 2 

 ̂  1.05 -0.06 - 0.32 

 ̂  0.14 - 0.91 - 0.67 

    ̂  0.044 0.018 0.951 

    ̂  0.044 0.018 0.657 

    1414.67 1426.54 1676.37 

Residual variance 0.98 1.00 1.67 

 

Table 3 shows that the estimated coefficient  ̂  

is decreasing as the order differencing increases, and 

the magnitude of  ̂  is largely affected when D = 0 as 

compared to higher degree of differencing D =1 and D 

= 2 (Positive effect 1.05 to negative effects -0.06 and -

0.32). Additionally, Table 3 shows that the estimated 

coefficient  ̂  has inverse association with order 

differencing (0.14, -0.91 and -0.67). Furthermore, the 

AIC and residual variance measures are jumped from 

1414.67 and 0.98 to 1676.37 and 1.67, respectively. 

Taken all together, the results of over differencing for 

MA(2) indicate that over differencing lead to 

completely different models. 

 

The time series plots, ACF, PACF, residuals, 

box plots, and histogram for the fitted models of MA(2) 

calculated respect to the differenced series are shown in 

the following Figures. 
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Figure 3.1: Plot of MA (2) model with no order of difference 
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Figure 3.2: Plot of MA (2) model with one order of difference 
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Figure 3.3: Plot of MA (2) model with two orders of difference 

 

Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.027 .0440

 14 -.082 .0440

 13 -.094 .0440

 12 +.006 .0441

 11 +.049 .0441

 10 +.031 .0442

  9 +.057 .0442

  8 +.051 .0443

  7 -.059 .0443

  6 -.151 .0444

  5 -.111 .0444

  4 -.045 .0445

  3 -.038 .0445

  2 +.037 .0445

  1 +.557 .0446

Lag Corr. S.E.

0

191.6 0.000

191.2 0.000

187.7 0.000

183.2 0.000

183.2 0.000

181.9 0.000

181.4 0.000

179.8 0.000

178.4 0.000

176.6 0.000

165.0 0.000

158.7 0.000

157.7 0.000

156.9 0.000

156.2 0.000

  Q p

 
Figure 3.4: The ACF for MA (2) model with no order of difference 

 

Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.056 .0440

 14 -.108 .0440

 13 -.124 .0441

 12 +.063 .0441

 11 +.069 .0442

 10 -.047 .0442

  9 +.038 .0443

  8 +.113 .0443

  7 -.022 .0444

  6 -.145 .0444

  5 -.031 .0445

  4 +.064 .0445

  3 -.079 .0445

  2 -.499 .0446

  1 +.089 .0446

Lag Corr. S.E.

0

174.0 0.000

172.5 0.000

166.5 0.000

158.6 0.000

156.5 0.000

154.1 0.000

153.0 0.000

152.3 0.000

145.8 0.000

145.6 0.000

134.8 0.000

134.4 0.000

132.3 0.000

129.2 0.000

 4.02 .0450

  Q p

 
Figure 3.5: The ACF for MA (2) model with one order of difference 
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Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.082 .0440

 14 -.081 .0441

 13 -.112 .0441

 12 +.099 .0442

 11 +.066 .0442

 10 -.108 .0443

  9 +.004 .0443

  8 +.113 .0444

  7 -.004 .0444

  6 -.130 .0445

  5 +.009 .0445

  4 +.130 .0445

  3 +.153 .0446

  2 -.553 .0446

  1 -.178 .0447

Lag Corr. S.E.

0

231.2 0.000

227.7 0.000

224.4 0.000

217.9 0.000

212.9 0.000

210.6 0.000

204.6 0.000

204.6 0.000

198.1 0.000

198.1 0.000

189.6 0.000

189.6 0.000

181.0 0.000

169.2 0.000

15.85 .0001

  Q p

 
Figure 3.6: The ACF for MA (2) model with two orders of difference 

 

Partial Autocorrelation Function

 Conf. Limit
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 15 +.104 .0447

 14 -.009 .0447

 13 +.035 .0447

 12 -.163 .0447

 11 +.086 .0447

 10 -.044 .0447

  9 +.071 .0447

  8 -.078 .0447

  7 +.169 .0447

  6 -.150 .0447

  5 +.049 .0447

  4 -.252 .0447

  3 +.265 .0447

  2 -.397 .0447

  1 +.557 .0447

Lag Corr. S.E.

 
Figure 3.7: The PACF for MA (2) model with no order of difference 

 

Partial Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.034 .0448

 14 -.154 .0448

 13 -.072 .0448

 12 -.113 .0448

 11 +.080 .0448

 10 -.165 .0448

  9 -.050 .0448

  8 -.177 .0448

  7 -.046 .0448

  6 -.313 .0448

  5 -.039 .0448

  4 -.253 .0448

  3 +.047 .0448

  2 -.511 .0448

  1 +.089 .0448

Lag Corr. S.E.

 
Figure 3.8: The PACF for MA (2) model with one order of difference 
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Partial Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.066 .0448

 14 -.155 .0448

 13 -.041 .0448

 12 -.112 .0448

 11 -.079 .0448

 10 -.303 .0448

  9 -.112 .0448

  8 -.245 .0448

  7 -.150 .0448

  6 -.319 .0448

  5 -.062 .0448

  4 -.342 .0448

  3 -.182 .0448

  2 -.603 .0448

  1 -.178 .0448

Lag Corr. S.E.

 
Figure 3.9: The PACF for MA (2) model with two orders of difference 

 

Autocorrelation Function
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 13 -.093 .0440

 12 +.037 .0441

 11 +.046 .0441

 10 -.026 .0442

  9 +.044 .0442

  8 +.046 .0443

  7 -.017 .0443

  6 -.120 .0444

  5 -.043 .0444

  4 +.006 .0445

  3 -.032 .0445

  2 -.013 .0445

  1 -.002 .0446

Lag Corr. S.E.

0

18.84 .2213

18.77 .1741

17.76 .1668

13.27 .3500

12.56 .3234

11.45 .3234

11.10 .2687

10.13 .2558

 9.05 .2491

 8.90 .1795

 1.55 .9072

  .62 .9610

  .60 .8970

  .08 .9588

  .00 .9579

  Q p

 
Figure 3.10: The ACF for MA (2) model residuals with no order of difference 

 

Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.008 .0440

 14 -.047 .0440

 13 -.104 .0441

 12 +.040 .0441

 11 +.033 .0442

 10 +.003 .0442

  9 +.034 .0443

  8 +.063 .0443

  7 -.045 .0444

  6 -.110 .0444

  5 -.080 .0445

  4 +.013 .0445

  3 -.053 .0445

  2 +.001 .0446

  1 +.129 .0446

Lag Corr. S.E.

0

31.03 .0087

31.00 .0056

29.87 .0049

24.31 .0185

23.48 .0151

22.91 .0111

22.91 .0064

22.33 .0043

20.34 .0049

19.31 .0037

13.15 .0220

 9.89 .0424

 9.81 .0203

 8.37 .0153

 8.36 .0038

  Q p

 
Figure 3.11: The ACF for MA (2) model residuals with one order of difference 
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Autocorrelation Function

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.035 .0440

 14 -.042 .0441

 13 -.091 .0441

 12 +.064 .0442

 11 +.066 .0442

 10 -.083 .0443
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Figure 3.12: The ACF for MA (2) model residuals with two orders of difference 
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Figure 3.13: The box plot for MA (2) model residuals with no order of difference 
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Figure 3.14: The box plot for MA (2) model residuals with one order of difference 
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Figure 3.15: The box plot for MA (2) model residuals with two orders of difference 
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Figure 3.16: The histogram of MA (2) model residuals with no order of difference 
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Figure 3.17: The histogram of MA (2) model residuals with one order of difference 
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Figure 3.18: The histogram of MA (2) model residuals with two orders of difference 

 

Also, Figure 3.1 through Figure 3.18 show the 

time series plots of the differenced series, ACF, PACF 

as well as the ACF, the box plots, and the histograms 

for the residuals calculated from the fitted models 

MA(2) respect to over-differencing. These Figures lead 

to similar conclusion that the plots of the differenced 

series still stationary, and the histograms of the 

residuals are symmetrically distributed and the 

corresponding box plots have extreme symmetry of the 

central portion where the median is equidistant from the 

lower and upper limits, indicating that the residuals 

computed from the fitted models to inadequately 

differenced data are probably due to white noise which 

means that over-differencing may not be entirely 

detected by just conducting the residual analysis. 

 

7. SUMMARY AND CONCLUSIONS 
This paper examines the sensitivity of 

unnecessary differencing on the appropriateness of the 

proposed model via simulation. Our findings indicted 

that over-differencing is a serious issue that warrants 

attention and validation because time series analysts 

unintentionally misunderstand data that has been 

improperly differenced. The results also show that over-

differencing would result in entirely different model 

than the true model. Our findings further confirm that 

the true model is sensitive to over-differencing, 

however because we used simulated data, we are able to 

determine how sensitive the true model to the over-

differencing, it becomes more challenging to detect the 

sensitivity of the true model when dealing with real 

data. It could be interesting to consider frequency 

domain approach rather than time domain approach. In 

other words, studying the changes which could happen 

to the spectrum of the true model due to unnecessary 

differencing. 
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