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Abstract  Original Research Article 
 

The present study was intended to determine the toxic effect of Alkyl benzene sulfonate (ABS) on Oreochromis 

mosambicus. Probit analysis was employed to determine the 96h LC50 of surfactants for O. mossambicus. Moreover, the 

survivability of surfactant exposed was calibrated and validated using general threshold survival models (GUTS) in 

terms of required data sets and fit performance. Subsequently, fish were assigned to experimental groups exposed to 

10% and 20% of 96h LC50 of surfactants for the period of 45 d to assess the changes in growth, hematological, plasma 

biochemical, and enzymological as well as stress enzyme parameters in gills and liver by employing standard protocol. 

The 24h, 48h, 72h and 96h LC 50 values of ABS to O. mossambicus are 0.55mg/l, 0.28 mg/l, 0.09 mg/l and 0.06 mg/l 

respectively. Moreover, the GUTS- IT model better projected the survivability in O. mossambicus for ABS exposure. 

During sublethal exposure, a consequential reduction in specific growth rate (SGR), RBC, hemoglobin (Hb), hematocrit 

(Ht) value, plasma protein, albumin, and acetylcholinesterase (AChE) activities in gills and liver, as well as significant 

induction in gastrosomatic index (GSI), feed conversion ratio (FCR), plasma glucose, creatinine, alanine 

aminotransferase (ALT), and aspartate aminotransferase (AST) levels and catalase (CAT), superoxide dismutase (SOD), 

malondialdehyde (MDA) in gills and liver were observed in exposed fish. Moreover, in both gills and the liver, GST and 

glutathione peroxidase (GPx) exhibited a significant initial increase followed by a subsequent decrease in exposed fish. 

The effects of ABS on fish were identified using the correlation matrix, integrated biomarker response (IBR) and 

biomarker response index (BRI). These findings show that exposure to surfactant affects multiple biomarkers in O. 

mossambicus. 

Keywords: Oreochromis mossambicus, Alkyl benzene sulfonate, probit analysis, general threshold survival models, 

IBR, BRI. 
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1. INTRODUCTION 
One of the most important requirements for 

maintaining life is access to water (Chaplin 2001). It is 

vital to the ecosystem's overall form and health (Bezerra 

Da Silva et al., 2019). However, when contaminants like 

detergents are added to the system, it becomes polluted. 

Detergents have numerous uses in both commercial and 

residential settings, from laundry to car washes 

(Ivanković & Hrenović, 2010). However, the most 

significant way that detergents get into water is through 

sewage treatment plants that discharge into surface water 

(Scott & Jones 2000). Thus, excessive detergent runoff 

into waterways has negative consequences, including the 

accumulation of potentially hazardous chemicals that 

kills aquatic organisms (Faggio et al., 2016; Faria et al., 

2021; Sula et al., 2020; Susmi et al., 2010). An 

imperative component of the detergent products is the 

surface active component of the detergent, known as 

surfactant, that poses a detrimental impact on the water 

bodies leading to a decline in water quality and 

increment in mortality of aquatic fauna (Mei-Hui Li, 

2008). It has been documented that acute exposure to 

surfactants causes dose- and time- dependent mortality 

in the aquatic oligochaete worm Tubifex tubifex and the 

fish Cyprinus carpio (Bhattacharya et al., 2019a, 2019b; 

Chatterjee, et al., 2021a, 2021b).  

Zoology 
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Surfactant comprises a diversified class of 

chemical compounds comprising hydrophobic and 

hydrophilic sites which are crucial for organic 

contaminant solubilization (Lechuga et al., 2016). 

Notwithstanding the way that most surfactants are 

degradable, their steady use in groundwater and 

perpetual disposal on the surface contributes to 

consistent occurrences in the aquatic environment 

(Mustapha & Bawa-Allah 2020). The average surfactant 

level for domestic wastewaters is from 1 to 10 mg/l, 

compared to over 300 mg/l in the surfactant-production 

industry (Rivera-Utrilla et al., 2012). Most surfactants 

are perilous to macromolecules and alter their efficient 

functioning in the biological system by annexing them 

(Ivanković & Hrenović, 2010). Several studies have 

documented the toxic effect of surfactants in aquatic 

organisms (Freitas et al., 2019, 2020; Hering et al., 2020; 

Lechuga et al., 2016; Mustapha & Bawa-Allah 2020). 

 

Based on the classification, there are four types 

of surfactants: anionic, non-ionic, cationic, and 

zwitterionic (Jackson et al., 2016). Out of these, anionic 

surfactants are widely utilized in a variety of industries, 

including textiles, emulsifiers, wetting agents, 

disinfectants, and cosmetics (Jardak et al., 2016; Puchta, 

1984). These compounds that have a lengthy, 

hydrophobic chain that connects to a positive nitrogen 

atom (Puchta, 1984). One such anionic surfactant is alkyl 

benzene sulphonate. It is basically used in household 

detergents as well as in numerous industrial applications 

(Mungray & Kumar, 2009). Although a number of 

research have been done on the toxicity of ABS to 

aquatic plant (Wang et al., 2011; Zhou et al., 2018), 

there is as a dearth of evidence to suggest that ABS has a 

deleterious effect on the alterations of fish and other 

aquatic organisms. 

 

O. mossambicus has been utilized as a model 

test organism in the present study as it has an excellent 

growth rate and high demand. It is also a tolerant and 

hardy fish for better endurance in a wide assortment of 

aquatic habitats (Chromcova et al., 2015; Fiorino et al., 

2018; Forouhar Vajargah et al., 2018; Hajam et al., 

2020; Hodkovicova et al., 2019; Iswarya et al., 2018; 

Liew et al., 2013, 2015, 2020; Sehonova et al., 2017; 

Woo & Chung 2020). 

 

While the preliminary toxicity study 

investigates a lethal endpoint such as LC50, it’s 

substantially more apt to perform a sublethal toxicity 

investigation because the species are exposed to 

altogether lower, biologically pertinent toxic levels of 

inimical substances (Aliko et al., 2019; Brahma & 

Gupta, 2020; Burgos-Aceves et al., 2021; Fiorino et al., 

2018; Harikrishnan et al., 2021; Petrovici et al., 2020; 

Prokić et al., 2019; Qyli et al., 2020; Stara et al., 2020). 

Fish growth is the crucial variable for their market 

success (Fazio 2019). But the presence of numerous 

toxicants in the aquatic system has resulted in a decrease 

in the growth rate of most fish (Bhunia et al., 2003; Ko et 

al., 2019; Majumder & Kaviraj, 2017). This decrease is 

attributable to the impaired activity of growth hormone 

(GH) as the function of GH is related to tissue and 

somatic growth (Wasinski et al., 2019). Also, the 

pathophysiological reflexes in the entire organism are 

reflected by hematological and plasma biochemical 

biomarkers (Adhikari et al., 2004). As blood is the main 

designator of whole-body health, a study on 

hematological and plasma biochemical parameters is 

essential to investigate the effects of toxicants on 

organisms (Burgos-Aceves, Cohen, Paolella, et al., 

2018; Burgos-Aceves, Cohen, Smith, et al., 2018; Özok 

et al., 2018). Xenobiotic metabolism in organisms 

contributes to the formation of ROS in immensely 

colossal quantities (Burgos-Aceves et al., 2018; Faggio 

et al., 2016; Hrycay & Bandiera 2015). This ROS 

triggers lipid peroxidation (LPO) that produces 

malondialdehyde (MDA) which causes rigorous damage 

to biomolecules such as DNA, protein, and membranes 

by inducing oxidative stress (Ansari et al., 2019). 

Oxidative stress is induced as a result of disequilibrium 

between ROS formation and neutralization by 

antioxidant enzymes such as catalase (CAT), superoxide 

dismutase (SOD), glutathione peroxidase (GPx), GST, 

and reduced glutathione (GSH) (Gobi et al., 2018). In 

addition, AChE plays a component in signal 

terminations through expeditious hydrolysis of the 

neurotransmitter acetylcholine at cholinergic synapses. 

Cholinesterase suppression upon the integration of 

toxicant allows acetylcholine to accumulate in the 

synaptic cleft and blocks nerve transmission, which 

leads to paralysis and mortality of organisms (Trang & 

Khandhar, 2019). Therefore, a productive and auxiliary 

methodology for assessing the activities of stress 

enzymes could be a potential implement for aquatic 

toxicological investigations (Chatterjee et al., 2021b). 

 

Singular biomarkers cannot give a true and 

practical assessment of the toxicity of toxicants on 

aquatic life forms, and hence some existing literature 

recommended to utilize the amalgamated biomarker 

study to comprehend the reaction of an organism to toxic 

substances (Sanchez et al., 2012; Stara et al., 2020). IBR 

subsequently provides a comprehensive methodology 

that aggregately combines all the biomarker responses 

and plays a vital part in comparing the toxicity of 

contaminants (Beliaeff & Burgeot, 2002). Moreover, 

BRI has been widely utilized in recent years to integrate 

multiple biomarker responses. It is rudimentarily 

focused on the evaluation of the organism's overall 

health status (Hagger et al., 2008). 

 

According to Jager et al., (2011), GUTS model 

serves as potential implements that can amend the 

environmental risk assessment of toxicants. To describe 

the death mechanism cognate to the damage, two 

causations of the process affecting survival are 

formalized: the stochastic death (SD) and IT approaches. 

The SD approach surmises that individuals are identical 

and have a probability to die upon chemical stress, which 
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increases with incrementing damage once some 

threshold damage has been exceeded. The IT approach 

postulates that individuals have differences in their 

sensitivity to chemical stress, and when the damage 

exceeds an individual’s threshold, it dies instantly. Both 

approaches can lead to different data interpretations and 

presage for the time course of effect (Jager et al., 2011). 

The significance GUTS model is that it has been found to 

be a solid method for the evaluation of effects of 

time-variable chemical exposure on the survival of 

aquatic organisms. It basically combines toxicokinetics 

and damage dynamics into a single compartment and 

therefore links external concentrations to the effect on 

survival (Jager et al., 2011; Jager & Ashauer, 2018). 

 

2. MATERIALS AND METHODS 
2.1. Test Chemicals and Organisms 

All the reagents used in this experiment were 

purchased from Sisco Research Laboratories (SRL), 

India. The test chemical, Alkyl benzene sulfonate was 

procured from Spectrum Indian Chemicals, India. It was 

discretely dissolved in pure distilled water to make a 

stock solution of 1 mL/100 mL (1% v/v). The test 

organism used in the bioassay was O. mossambicus. 

(Mean length 5.7 ± 0.65 cm, mean weight 8.5 ± 0.53 g). 

The specimens were obtained from the fish farm at 

Naihati, West Bengal, India, and given prophylactic 

treatment by bathing them in 0.05% potassium 

permanganate (KMnO4) solution for 2 min to eschew 

any dermal infections.  

 

2.2. Maintenance Condition 

Fish were placed in outdoor cement tanks for 

acclimatization for 14 days and were provided with 

commercial feed (manufactured by CPF India Pvt. Ltd.) 

daily at 8.0 A.M. and 4.0 P.M. During this acclimation 

period, proper aeration (Aquaspeed AP-446) and daily 

partial renewal of water (20–25%) were performed for 

all the tanks. The values of the different physicochemical 

parameters of water used in the study were as follows: 

temperature 29.4 ± 0.9 ◦C, pH 7.6 ± 0.4, free CO2 25.7 ± 

2.8 mg L
-1

, dissolved oxygen 6.1 ± 0.92 mg L
-1

, total 

alkalinity 191 ± 8.2 mg L
-1

, and hardness 134 ± 7.1 mg 

L
-1

 as CaCO3. 

 

2.3. Acute Toxicity Bioassay 

After the completion of the acclimatization 

period, the static replacement bioassays were conducted 

in 15 L glass aquaria with 10 L of non-chlorinated tap 

water each containing 10 fish. The values of the different 

physicochemical parameters of were as follows: 

temperature 28.5 ± 0.8 ◦C, pH 7.5 ± 0.4, free CO2 28.7 ± 

2.5 mg L
-1

, dissolved oxygen 6.9 ± 0.90 mg L
-1

, total 

alkalinity 189 ± 8.4 mg L
-1

, and hardness 139 ± 6.9 mg 

L
-1

 as CaCO3. The details of the instrument are provided 

in the supplementary file (S1). The fish were not 

alimented for 24 h before the commencement of the test. 

Initial range-finding tests were conducted to estimate the 

spectrum of concentrations of the test chemical. The 

nominal concentrations of ABS (0.02, 0.04, 0.06, 0.08, 

1.00, 1.02, 1.04 and 1.06 mg L
-1

) were conclusively used 

to estimate the 24, 48, 72, and 96 h acute toxicity in 

terms of LC50 values to O. mossambicus. Mortalities 

were recorded every 24 h and dead fish were removed 

from tanks. No movement of fish even with a simple 

touch is considered as the indicator of mortality. 

Behavioral changes in terms of erratic, lateral, and 

circular movements, vertical hanging, caudal bending, 

opercular movement, body balance, fright response, and 

swimming rate were recorded during 96 h of exposure. A 

control set of experiment was done in parallel with the 

main experiment using regular tap water and fish, but 

without the addition of ABS at any point during the 

experiment. All experiments were done in triplicates. 

 

2.4. Chronic Toxicity Bioassay on Growth Parameters 

Experiments for chronic bioassays in fish were 

carried out in 15l glass aquaria, each containing 10l of 

water and five fish. Two sublethal concentrations of 

ABS (0.006 and 0.012 mg L
-1

) were employed for the 

experiment along with control. There were three 

replicates for each concentration. Amid the experiment, 

a considerable proportion (20%) of the test medium was 

renewed and replaced with pulse treatment of surfactant. 

The experiment was continued for 45 days. The fish 

were fed with Osaka Green fish food (crude protein: 

28%, crude fat: 3%, crude fiber; 4%, and moisture 

content 10%). 

 

Fish were sampled at the end of 45 days, and 

the lengths (cm) and weights (g) of the sampled fish were 

recorded, and various growth parameters were calculated 

using standard formulae (Bhunia et al., 2003). 

a) Gastrosomatic index (GSI) = (V/W) ×100, 

where V is the visceral weight of the fish (g), 

and W is the observed bodyweight of fish (g). 

b) Specific growth rate (SGR) %day = {(loge W2 

−loge W1) / T} × 100, where loge W
1
 is the 

natural logarithm of initial body weight of fish 

(g). LogeW2 is the natural logarithm of the final 

body weight of fish (g), and T is the time 

interval. 

c) Feed conversion ratio (FCR) = food 

given/weight gain where weight gain = final 

weight of fish (g) − the initial weight of fish (g). 

 

2.5. Chronic Toxicity Bioassay on Hematological 

Parameters 

Bioassays on hematological parameters were 

also conducted in 15 l glass aquaria, each containing 10 

L of water and five fish (Majumder & Kaviraj, 2017). 

Two sublethal concentrations of ABS (0.006 and 0.012 

mg L
-1

) were employed for the experiment along with a 

control. There were three replicates for each 

concentration. Fish specimens were sampled after 15, 

30, and 45 days of exposure. By the utilization of a 

disposable sterile syringe and a needle, blood was 

obtained by trans-fixing the heart. The collected blood 

sample was transferred immediately to vials containing 

an anticoagulant, EDTA, and was softly shaken to 
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eschew blood hemolysis. Red blood cell (RBC) counts 

were calculated using a hemocytometer (Mishra et al., 

1977). Hemoglobin (Hb) content was estimated by the 

cyanmethemoglobin method (Blaxhall & Daisley, 1973). 

The hematocrit value (Hct%) was determined with the 

standard microhematocrit method (Blaxhall & Daisley 

1973).  

 

2.6. Chronic Toxicity Bioassay on Plasma Biochemical 

and Enzymological Parameters 

Experiments on plasma biochemical parameters 

were performed in a homogeneous type of experimental 

setup as depicted above in bioassay on hematological 

parameters. After the collection of blood, the blood 

samples were centrifuged at 3000 rpm for 20 min at 4 ◦C 

for the separation of plasma from the blood sample. 

Total glucose was quantified by the GOD-POD method 

utilizing a commercial kit. Total protein was quantified 

by (Lowry et al., 1951). Albumin was estimated utilizing 

the BCG (bromocresol green) dye-binding method using 

a commercial kit (Tulip Diagnostics, India). Creatinine 

level was resolute according to modified Jaffe's method 

utilizing a commercial kit. Cholesterol was estimated by 

the CHOD-PAP method utilizing a commercial kit 

(Tulip Diagnostics, India). The activities of alanine 

aminotransferase (ALT/GPT) and aspartate 

aminotransferase (AST/ GOT) were determined 

according to the modified IFCC method (International 

Federation of Clinical Chemistry) utilizing a commercial 

kit (Tulip Diagnostics, India). 

 

2.7. Chronic Toxicity Bioassay on Stress Enzyme 

Parameters in Gills and Liver 

50
-
 mg of gills and liver tissue each were 

homogenized in 2 mL of phosphate buffer saline (PBS). 

The homogenized tissues were spun in a cold centrifuge 

(HERMLE Labortechnik) at 5000 rpm for 15 min at 4 

◦C. After centrifugation, the supernatants were stored at 

20 ◦C till further analysis. The protein content in gills 

and liver tissue was quantified by utilizing the method of 

(Lowry et al., 1951). Bovine serum albumin (BSA, 

Sigma) was utilized as a standard. Standard protocols 

have been used to quantify CAT, SOD, GST, GPx, and 

MDA activities (Akerboom & Sies, 1981; Beauchamp & 

Fridovich 1971; Beers & Sizer 1952; Habig et al., 1974; 

Lawrence & Burk 1976; Ohkawa et al., 1979). Effects of 

CAT, SOD, GST, and GPx were expressed as units per 

milligram of protein (U/mg protein), and MDA levels 

were expressed as nmol thiobarbituric acid reactive 

substance (TBARS) per min per milligram of protein 

(nmol TBARS/min/mg protein). Moreover, AchE 

activity was determined following the protocol of 

(Ellman et al., 1961) and expressed as nmol/min/mg 

protein. 

 

2.8. Determination of IBR  

IBR was determined by utilizing the protocol of 

Beliaeff & Burgeot (2002). Each biomarker's IBR 

analysis and evaluation was carried out as follows:  

a) Each treatment's mean as well as standard 

deviation (SD) are assessed.  

b) Standardization of the results for each treatment 

as Fi′ = (Fi - mean F)/S, where Fi′ is the 

biomarker's standardized value, Fi is each 

treatment’s mean value of a biomarker, F is the 

mean of the biomarker of all treatments and S is 

the treatment specific SD.  

c) Based on the standardized data, X was 

calculated: + Fi′ in the case of activation and –

Fi′ in the case of suppression,  

d) The minimum value for each biomarker for all 

treatments was obtained and then added to X.  

e) The score S was measured as B = |min Fi′| + Z, 

where B is the actual value of the minimum Fi′ 

and |min Fi′| is the actual value of the minimum 

Fi′.  

f) Subsequently, the calculation of IBR is 

accomplished by multiplying the acquired 

value of each biomarker (Bi) by the value of its 

next biomarker, dividing each value by 2 and 

totaling the results. Results of the data were 

presented in a radar chart.  

 

2.9. Determination of BRI 

The BRI for determining the health status of the 

organism was performed utilizing the protocol of Hagger 

et al., (2008). According to the protocol: 

a) Alteration levels (AL) are measured from each 

biomarker's responses.  

b) Each AL is given a score based on the 

proportion of deviation from the controls; ALs 

with a deviation greater than 100% were given 

a score of 1, ALs with a deviation between 50% 

and 100% were given a score of 2, ALs with a 

deviation between 20% and 50% were given a 

score of 3 and ALs with a deviation of less than 

20% were given a score of 4.  

c) Each biomarker's weightings are determined 

based on the underlying biological action (Piva 

et al., 2011).  

d) Using the following equation, the BRI is 

determined. BRI = {∑ (Sn X Wn)}/Wn e) 

Where Sn is the score and Wn is the weight of 

each biomarker “n.”  

e) Eventually, the BRI values are categorized: 

1.0–2.5 (severe modification), 2.51– 2.75 

(major alteration), 2.76–3.00 (moderate 

alteration) and 3.01–4.00 (slight alteration) 

(Hagger et al., 2008). 

 

2.10. Statistical Analysis 

Utilizing MS Excel 2016, Finney's probit 

analysis has been performed for calculating the LC50 

values (Finney 1971). Utilizing Kaplan-Meier analysis, 

survival curves were determined and constructed using 

Graphpad Prism (ver. 9). After performing the normality 

check utilizing the Shapiro Wilk test, two-way ANOVA 

followed by the Tukey post hoc test had been used to 

determine the comparison between controls and exposed 
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fish using Graphpad Prism (ver. 9). The correlation 

matrix plot for the determination of the correlations of 

biomarkers was determined and constructed using PAST 

(ver. 4.03). The level of statistical significance was 

accepted as being p < 0.05. Data are presented as mean ± 

SEM. GUTS-SD/IT modeling was conducted in open 

GUTS software to predict the LC50 values of ABS during 

long- term exposure (100 days) and to predict the mode 

of action of the surfactant. 

 

3. RESULTS 
No mortality of O. mossambicus was recorded 

in control during the experiment. The mortality rate (%) 

of the test animals significantly increased (p < 0.05) with 

increasing concentration of the ABS and exposure times 

(24, 48, 72, 96h). 

 

The survivability curve also depicts that ABS 

significantly affected the overall survival rates of O. 

mossambicus in a dose and duration-dependent manner 

with respect to control (Mantel log-rank test; p < 0.05). It 

is observed that 100 % survivability of O. mossambicus 

exists in control in all exposure periods (24, 48, 72, and 

96 h). However, with the increment of concentration 

ABS as well as periods of exposure (24, 48, 72, and 96 h, 

the survivability rate of O. mossambicus decremented 

significantly (Mantel log-rank test; p < 0.05) (Fig. 1). 

 

 
Fig 1: Kaplan Maier survivability curve of O. mossambicus exposed to ABS 

 

The 24, 48, 72, and 96 h LC50 values of ABS to fish are reported to be 0.554 ± 0.147, 0.280 ± 0.130, 0.094 ± 0.139, 

and 0.069 ± 0.161mg/l (Table 1). 

 
Table 1: The LC50 values and 95% confidence limits of ABS to O. mossambicus at different exposure periods (24, 48, 72, and 96 

h) 

Exposure period (h) LC50 ± SE (mg/l) 95% confidence limit 

Lower Upper 

24 0.554 ± 0.147 0.286 1.075 

48 0.280 ± 0.130 0.155 0.504 

72 0.094 ± 0.139 0.050 0.175 

96 0.069 ± 0.161 0.033 0.142 

 

 The GUTS model parameters, as well as the 

fitted performance of GUTS (SD or IT), are given in 

Table 2. The fitted performance of GUTS-IT was better 

than that of GUTS-SD in the case of ABS predicated on 

AIC values (A smaller AIC value indicates the best fit). 

Thus, the model simulation illustrated that the GUTS-IT 

model can better predict the survivability of 

ABS-exposed O. mossambicus. 

 
Table 2: Model parameters in case of ABS [Kd indicates Dominant rate constant; mw indicates Threshold for mortality; bw 

indicates Killing rate; hb indicates ABSkground hazard rate & Fs indicates Spread factor of the threshold distribution] 

Symbol GUTS-RED unit AIC Value 

SD IT SD IT 

kd 143.8 (0.001641 - 143.8) 0.001641 (0.001641 – 143.8) d
-1

  

 

199.38 

 

 

195.57 
 

 

mw 0.9895 (5.471e
-6

-1.049) 0.0006192 (5.471e
-6

-2.12) mg/l 

bw 29.82 (0.02485 – 315519) - L/mg/d 

hb 0.07 (1e
-6 

– 0.07) 0.0102 (1e
-6

 – 0.07) d
-1

 

Fs 1 20 (1.05 – 20)  
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Moreover, the forecasted LC50 values from GUTS-IT models are given in Table 3. 

 

Table 3: Forecasted LC50 values of ABS to O. mossambicus 

Time [d] LC50 GUTS-IT (mg/l) 

1 0.3776 (0.2335 – 0.7625) 

2 0.189 (0.1169 – 0.3815) 

3 0.1261 (0.07797 – 0.2546) 

4 0.9464 (0.05853 – 0.1954) 

7 0.05421 (0.03353 – 0.1314) 

14 0.02726 (0.01686 – 0.1005) 

100 0.004091 (0.00253 -0.09391)  

 

During the test period in our study, the control 

group behaved normally. However, irregular swimming, 

loss of balance, increased surface grasping, progressive 

motionlessness, and increased opercular movement were 

seen in ABS-treated fish after 96 hours of exposure 

(Table 4). 

 
Table 4: Impact of ABS on behaviors of O. mossambicus at 96h exposure (-: absent; +: mild; ++: moderate; +++: strong) 

Concentration 

(mg/l) 

Erratic 

swimming 

Surface 

grasping 

Motionlessness Loss of 

Equilibrium 

Opercular 

Movement 

0.00 - - - - - 

0.02 - + + - + 

0.04 + + + + ++ 

0.06 ++ ++ ++ ++ ++ 

0.08 +++ +++ +++ +++ +++ 

 

The indicators of the growth performance of O. 

mossambicus upon exposure (45 days) to sublethal 

concentrations of ABS are demonstrated in Fig. 2. The 

chronic exposure of fish to 10% and 20% of LC50 of 

ABS (0.006 and 0.012 mg/l) showed a significant 

reduction (p<0.05) in SGR and FCR and a significant 

increase (p<0.05) in gastrosomatic index (GSI) in 

compare to control. No significant differences were 

observed in the condition factor of fish exposed to 10% 

and 20% of LC50 of ABS (0.006 and 0.012 mg/l) with 

respect to control. 

 

 
Fig. 2: Changes in GSI, SGR, and FCR of O. mossambicus upon addition of ABS. * indicates the level of significance Control 

indicates 0 mg/l of ABS, T1 indicates the concentration of 10% of 96h LC50 values of ABS (0.006 mg/l), T2 indicates the 

concentration of 20% of 96h LC50 values of ABS (0.012 mg/l) 
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The effect of ABS on hematological parameters 

is depicted in Fig. 3. A significant decline in RBC, Hb, 

and Ht (%) (p < 0.05) was visually examined in the fish 

exposed to concentrations of 10% and 20% of LC50 of 

ABS (0.006 and 0.012 mg/l) at 15, 30, and 45 d exposure 

with reference to control. 

 

 
Fig. 3: Changes in RBC, Hb, and Ht value of fish upon the addition of ABS. The values are represented as mean ±SE. ns 

indicates non-significant differences and the * indicates the level of significance. Control indicates 0 mg/l of ABS, T1 indicates 

the concentration of 10% of 96h LC50 values of ABS (0.006 mg/l), T2 indicates the concentration of 20% of 96h LC50 values of 

ABS (0.012 mg/l) 

 

The effect of ABS on plasma biochemical 

parameters is depicted in Fig. 4. The result showed that 

glucose levels in the exposed fish incremented 

significantly (p < 0.05) with reference to the control 

group when exposed to 10% and 20% of LC50 of ABS 

(0.006 and 0.012 mg/l). Total protein decremented 

significantly (p < 0.05) with reference to the control 

group when fish are exposed to 10% and 20% of LC50 of 

ABS (0.006 and 0.012 mg/l). Albumin levels 

decremented significantly (p < 0.05) with reference to 

the control group when exposed to ABS concentration of 

20% of 96h LC50 value (0.006 mg/l) at 30 and 45 d 

exposure period. Creatinine levels in exposed fish 

incremented significantly (p < 0.05) in all exposure 

periods (15, 30, and 45 d) with reference to control when 

exposed to 10% and 20% of 96h LC50 of ABS (0.006 and 

0.012 mg/l). Plasma ALT and AST enzyme activities 

significantly incremented (p < 0.05) in the fish exposed 

to 10% and 20% of LC50 of ABS (0.006 and 0.012 mg/l) 

compared to the control group at all exposure periods 

(15, 30, and 45 d). 

 

Results of stress enzyme parameters in gills and 

liver of O. mossambicus upon addition of sublethal 

concentrations of ABS (0.006 and 0.012 mg/l) are 

depicted in Fig. 5 and 6 respectively. CAT activity in the 

gills and liver of exposed fish incremented significantly 

(p < 0.05) at 10% and 20% of LC50 of ABS (0.006 and 

0.012 mg/l). SOD activity incremented significantly (p < 

0.05) in the gills and liver of ABS-exposed fish at all 

exposure periods except during the 15d exposure period 

where no consequential increase in SOD activity is 

visually examined in the gills of ABS-exposed fish (10% 

of 96h LC50). GST activity in the gills increased 

significantly (p < 0.05) at 10% and 20% of LC50 of ABS 

(0.006 and 0.012 mg/l) during 15d and 30d exposure 

periods but consequentially declined (p < 0.05) during 

45d exposure period. Moreover, GST activity in the liver 

increased significantly (p < 0.05) at 10% and 20% of 

LC50 of ABS (0.006 and 0.012 mg/l) during 15d and 30d 

exposure periods. However, no consequential decrease 

in GST activity is visually examined in the liver of 

ABS-exposed fish during the 45d exposure period. GPx 

activity incremented significantly (p < 0.05) at 10% and 

20% of LC50 of ABS (0.006 and 0.012 mg/l) during 15 
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and 30 d exposure periods but decremented significantly 

at 45d exposure period at 10% and 20% of LC50 of ABS 

(0.006 and 0.012 mg/l) in both gills and liver. MDA 

activity incremented significantly (p < 0.05) at 10% and 

20% of LC50 of ABS (0.006 and 0.012 mg/l) during all 

exposure periods (15, 30, and 45 d). 

 

 
Fig. 4: Changes in glucose, protein, albumin, creatinine, ALT, and AST levels of fish upon addition of ABS. The values are represented as mean 

±SE. ns indicates non-significant differences and the * indicates the level of significance. Control indicates 0 mg/l of ABS, T1 indicates the 

concentration of 10% of 96h LC50 values of ABS (0.006 mg/l), T2 indicates the concentration of 20% of 96h LC50 values of ABS (0.012 mg/l) 
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Fig. 5: Changes in CAT, SOD, GST, GPx, and MDA levels in gills of fish upon the addition of ABS. The values are represented as mean ±SE. ns 

indicates non-significant differences and the * indicates the level of significance. Control indicates 0 mg/l of ABS, T1 indicates the concentration 

of 10% of 96h LC50 values of ABS (0.006 mg/l), T2 indicates the concentration of 20% of 96h LC50 values of ABS (0.012 mg/l) 
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Fig. 6: Changes in CAT, SOD, GST, GPx, and MDA levels in the liver of fish upon the addition of ABS. The values are 

represented as mean ±SE. ns indicates non-significant differences and the * indicates the level of significance. Control indicates 0 

mg/l of ABS, T1 indicates the concentration of 10% of 96h LC50 values of ABS (0.006 mg/l), T2 indicates the concentration of 

30% of 96h LC50 values of ABS (0.012 mg/l). 

 

AChE activity decreased at 10% and 20% of LC50 of ABS (0.006 and 0.012 mg/l) in the gills and liver of O. 

mossambicus as compared to the control (Fig. 7). 
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Fig. 7: Changes in AChE activities in gills and liver of fish upon the addition of ABS. The values are represented as mean ±SE. ns indicates 

non-significant differences and the * indicates the level of significance. Control indicates 0 mg/l of ABS, T1 indicates the concentration of 10% of 

96h LC50 values of ABS (0.006 mg/l), T2 indicates the concentration of 20% of 96h LC50 values of ABS (0.012 mg/l). 

 

Two-way ANOVA results revealed significant variations (p<0.05) in each biomarker with various experimental 

conditions (Table 5). 

 

Table 5: Two-way ANOVA for ABS concentration in mg/l (ABS) and period of exposure in days (exposure period) 

on oxidative stress biomarkers in O. mossambicus after chronic exposure to ABS 
Source SS DF MS F (DFn, DFd) P-value 

GSI 

Interaction 2.006 4 0.5016 F (4, 18) = 4.720 P=0.0088 

Exposure period 15.89 2 7.943 F (2, 18) = 74.74 P<0.0001 

ABS 10.44 2 5.220 F (2, 18) = 49.12 P<0.0001 

SGR 

Interaction 0.08613 4 0.02153 F (4, 18) = 5.521 P=0.0044 

Exposure period 2.505 2 1.252 F (2, 18) = 321.1 P<0.0001 

ABS 0.1817 2 0.09083 F (2, 18) = 23.29 P<0.0001 

FCR 

Interaction 10.20 4 2.551 F (4, 18) = 56.31 P<0.0001 

Exposure period 77.78 2 38.89 F (2, 18) = 858.5 P<0.0001 

ABS 17.43 2 8.715 F (2, 18) = 192.4 P<0.0001 

RBC  

Interaction 0.003733 4 0.0009333 F (4, 18) = 0.2545 P=0.9032 

Exposure period 0.05287 2 0.02643 F (2, 18) = 7.209 P=0.0050 

ABS 0.5401 2 0.2700 F (2, 18) = 73.65 P<0.0001 

Hb  

Interaction 4.926 4 1.231 F (4, 18) = 3.729 P=0.0222 

Exposure period 4.811 2 2.405 F (2, 18) = 7.285 P=0.0048 

ABS 107.2 2 53.59 F (2, 18) = 162.3 P<0.0001 

Ht      

Interaction 4.420 4 1.105 F (4, 18) = 1.123 P=0.3766 

Exposure period 6.243 2 3.121 F (2, 18) = 3.172 P=0.0660 

ABS 340.6 2 170.3 F (2, 18) = 173.1 P<0.0001 

Glucose 

Interaction 165.6 4 41.40 F (4, 18) = 28.12 P<0.0001 

Exposure period 33.28 2 16.64 F (2, 18) = 11.30 P=0.0007 

ABS 1404 2 702.0 F (2, 18) = 476.7 P<0.0001 

Protein 

Interaction 0.3885 4 0.09713 F (4, 18) = 4.442 P=0.0113 

Exposure period 0.01627 2 0.008133 F (2, 18) = 0.3720 P=0.6946 

ABS 21.85 2 10.92 F (2, 18) = 499.5 P<0.0001 

Albumin 

Interaction 0.3083 4 0.07708 F (4, 18) = 0.1965 P=0.9370 

Exposure period 4.079 2 2.040 F (2, 18) = 5.200 P=0.0165 

ABS 19.52 2 9.760 F (2, 18) = 24.88 P<0.0001 

Creatinine 

Interaction 0.07893 4 0.01973 F (4, 18) = 2.340 P=0.0942 

Exposure period 0.8467 2 0.4233 F (2, 18) = 50.20 P<0.0001 
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Source SS DF MS F (DFn, DFd) P-value 

ABS 1.896 2 0.9482 F (2, 18) = 112.4 P<0.0001 

ALT 

Interaction 70.40 4 17.60 F (4, 18) = 14.45 P<0.0001 

Exposure period 185.9 2 92.94 F (2, 18) = 76.30 P<0.0001 

ABS 464.6 2 232.3 F (2, 18) = 190.7 P<0.0001 

AST 

Interaction 17.01 4 4.254 F (4, 18) = 2.504 P=0.0787 

Exposure period 82.64 2 41.32 F (2, 18) = 24.32 P<0.0001 

ABS 335.3 2 167.6 F (2, 18) = 98.69 P<0.0001 

CAT-gill 

Interaction 8.653 4 2.163 F (4, 18) = 9.188 P=0.0030 

Exposure period 19.04 2 9.522 F (2, 18) = 40.44 P<0.0001 

ABS 41.02 2 20.51 F (2, 18) = 87.11 P<0.0001 

CAT-liver 

Interaction 2.377 4 0.5943 F (4, 18) = 0.1340 P=0.9678 

Exposure period 103.1 2 51.55 F (2, 18) = 11.62 P=0.0006 

ABS 505.8 2 252.9 F (2, 18) = 57.00 P<0.0001 

SOD-gill 

Interaction 9.815 4 2.454 F (4, 18) = 2.414 P=0.0868 

Exposure period 15.21 2 7.606 F (2, 18) = 7.483 P=0.0043 

ABS 109.5 2 54.74 F (2, 18) = 53.85 P<0.0001 

SOD-Liver 

Interaction 9.027 4 2.257 F (4, 18) = 1.253 P=0.3245 

Exposure period 9.095 2 4.548 F (2, 18) = 2.525 P=0.01080 

ABS 599.3 2 299.7 F (2, 18) = 166.4 P<0.0001 

GST-gill 

Interaction 53.17 4 13.29 F (4, 18) = 148.3 P<0.0001 

Exposure period 66.77 2 33.39 F (2, 18) = 372.5 P<0.0001 

ABS 16.29 2 8.143 F (2, 18) = 90.85 P<0.0001 

GST-liver 

Interaction 90.74 4 22.69 F (4, 18) = 20.23 P<0.0001 

Exposure period 169.0 2 84.49 F (2, 18) = 75.33 P<0.0001 

ABS 33.49 2 16.74 F (2, 18) = 14.93 P=0.0002 

GPx-gill 

Interaction 0.02480 4 0.006200 F (4, 18) = 75.30 P<0.0001 

Exposure period 0.01085 2 0.005425 F (2, 18) = 65.89 P<0.0001 

ABS 0.1255 2 0.06273 F (2, 18) = 761.8 P<0.0001 

GPx-liver 

Interaction 0.0007620 4 0.0001905 F (4, 18) = 3.550 P=0.0265 

Exposure period 0.001266 2 0.0006330 F (2, 18) = 11.80 P=0.0005 

ABS 0.006522 2 0.003261 F (2, 18) = 60.76 P<0.0001 

MDA –gill 

Interaction 0.03693 4 0.009233 F (4, 18) = 0.9142 P=0.4769 

Exposure period 0.8105 2 0.4052 F (2, 18) = 40.12 P<0.0001 

ABS 21.82 2 10.91 F (2, 18) = 1080 P<0.0001 

MDA-liver 

Interaction 1.933 4 0.4833 F (4, 18) = 2.463 P=0.0822 

Exposure period 3.562 2 1.781 F (2, 18) = 9.077 P=0.0019 

ABS 77.50 2 38.75 F (2, 18) = 197.5 P<0.0001 

AchE-gill 

Interaction 10.94 4 2.735 F (4, 18) = 40.94 P<0.0001 

Exposure period 109.3 2 54.63 F (2, 18) = 818.0 P<0.0001 

ABS 76.52 2 38.26 F (2, 18) = 572.9 P<0.0001 

AchE-liver 

Interaction 32.97 4 8.244 F (4, 18) = 76.00 P<0.0001 

Exposure period 465.7 2 232.8 F (2, 18) = 2147 P<0.0001 

ABS 22.52 2 11.26 F (2, 18) = 103.8 P<0.0001 

 

Moreover, the results of the correlation 

matrices between the concentrations of ABS are depicted 

in Fig. 8. 

 

In the case of ABS: 

a) Based on hematological parameters ABS is 

negatively correlated with RBC, Hb, and Ht 

(%). 
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b) Based on biochemical parameters, ABS is 

positively correlated with creatinine, AST, and 

ALT, but negatively correlated with protein and 

albumin.  

c) Based on stress parameters in gills ABS is 

positively correlated with CAT, SOD, GPx, and 

MDA (p < 0.05). 

d) Based on stress parameters in the liver, the 

concentration of ABS is positively correlated 

with CAT, SOD, and MDA (p < 0.05) but 

negatively correlated with GPx and AChE. 

e) Based on acetylcholinesterase (AChE) activity 

in gills and the liver, ABS is negatively 

correlated with AChE. 

 
Fig. 8: Correlation matrix plot on stress parameters of O. mossambicus after exposure to ABS. p<0.05 are boxed 

 

To compute the overall stress of ABS on O. 

mossambicus, the IBR index was applied. Greater IBR 

values denote adverse circumstances for the organisms, 

while low IBR scores reflect favorable environmental 

conditions for the organisms. According to the finding of 

the study, T2-30d is by far the most affected group in the 

case of surfactant exposed fish (Fig. 9). 

 

 
Fig 9: Dose and duration dependent IBR values 
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BRI values representing the overall general 

health status of the fish are shown in Fig. 10. It is 

observed that the BRI values of ABS, exposed fish are 

within the range of 0-2.5. 

 

 
Fig 10: BRI values of ABS exposed fish at different exposure periods. T1 indicates 10% of 96h LC50 of ABS (0.006 

mg/l) and T2 indicates 20% of 96h LC50 of ABS (0.012 mg/l). 
 

4. DISCUSSION 
The 24, 48, 72 and 96 h LC50 values of ABS to 

O. mossambicus are 0.55mg/l, 0.28 mg/l, 0.09 mg/l and 

0.06 mg/l based on Finney’s probit analysis and 0.3776, 

0.189, 0.1261, and 0.9464 mg/l as per GUTS-IT model. 

However, as indicated by the LC50 values, based on 

EPA guidelines (Chatterjee et al., 2021b), it is highly 

toxic to fish, Oreochromic mossambicus. Nonetheless, 

its toxicity may change with species size and quality, as 

well as with shifts in the water's physiochemical 

characteristics (Chatterjee et al., 2021a). Moreover, 

irregular swimming, loss of balance, increased surface 

grasping, progressive motionlessness, and increased 

opercular movement were observed in ABS-treated fish 

after 96 hours of exposure. Similar behavioural changes 

were reported in Cyprinus carpio after exposure to the 

type-II pyrethroid pesticide alpha-cypermethrin (Bej et 

al., 2021), and in Oreochromis mossambicus after 

exposure to mancozeb (Saha et al., 2016). 

 

The growth parameter serves as a designator of 

populations’ life conditions that could be utilized to 

detect stress due to contamination (López Siangas et al., 

2012). The sublethal exposure of fish to 10% and 20% of 

LC50 of ABS (0.006 and 0.012 mg/l) showed a 

significant reduction (p<0.05) in SGR and a significant 

increase (p<0.05) in GSI and FCR in comparison to 

control. A decrease in the SGR of fish occurs due to 

disruption of the metabolic processes in the fish’s body 

(Kim et al., 2018). The increase in the value of the FCR 

is probably due to the toxic effect of toxicants in the 

fish’s body, which interfere with the function of 

respiration and inhibit the metabolic activity of the fish’s 

body so that the process of digestion of food is disrupted 

(Padmanabha et al., 2015; Sunanda et al., 2016). As a 

result, the decreased growth rate of O. mossambicus 

enlisted in our current study is most likely due to 

decreased appetite resulting in reduced feed intake or 

increased expenditure of energy in the presence of 

toxicant for continuing normal metabolic process, 

leaving less energy available for growth (Abdel-Tawwab 

et al., 2013). Moreover, dose-depend decrease in SGR 

and increase in the FCR in our study might be related to 

altered stability or downregulation of GH (Guo et al., 

2021). Declines in growth parameters were reported in 

O. mossambicus upon exposure to phenol and aniline 

(Bhunia et al., 2003; Saha et al., 1999). The growth of O. 

niloticus was reported to be reduced when exposed to 

sublethal concentrations of cypermethrin (Majumder & 

Kaviraj, 2017) and abamectin (Mahmoud et al., 2021). 

 

Hematological indices are paramount 

biomarkers for evaluating physiological alterations in 

animals (Ogueji et al., 2020). In our investigation a 

significant decline in RBC, Hb, and Ht values (p < 0.05) 

was observed in concentration and the 

duration-dependent manner in the fish exposed to 

concentrations of 10% and 20% of LC50 of ABS (0.006 

and 0.012 mg/l) (Fig 3). This decrease in hematological 

parameters might be attributed to the surfactant’s 

harmful effect on hematopoietic tissues. Lower levels of 

RBC and hemoglobin may also be attributed to 

erythrocyte destruction in blood- forming tissues, 

aberrant heme synthesis, increased free radical 

generation, and inadequate oxygen delivery by gills 

(Ghaffar et al., 2021). The decline of Ht levels in the fish 

could also be attributed to the lysing of erythrocytes. 

Hence the reduction in Hb and Ht levels along with 

reduced RBC levels is an evident indication of anemia 

(Ololade & Oginni 2010). Moreover, the reduction in the 

levels of RBC, Hb, and Ht values might be attributable to 

the altered erythropoiesis activity (Ghaffar et al., 2021). 

Consequential alterations in hematological parameters 

have also been reported in several fish species exposed 

to different toxicants like Heteropneustes fossilis 

exposed to nickel(II) oxide nanoparticles (Samim & 
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Vaseem 2021), Ctenopharyngodon idella exposed to 

copper, chromium, and lead (Shah et al., 2020), 

Osteobrama belangeri (Valenciennes, 1844) exposed to 

unionized ammonia (Mangang & Pandey, 2021) and O. 

mossambicus exposed to arsenic (Tuteja et al., 2021). 

 

Plasma biochemical parameters are typically 

used to govern the general health status of an organism 

(Kavitha et al., 2012). Among these parameters, glucose 

is the most sensitive index denoting the stress state of an 

organism (Serdar 2019). In our present investigation 

induction in glucose level upon the integration of ABS 

might be a designation of carbohydrate metabolism 

disruption, possibly due to the enhancement of glucose 

6-phosphatase activity in the liver or incremented liver 

glycogen breakdown (Ajima et al., 2015). Similar 

hyperglycemic responses have been reported in O. 

mossambicus after exposure to dimethoate and 

chlorpyrifos (Qayoom et al., 2016). Total protein serves 

as a potential indicator of the immune system as well as 

liver and kidney dysfunction (Ghelichpour et al., 2019). 

In our study, the consequential decline of total protein 

content upon the addition of ABS might have resulted 

from a decrementation in the rate of protein synthesis or 

incremented rate of amino acid degradation (Ramesh & 

Saravanan, 2008). Similar results related to reduced total 

protein content were reported after exposure of O. 

mossambicus to the pesticide chlorpyrifos (Ghayyur et 

al., 2019). Albumin plays a crucial role in preserving the 

osmotic balance between the circulating blood and the 

tissue membrane (Khan et al., 2016). In the present 

study, abbreviated albumin content upon the addition of 

ABS may be attributed to the inhibitory effect of 

toxicants on the biosynthesis of albumin in the liver, 

liver dysfunction, and malnutrition (Ujowundu et al., 

2016). Significant reductions in albumin concentration 

were documented in O. mossambicus upon exposure to 

the pesticides chlorpyrifos and monocrotophos (Narra et 

al., 2017). Creatinine is utilized as a sensitive indicator 

of glomerular filtration rate and kidney functions 

(Hamed & El-Sayed, 2019). In our study incremented 

creatinine levels with the addition of surfactants might 

be due to kidney dysfunction by structural damage 

(Faheem et al., 2019). A similar result was reported with 

textile dyeing effluent exposure in O. mossambicus 

(Joseph and John 2020). 

 

An incrementation in blood enzyme levels 

categorically AST and ALT are considered to be stress 

designators leading to tissue impairment (Akbary et al., 

2018). In our study, the incrementation in the levels of 

ALT and AST upon the integration of the surfactants 

might be because of the relinquishment of these enzymes 

into the bloodstream leading to an alteration in liver 

function and subsequently causing liver damage (Banaee 

et al., 2011; Vali et al., 2020). Similar outcomes 

regarding the incrementation in AST and ALT levels 

were reported when O. mossambicus was exposed to 

novel organophosphorus insecticide (RPR-V) (Rao 

2006). 

CAT is an antioxidant enzyme mainly active in 

detoxifying ROS and degrading H2O2 to molecular 

oxygen and water (Ighodaro & Akinloye 2018). In our 

investigation, CAT activity in the exposed fish increased 

significantly (p < 0.05) at 10% and 20% of LC50 of ABS 

(0.006 and 0.012 mg/l) at all exposure periods (15d, 30d, 

and 45d) Increased CAT activity in the gills and liver of 

O. mossambicus after surfactant treatment in the current 

study is presumably a result of a neutralizing impact on 

the detrimental effect of the incrementing ROS 

generation caused by the toxicant (Kumari et al., 2014a). 

Moreover, this induction in CAT probably results in the 

augmentation of nuclear Nrf2 expression which defends 

the cells from H2O2-induced alterations ultimately 

leading to the generation of oxidative stress (Ma, 2013). 

 

Among the stress enzymes, SOD is a category 

of metalloenzymes that initially prevent the toxicity 

caused by ROS against injuries (Hansel & Diaz, 2021). 

These enzymes catalyze the dismutation of superoxide 

anion-free radical (O
2
-) into molecular oxygen and 

hydrogen peroxide (H2O2) thereby damaging the cells 

(Bhattacharya et al., 2021). In our study SOD activity 

increased significantly (p < 0.05) at the liver of fish 

exposed 10% and 20% of LC50 of ABS (0.006 and 0.012 

mg/l) of ABS at all exposure periods (15d, 30d, and 

45d). These surfactants induced ascent in SOD activity 

in the gills and liver of O. mossambicus might be due to 

the initiation of superoxide radical that shields the cell 

from oxidative stress (Kumari et al., 2014b). 

 

GST is a major bio-processing enzyme in phase 

II that is commonly considered to be a key player in the 

detoxification mechanism (Allocati et al., 2018; 

Livingstone, 1998). GST activity in the liver increased 

significantly (p < 0.05) at 10% and 20% of LC50 of ABS 

(0.006 and 0.012 mg/l) during 15d and 30d exposure 

periods. The higher formation rate of glutathione 

disulfide (GSSG) probably contributes to this 

incremented activity of GST (Kaur 2017). However 

reduction in GST activity occurred during the 45d 

exposure period with respect to the 15d and 30d 

exposure period indicating the compromised 

detoxification process of the organism under long-term 

exposure (Sreejai & Jaya, 2010). 

 

By catalyzing the conversion of hydrogen 

peroxide to water and oxygen, GPx reduces possible 

oxidative stress. More hydrogen peroxide, prompting 

tissue disintegration and oxidative stress, is accessible 

when GPx is obstructed (Kaur, 2017). The activity of 

GPx is associated with the concentrations of GSH. This 

is because it makes utilization of reduced glutathione to 

expel hydrogen peroxide and provokes the development 

of oxidized glutathione (Ogueji et al., 2020). In our 

investigation, GPx activity increased significantly (p < 

0.05) at all concentrations of all the surfactants 10% and 

20% of LC50 of ABS (0.006 and 0.012 mg/l) during 15 

and 30 d exposure periods but decreased significantly at 

45d exposure period at all concentrations 10% and 20% 
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of LC50 of ABS (0.006 and 0.012 mg/l). This 

incremented GPx activity in the liver of O. mossambicus 

appeared to have a consequential role in protecting the 

cell against antioxidants (Xiong et al., 2014). However, 

at the end of the exposure period, diminishing GPx 

activity may have been a reaction to the failure of the 

antioxidant defense system to prevent the induction of 

toxicant-induced ROS (Özok, 2020). This decrease in 

GPx may indicate that the toxicant-induced ROS 

developed through lipid peroxidation exceeded the 

antioxidant capacity (Serdar, 2019). 

 

Lipid peroxidation (LPO) is a fundamental 

aspect of oxidative stress, which is predominantly 

generated by the oxidative breakdown of 

polyunsaturated lipids in cell and organelle membranes 

(Grotto et al., 2009). Bi-product of LPO such as 

malondialdehyde, (MDA) is utilized as a designation for 

increased concentration of ROS and cellular injury 

(Ayala et al., 2014; Grotto et al., 2009). MDA activity 

increased significantly (p < 0.05) at all concentrations of 

surfactants 10% and 20% of LC50 of ABS (0.006 and 

0.012 mg/l) during all exposure periods (15, 30, and 45 

d). This increment in MDA levels alters the permeability 

of the cell membrane, causing toxicants to enter the cell 

ultimately leading to DNA damage and conclusively 

apoptosis (Ayala et al., 2014). 

 

IBR is commonly utilized as a designator of 

environmental stress to determine the toxicological 

implications of sundry xenobiotic compounds towards 

fish. It is withal an efficacious method in evaluating the 

organism's health status (Dey et al., 2016; Li et al., 

2011). In this analysis, IBR results suggest that T2-30d is 

the most affected group, followed by T2-45d, T2-15d, 

T1-30d, T1-15d, T1-45d, C-45d, C-15d, and C-30d. 

Similar trends in alterations in duration- dependent IBR 

values were reported after cationic surfactants were 

applied to Cyprinus carpio ((Bhattacharya et al., 2021a; 

Bhattacharya et al., 2021). In integration BRI is used to 

assess the health status of fish (Hagger et al., 2008; 

Magni et al., 2017). The BRI values of ABS are 1.83 in 

case of T1-15d, 1.76 in case of T1-30d, 1.76 in case of 

T1-45d, 1.80 in case of T2-15d, 1.78 in case of T2-30d, 

and 1.82 in case of T2-45d. Thus the BRI values are 

within 0-2.5 which portrays paramount alterations from 

the normal (Hagger et al., 2008). Similar directional 

changes in BRI values were reported after 

administration of pesticide lambda-cyhalothrin to 

Cyprinus carpio (Chatterjee et al., 2021a). Thus, it is 

conspicuous from our finding that ABS impacts fish 

health adversely. 

 

5. CONCLUSION 
According to the results of our research, it is 

possible to draw the conclusion that ABS produces 

severe changes in survival as well as changes in 

behaviour at the acute level during short-term exposure 

and abatement of haematological, biochemical, and 

stress parameters at the sublethal level during long-term 

exposure in O. mossambicus. Consequently, the present 

findings on the toxicity of the ABS to O. mossambicus 

may be employed as a potential implement for increasing 

awareness among individuals to restrict the 

indiscriminate utilisation of surfactants. Hence, 

surfactants used in certain large-scale processes, should 

be properly disposed of and directed to a treatment 

facility, without depending on degradation in natural 

environmental systems following uncontrolled disposal. 

Furthermore, a significant focus should be placed on the 

development of biosurfactants or microbial surfactants, 

which are extremely biodegradable and have lower 

toxicity than chemical surfactants. However, additional 

research is necessary in order to determine their 

hazardous effect on fish on a molecular and 

ultrastructural level. Moreover, additional areas for 

exploration in future research include hormonal and 

histopathological studies. 
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