Scholars Academic Journal of Biosciences

Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Journal homepage: <u>https://saspublishers.com</u> **OPEN ACCESS**

Botany

Ethnomedicinal Uses of Climbers and Woody Lianas Species in Alluri Sitarama Raju District, Andhra Pradesh, India

M. Eswara Lakshmi Kumari¹, V. Surya Ramani¹, N. Nageswara Rao¹, S. B. Padal^{1*}

¹Department of Botany, Andhra University, Visakhapatnam-530003, A. P. India

DOI: 10.36347/sajb.2022.v10i10.002

| **Received:** 14.09.2022 | **Accepted:** 21.10.2022 | **Published:** 29.10.2022

*Corresponding author: S. B. Padal Department of Botany, Andhra University, Visakhapatnam-530003, A. P. India

Original Research Article

The present study focused on the ethnomedicinal uses of climbers and woody lianas species in Chintapalli Mandal, Alluri sitarama Raju district, Andhra Pradesh, India. A total of 60 climbing and woody lianas species belonging to 48 genera and 25 families were recorded in the ten study plots. Out of 25 families with regard to the number of species found within families, Apocynaceae was the most diverse climbing and woody lianas family in samples being represented by 13 species, followed by Convolvulaceae with (10 species), Fabaceae with (5 species), Vitaceae and Diascoriaceae with (4 species). Four families Aristolochiaceae, Cucurbitaceae, Rhamnaceae and Smilacaceae with (2 species). Sixteen Families were represented by single species. Lianas are even rich in the field of ethnomedicine having diverse group of active biomolecules.

Keywords: Ethnomedicine, Climbers and woody lianas species, Alluri Sitarama Raju District.

Copyright © 2022 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Lianas, or woody vines, are important structural components of tropical forests as well as non-timber forest products (NTFP) used for multiple purposes around the world [1]. Climbers and lianas, also collectively called 'vines', are treated as a special type of life form class since they depend for their support on other self supporting plants or artificial props. Woody climbers are called lianas. Lianas and climbers represent a very conspicuous and dominant growth form in tropical forests. The ecological importance of lianas is well documented, since they are of fundamental importance in the functioning of ecosystems as competing with trees either directly or indirectly. They act as key ecological components of whole forest in transpiration, carbon sequestration and forest regeneration [2]. Lianas are capable of growing very rapidly in length and large lianas generally grow to the canopy casting shadow on their host trees, thereby reducing their photosynthesis and consequent growth rates [3]. Although by growing from tree to tree, lianas might increase tree stability, trees with lianas suffer higher mortality rates than liana free trees [4]. Lianas are suggested to have a key role in the adaptation of vertebrate locomotors in the tropical forests of Africa, Asia, and Neotropics [5]. The harvesting of NTFPs has been a matter of concern in economic and biodiversity

conservation arenas [6]. Lianas are the important resources for the local communities providing medicine, food, artisan work, construction material of traditional house, hunting tools. Lianas may be especially important in remote areas where regular "modern" western medicines and various other products are not easily available and accessible [7]. Lianas play important role for not only human beings but also for insects, birds and arboreal animals i.e. monkeys as a food plant especially other food sources are scarce in dry season [8-11]. Therefore the reliance on the forest by indigenous peoples is often mentioned as a reason for conservation of forest. The aim of the present study was ethnomedicinal significance of climbing and woody lianas species in the study area.

MATERIAL AND METHODOLOGY Study area

Chinthapalli Mandal located on the north-eastern part of Alluri Sitarama Raju District, it lies between $17^0 44'22''$ North latitude to $18^0 04'29''$ North and $82^0 16'00''$ East to $82^0 38'04''$ East. In this area the primitive tribal people like Khondu, Mali, Konda Dora, Valmiki, Nuka Dora and Gadaba people were residing in interial pockets of this Mandal, they depended for their healthcare on wild medicinal plants.

Citation: M. Eswara Lakshmi Kumari, V. Surya Ramani, N. Nageswara Rao, S. B. Padal. Ethnomedicinal Uses of Climbers and Woody Lianas Species in Alluri Sitarama Raju District, Andhra Pradesh, India. Sch Acad J Biosci, 2022 Oct 10(10): 257-260.

METHODOLOGY

The present study was carried out through extensive field visits during April 2021- to May 2022 and collected information on traditional uses of lianas used in preparation of crude herbal by the tribal people living in the Chintapalli Mandal, Alluri sitarama Raju District, Andhra Pradesh. A random questionnaire was conducted. The information listed in tabular form including the plant name. The plants were identified with standard floras and voucher specimen deposited in the Botany Herbarium, Andhra University, Visakhapatnam.

RESULT AND DISCUSSION

A total of 60 climbing and woody lianas species belonging to 48 genera and 25 families were recorded in the ten study plots. Out of 25 families with regard to the number of species found within families, Apocynaceae was the most diverse climbing and woody lianas family in samples being represented by 13 species, followed by Convolvulaceae with (10 species), Fabaceae with (5 species), Vitaceae and Diascoriaceae with (4 species). Four families Aristolochiaceae, Cucurbitaceae, Rhamnaceae and Smilacaceae with (2 species). Sixteen Families were represented by single species Acanthaceae, Annonaceae, Asparagaceae, Basellaceae, Caesalpiniaceae, Celastraceae, Combretaceae, Euphorbiaceae, Malphigiaceae, Menispermaceae, Oleaceae, Passifloraceae, Periplocaceae, Ranunculaceae, Sapindaceae and Stemonaceae. Out of 60 species of climbers and woody lianas species the twining plants were greatly stem climbers represented by 38 species followed by Twinner lianas 8 species, Tendril climbers were 6 species, Scramblers were 3 species, Branch climber1 species, Hook climber 1 species, Petiole climber 1 species, Tendril climbing liana 1 species and Watch-spring climbers 1 species. (Fig 1) which were used by rural communities for fulfilling their daily life needs.

The name of the plant parts in different plant species are used out of 60 plant species. Leaves 20 species followed by Root 11 species, whole plant 9 species, Stem and tubers each one have 8 species, Fruit 2 species and Bark and seed 1 species (Fig. 2). Which are used for ethnobotanical exploration.

Fig 1: Habit wise analysis of Climbers and woody lianas species

Fig 2: Plant Parts wise uses of Ethnomedicinal climber and Woody lianas species

Table 1: Climbers and woody lianas species and their ethnomedicinal uses in the Study area					
S. No	Plant name	Family	Vernacular name	Ethnomedicinal uses of Parts	Habit
1	Ampelocissus latifolia	Vitaceae	Dobba teega	Stem: anorexia	TC
2	Anodendron paniculatum	Apocynaceae	Atukudu teega	Bark: bone fracture	TW-L
3	Argyreia nervosa	Convolvulaceae	Samudra pala	Stem: wounds: leaf: skin ailments	TW-L
4	Aristolochia bracteolata	Aristolochiaceae	Nalleswari	Whole plant: purgative. Snake bite	TW
5	Aristolochia indica	Aristolochiaceae	Gadida gadapa	Root: snake-bite	TW
6	Artabotrys hexapetalus	Annonaceae	Teega sampangi	Leaf: fertility: flowers scented	HC
7	Asparagus racemosus	Asparagaceae	Pilli teegalu	Tuber: aphrodisiac	TW
8	Basella alba	Basellaceae	Batchali	Leaf: vegetable	TW
9	Bauhinia vahlii	Caesalpiniaceae	Addaku	Leaves: meal plates; young fruits: eaten,	TW-L
		1		vegetable	
10	Butea superba	Papilionaceae	Teega moduga	Seed: abortifacient	TW
11	Cajanus scarabaeoides	Papilionaceae	Adavi kandi	Whole plant: manure	TW
12	Cardiospermum halicacabum	Sapindaceae	Chinna budda kashe	Leaf: piles	WC
13	Cayratia pedata	Vitaceae	Edakula mandulamari	Leaf: venereal diseases	TC-L
14	Celastrus paniculatus	Celastraceae	Malleru teega	Stem bark: abortifacient	SC
15	Cissus quadrangularis	Vitaceae	Nalleru	Stem: bone fracture	TC
16	Cissus vitiginea	Vitaceae	Adavi draksha	Stem bark: wounds	TC
17	Combretum albidum	Combretaceae	Bontha teega	Root bark: veterinary (wounds)	TW-L
18	Cryptolepis buchananii	Periplocaceae	Budda pala teega	Root: veterinary (galactogogue)	TW
19	Cryptostegia grandiflora	Apocynaceae	Rubberu teega	Leaf: toxic	TW
20	Cuscuta chinensis	Convolvulaceae	Pashi teega	Whole plant: galactogogue	TW
21	Decalepis hamiltonii	Apocynaceae	Maredu gadda	Tuberous root: prickled, made surbath, tonic	TW-L
22	Dioscorea alata	Dioscoreaceae	Bellam gadda	Tuber: vegetable	TW
23	Dioscorea bulbifera	Dioscoreaceae	Chenna gadda	Tuber: vegetable; sexual vigour	TW
24	Dioscorea hispida	Dioscoreaceae	Magasiri gadda	Tuber: vegetable; sexual vigour	TW
25	Dioscorea pentaphylla	Dioscoreaceae	Govinda gadda	Tuber: vegetable; indigestion	TW
26	Diplocyclos palmatus	Cucurbitaceae	Linga donda	Leaf: rheumatism; fruit: diarrhoea	TC
27	Dregea volubilis	Apocynaceae	Bandi gurija	Leaf: rheumatism, snake-bite	Tw-L
28	Gymnema sylvestre	Apocynaceae	Poda patri	Leaf powder: diabetes	TW
29	Hemidesmus indicus	Apocynaceae	Sugandhi pala	Root: tonic, cooling	TW
30	Hiptage benghalensis	Malphigiaceae	Madhavi lata	Leaf: fodder	TW-L
31	Holostemma ada-kodien	Apocynaceae	Pala gurugu	Root: mouth ulcers	TW
32	Ichnocarpus frutescens	Apocynaceae	Nalla teega	Root: diabetes	TW
33	Ipomoea hederifolia	Convolvulaceae	Kasiratnamu	Root: tonic	TW
34	Ipomoea nil	Convolvulaceae	Kolli teega	Whole plant: ulcers; flowers: worship	TW
35	Ipomoea pes-caprae	Convolvulaceae	Balabandhi teega	Leaf: rheumatism	TW
36	Ipomoea pes-tigridis	Convolvulaceae	Puli adugu teega	Whole young plant: fodder	TW
37	Ipomoea quamoclit	Convolvulaceae	Tarulata	Leaf: hemorrhoids	TW
38	Ipomoea sepiaria	Convolvulaceae	Puriti teega	Whole plant: fodder	TW
39	Jasminum auriculatum	Oleaceae	Mollalu, adavimalle	Leaf: tympany	TW-L
40	Leptadenia reticulata	Apocynaceae	Mukku tummudu teega	Whole plant: aphrodisiac	TW
41	Macroptilium atropurpureum	Papilionaceae	Gulabi chikkudu	Pasture plant	TW
42	Millettia racemosa	Papilionaceae	Nela tangedu	Stem bark: fever	TW
43	Mucuna pruriens var. hirsuta	Papilionaceae	Dula dundi	Root: skin disease	TW
44	Naravelia zeylanica	Ranunculaceae	Pulla batchali	Leaf: cooling agent	PC
45	Operculina turpethum	Convolvulaceae	Tagada	Whole plant: purgative	TW
46	Passiflora foetida	Passifloraceae	Pasi jumiki	Leaf: head-ache	TC
47	Pergularia daemia	Apocynaceae	Dustapu teega	Leaf: stomach ache	TW
48	Rivea hypocrateriformis	Convolvulaceae	Boddi kura	Root: snake bite	TW
49	Sarcostemma acidum	Apocynaceae	Pulla kaadalu	Whole plant: burns; bone fracture	BC
50	Secamone emetica	Apocynaceae	Konda pala	Fruit: emetic	TW
51	Smilax perfoliata	Smilacaceae	Nageti dumpa	Tuber: abortifacient	TW
52	Smilax zeylanica	Smilacaceae	Firangi mokka	Root: leucorrhoea	TW
53	Stemona tuberosa	Stemonaceae	Kanepu teega	Tuber: fever	TW
54	Thunbergia alata	Acanthaceae	pula teega	Leaf: bone fracture, head ache	TW
55	Tinospora cordifolia	Menispermaceae	Tippa teega	Root: cardiac stimulant; whole plant: snake bite	TW
56	Tragia involucrata	Euphorbiaceae	Doola gondi	Leaf: stomach pain due to Nematodes	TW
57	Trichosanthes tricuspidata	Cucurbitaceae	Avva pandu	Fruit: ear-ache	TC
58	Tylophora indica	Apocynaceae	Mekameyani aku	Stem: urinary troubles; leaf: asthma	TW
59	Ventilago denticulata	Rhamnaceae	Surati chekka	Leaf: skin disease	SC
60	Ventilago maderaspatana	Rhamnaceae	Gali vana teega	Stem bark: aphrodisiac	SC

Scramblers (SC), Root climbers (RC), Twiners (TW), Tendril climbers (TC), Petiole climbers (PC), Branch climbers (BC), Hook climbers (HC), Watch-spring climbers (WC).

Climbers are used by local people in many different ways. The principle uses of lianas viz. medicine, food, artisan work, construction of traditional houses, etc. It is clear that climbers are an important resource for local communities, particularly for medicinal reasons. The climbing and lianas plants used for different ailments like burns; bone fracture, cooling agent, abortifacient, skin disease, aphrodisiac, anorexia, wounds, diarrhoea, head-ache, ear-ache, venereal purgative, Snake bite, diseases, veterinary (galactogogue), sexual vigour, diabetes, mouth ulcers, haemorrhoids, piles and asthma. The most commonly used medicinal climbers were recorded from the study area viz. Artabotrys hexapetalus, Celastrus paniculatus, palmatus, Diplocyclos Aristolochia bracteolate, Aristolochia indica, Dioscorea alata, Dioscorea bulbifera, Tinospora cordifolia, Tragia involucrate, Dregea volubilis, Cardiospermum halicacabum etc,. Many researchers also have done some works on lianas. In 2014, Darlong and Bhattacharyya reported the lianas of Tripura [12]. In 2015, Krishnamani reported some lianas in Western Ghats of India like Entada rheedii, Gnetum ula, Erycibe paniculata, Hiptage benghalensis, Olax scandens, Schefflera venulosa and Spatholobus parviflorus [13]. In 2015, Barik et al., reported diversity of lianas in Eastern Himalayas and Northeastern India like Argyreia nervosa, Phanera vahlii, Cayratia pedata and Gouania leptostachya [14].

CONCLUSIONS

Diversity of the medicinally important lianas is very rich across the Alluri Sitarama Raju District. This information focused on medicinally important lianas distributed widely in the district so guidelines should be developed for the management of the medicinal lianas, aimed at sustainable use of valuable recourses. Present work gives further insights for the determination of biological activities of lianas used in traditional medicines. This provides an excellent platform towards the novel drug preparations for various ailments and this would indirectly help to improve the economy of tribal communities and informal settlements.

ACKNOWLEDGEMENT

The authors are thankful to the forest officials of study areas and local communities.

REFERENCES

 Campanello, P. I., Garibaldi, J. F., Gatti, M. G., & Goldstein, G. (2007). Lianas in a subtropical Atlantic Forest: host preference and tree growth. *Forest Ecology and Management*, 242(2-3), 250-259.

- 2. Schnitzer, S. A., & Bongers, F. (2002). The ecology of lianas and their role in forests. *Trends in Ecology! and Evolution*, 17, 223-230.
- Putz, F. E. (1984). The natural history of lianas on Barro Colorado Island, Panama. *Ecology*, 65(6), 1713-1724.
- Smith, A. P. (1973). Stratification of temperature and tropical forests. *The American Naturalist*, 107(957), 671-683.
- Emmons, L. H., & Gentry, A. H. (1983). Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. *The American Naturalist*, 121(4), 513-524.
- Belcher, B., & Schreckenberg, K. (2007). Commercialisation of non-timber forest products: A reality check. *Development Policy Review*, 25(3), 355-377.
- Abbiw, D. K. (1990). Useful plant of Ghana. West African used of wild and cultivated plants. Royal Botanical Gardens, KEW.
- Arnold, J. M., & Pérez, M. R. (2001). Can non-timber forest products match tropical forest conservation and development objectives?. *Ecological economics*, 39(3), 437-447.
- Emmons, L. H., & Gentry, A. H. (1983). Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. *The American Naturalist*, 121(4), 513-524.
- Sabatier, D. (1985). Fruiting periodicity and its determinants in a lowland rain forest of French Guiana. *Revue the Ecologie la Vie*, 40, 289-320.
- 11. Sarvalingam, A., Rajendran, A., & Aravindhan, V. (2011). Curative climbers of Maruthamalai hills in the southern Western Ghats of Tamil Nadu, India. *International Journal of Medicinal and Aromatic Plants*, 1(3), 326-332.
- 12. Darlong, L., & Bhattacharyya, D. (2014). Diversity and field status of lianas in Tripura, India. *Journal of Threatened Taxa*, 6(14), 6703-6710.
- 13. Krishnamani, R. (2015). A comprehensive list of the lianas of the Western Ghats of India- Version 2. The rainforest initiative Coimbatore, India. 1-39.
- Barik, S. K., Adhikari, D., Chettri, A., & Singh, P. P. (2015). Diversity of lianas in eastern Himalayas and North-Eastern India. In *Biodiversity of Lianas* (pp. 99-121). Springer, Cham.