Scholars Academic Journal of Biosciences

Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Journal homepage: <u>https://saspublishers.com</u> **OPEN ACCESS**

Botany

Effect of Synchronized Sound Waves in the form of Indian Classical *Ragaas* on Phytohormonal Analysis of Medicinal Plant Species

Pragyan P. Rout¹, Rageshree Swain¹, Sanhita Padhi^{2*}

¹Biochemistry and Acoustic Laboratory, Department of Botany, Ravenshaw University, College Square, near Railway Station, Cuttack, Odisha 753003, India

²Professor, Biochemistry and Acoustic Laboratory, Department of Botany, Ravenshaw University, College Square, near Railway Station, Cuttack, Odisha 753003, India

DOI: 10.36347/sajb.2022.v10i03.001

| Received: 18.01.2022 | Accepted: 27.02.2022 | Published: 09.03.2022

*Corresponding author: Sanhita Padhi

Professor, Biochemistry and Acoustic Laboratory, Department of Botany, Ravenshaw University, College Square, near Railway Station, Cuttack, Odisha 753003, India

Abstract

Original Research Article

Music, based on the synchronized sound waves has a tremendous impact on the living beings. Different frequencies of synchronized sound are now-a-days used in therapy (being popularly called as music therapy). However, the impact of music on physical and physiological processes of the living beings has been acknowledged since ages. Rhythmic and comforting music has an influence on behavior of all living organisms such as humans, plants and animals. According to various studies, Indian Classical music has been confirmed to encourage plant growth positively and it is observed to dominate the other important genres of music such as metal-rock, rock, rap, pop, and monotonous sounds. The present research work was aimed at finding the exclusive impact and effect of the synchronized sound waves and their frequencies in different strings and closed-pipe Indian classical instrumental music displayed through various *Ragaas*, viz: *Raga Kedar* (flute), *Raga Kedar* (santoor), *Raga-Rageshree* (sitar), *Raga-Bhairavi* (flute), *Raga-Shree* (Sarangi), *Raga-Milan ki Todi* (Sarod), *Raga-Ramkali* (Sitar) on phytohormonal analysis in Insulin (*Chamaecostus cuspidatus*) and stevia (*Stevia rebaudiana*). Enhanced phytohormonal levels were observed in the plant species treated with different Indian classical *Ragaas*. In both *Chamaecostus cuspidatus* and *Stevia rebaudiana* the total concentration of GA₃ was found to be 37.33mg/ml and 96.77mg/ml in treated plants respectively. Similarly in *Chamaecostus cuspidatus* and *Stevia rebaudiana* the concentration of IAA at 222nm was found to be 2.33 and 7.71mg/ml and at 280nm was found to be 8.45mg/ml and 41.90mg/ml in treated plants respectively.

Keywords: Music therapy, Indian Classical Ragas, synchronized sound waves, Indian classical instrumental music, phytohormonal analysis.

Copyright © 2022 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

1. INTRODUCTION

1.1 Sound

Sound is produced by the vibratory motion of mass in contact with air. Similarly, a vibratory motion with specific frequency represents a musical sound. Notes, in music, produce sounds with specific frequencies. Music is generated only with these notes aligned in sequence with respect to time. Frequency may be gauged impartially as it is a physical entity but pitch is its non-physical or conceptual equivalent, so it cannot be measured objectively. Even though, the link between frequency and pitch is not linear; however, it is generally found that the pitch of a pure sound is increased simultaneously when its frequency is raised. A recorder creates practically a pure tone. Sound in terms of music is often persistent frequencies held for a constant period. When the sound waves reveal unbroken or continuous pitches i.e. they are musical sounds, the consequential superposition can sound moreover pleasant (consonant), or unpleasant (dissonant) (Lapp, 2002). The subsequent stage to comprehend the reason of in what way the physical systems can be prepared to vibrate in frequencies analogous to the notes of the musical scales is in following the physics of music and musical instruments. Every musical instrument shows the phenomena of resonance and standing waves.

1.2 Musical Notes and Ocaves

Musical tones are generally (almost) periodic. The fact that these sounds are periodic is the key to their

Citation: Pragyan P. Rout, Rageshree Swain, Sanhita Padhi. Effect of Synchronized Sound Waves in the form of Indian Classical Ragaas	26
on Phytohormonal Analysis of Medicinal Plant Species. Sch Acad J Biosci, 2022 Mar 10(3): 26-32.	20

having definite pitches. Sounds which are periodic have a definite pitch and musical sounds are perfectly periodic. Octave which can simply be known as a doubling in frequency (40 Hz is one octave greater than 20 Hz) is one dynamic concept related to music. The audible sound range has been arranged into several 'octaves' (Shah, 2001). An individual octave has been classified into intervals, on the basis of some mathematical principles. The frequencies regarding Western music are compiled in a geometric series and an octave is categorized into twelve parts with the adjacent frequencies having a constant ratio of twelfth root of

two. Saptak, which is equivalent to octave, in Indian Classical Music, is composed of twenty-two tones referred to as 'Shruti'. Indian Classical Music has the seven pure notes called '*shuddha swaras*'. The 'shuddha swaras' are surrounded by the microtones i.e. shrutis, which exhibit different frequency range (Table 1).In addition to these seven notes, the other supplementary five notes called the 'vikrit swaras' are known, which are *Re Komal, Ga Komal, Ma tivra, Dha Komal and Ni Komal.* While '*Komal*' refers to a decrease in the frequency form the adjacent pure note, a rise in frequency means '*Tivra*'.

Shruti	Frequency ratio	Frequency (Hertz)
	(f=v/λ)	
Sa	1/1	240
Re1	32/31	252.8
Re2	16/15	256
Re3	10/9	266.6
Re4	9/8	270
Ga1	32/27	284.4
Ga2	6/5	288
Ga3	5/4	300
Ga4	81/64	303.7
Ma1	4/3	320
Ma2	27/20	324
Ma3	45/32	337.5
Ma4	64/45	341.3
Pa	3/2	360
Dha1	128/81	379
Dha2	8/5	384
Dha3	5/3	400
Dha4	27/16	405
Ni1	16/9	426.6
Ni2	9/5	432
Ni3	15/8	450
Ni4	31/16	465

ruble 1. 1 requency rubbs of shrut values (Source: Shan, 2001	i' values (Source: Shah, 2001)
---	--------------------------------

*Sa-Shadja, Re-Rishab, Ga-Gandhar, Ma-Madhyam, Pa-Pancham, Dha-Dhaivat, Ni-Nishad. * V is the wave speed, λ is the wavelength of the wave

The tone and scales in music are also an important element in music and the equally related terms are rhythm and speed. Several degrees of speed or tempo called as '*Laya*', ranging from '*vilambit*' (very slow) to ultra-fast ('*Drut*'). A total of 240 vibrations per second are produced by the note *Shadja* (Sa). Likewise, number of vibrations generated by other notes is: *Rishab* Re)-270, Gandhar (Ga)-300, Madhyam (Ma)-320,

Pancham (Pa)-360, *Dhaivat* (Dha)-400 and *Nishad* (Ni)-450 (Thakkar et al. 2014). Hypothetically, the Indian Classical *Ragaas* can also be scientifically classified like the living organisms and such classification can be referred to as Genesis. According to the genesis of Indian Classical *Ragaas*, *Thaat* equals Class, the *Ragaas* are equivalent to Family and the *Notes* may be synonymous to speceis (Table 2).

	Table 2: Genesis of Indian Classical Ragaas (Source: Bazini et al., 2004)						
Name of	Some well-known Ragaasof the	Properties of Notes (speceis)	Time of playing				
Thaat (Class)	corresponding Thaat(Family)	of that Ragaas					
Bilawal	Bilawal, Bihag, Durga, Hansdhwani	All shuddh or natural notes	Almost all day				
Kafi	Kafi, Pilu, Bageshri, Mian ki Malhar	Ga, Ni, Komal	Almost all the day				
Asavari	Asavari, Jaunpuri, Darbari, Kanada	Ga, Dha, Ni Komal	Noon (10am-12am), Night (10pm-12am),				
	_		Midnight (12am-2am)				
Khamaj	Khamaj, Jhinjhoti, Desh	Ni Komal	Late evening (8pm-10pm)				
Kalyan	Kalyan, Shuddh Kalyan, Aiman	No Komal, only Teevra Ma	Almost all day				
Bhairav	Bhairavi, Gauri, Lalit, Jogiya, Ramkali	Re, Dha Komal	Early morning (6am-8am), Morning				
			(8am-10am), Evening (6pm-8pm)				
Bhairavi	Bhairavi, Bilaskhani, Todi, Malkaus	Re, Ga, Dha, Ni komal	Morning (8am-10am), Noon (10am-12am),				
			Midnight (12am-2am)				
Marwa	Marwa, Jait, Vibhas,	Re Komal, Ma Teevra	Almost all the day				
Poorvi	Purvi, Shree, Basant	Re, Dha Komal, Ma Teevra	Predawn (2am-4am), Dawn (4am-6am), Dusk				
			(4pm-6pm), Evening (6pm-8pm)				
Todi	Todi, Multani, Gurjari Todi	Re, Ga, Dha Komal, Ma Teevra	Morning (8am-10am), Dusk (4pm-6pm)				

 Table 2: Genesis of Indian Classical Ragaas (Source: Bazmi et al., 2004)

 $\ensuremath{\mathbb{O}}$ 2022 Scholars Academic Journal of Biosciences | Published by SAS Publishers, India

Sound waves of different variation are known to affect the growth of the plants. Synchronized sound waves of Indian classical music is also known to affect or stimulate the seed germination, flowering, fruiting and fruit ripening in several plants (Godbole 2013). Several works and observations showed that plants respond to different types of music. It can show both detrimental and stimulatory effect in its growth and development. Sound with hard-core vibrations causes major detrimental effects on the plant growth and development (Chivkula and Ramaswamy, 2014). Plants accept Indian classical musicand showed an increased growth and development, which is well infered from our present experimental research work. We observed the effect of Indian classical music on plants at a regular basis and could conclude from our observations how aptly our experimental plants responded to the tune of Indian classical music.

2. MATERIALS AND METHODS

2.1 Materials used were as follows:-

- a) Acoustic chamber
- b) Music system with the main unit of frequency 50 Hz-200Hz and two satellite units (with a frequency range of 200Hz-1800Hz)
- c) Selected plant materials (*Stevia rebaudiana* and *Chamaecostus cuspidatus*)

2.2 METHODS

 a) Phytohormonal analysis were carried out in both the selected control and experimental plant species (Ergün *et al.* 2002). b) Statistical analysis were done for \pm standard error and mean of each value.

3. RESULTS AND DISCUSSION 3.1 Results

The phytohormonal analysis was done in two medicinal plants, Stevia rebaudiana and Chamaecostus cuspidatus following the protocol given by Ergün et al., 2002., where the O.D. value (optical density) was measured using UV/Vis spectroscopy. Spectrophotometric analysis was done using 222nm and 280nm for IAA, and 254nm for GA₃. The experiments was repeated three times in each of the case. Total IAA for both the wavelengths that is 222nm and 280nm and total GA3 for 254 nm was calculated as the sum of the free and bound IAA and GA3. An increased O.D. value of both control and treated plant in both the selected medicinal plant species was observed as compared to standard value of phytohormones for both IAA and GA3. However, both the treated medicinal plants showed an increasing O.D. value; hence increased phytohormonal (IAA and GA3) concentration as compared to control plants. The results are given in tabular forms (Table 3, 4 and 5 represents Chamaecostus cuspidatus and table 7, 8 and 9 represents Stevia rebaudaiana) and graphical forms (Figure 1, 2 and 3 represents Chamaecostus cuspidatus and Figure 4,5 and 6 represents Stevia rebaudiana). The concentration of free, bound and total IAA and GA3 for Chamaecostus cuspidatus and Stevia rebaudiana is presented as ± standard error mean for each value in Table 6 and Table 10 respectively.

Tuble 5. Intra concentration in Chamaceostas cusptaatas					
Treated sample	Standard	Control		Experimental	
	O.D.	O.D.	Concentration in mg/ml	O.D.	Concentrationin mg/ml
Free	2.257	0.276	2.45	0.554	4.90
Bound	2.257	0.234	2.08	0.392	3.54
*IAA concentration in mg/ml at 222nm.					

 Table 3: IAA concentration in Chamaecostus cuspidatus

Figure 1: Graph showing IAA concentration at 222nm in Chamaecostus cuspidatus (free, bound and total)

Table 4: IAA concentration in Chamaecostus cuspidatus

Treated sample	Standard	Control		Experimental	
	O.D.	O.D.	Concentration in mg/ml	O.D.	Concentrationin mg/ml
Free	2.482	0.099	0.79	0.176	1.42
Bound	2.482	0.089	0.72	0.154	1.24
*IAA concentration in matural of 280mm					

*IAA concentration in mg/ml at 280nm

Figure 2: Graph showing IAA concentration at 222nm in Chamaecostus cuspidatus (free, bound and total)

Table 5: GA3 concentration in Chamaecostus cuspidatus					
Treated sample	Standard	Control		Experimental	
	O.D.	O.D.	Concentration in mg/ml	O.D.	Concentration in mg/ml
Free	0.020	0.009	11.66	0.011	9.66
Bound	0.020	0.017	19.66	0.019	17.66
*GA3 concentration in mg/ml at 254nm.					

Figure 3: Graph showing GA3 concentration at 254nm in Chamaecostus cuspidatus (free, bound and total)

Cable 6: The concentration of free, bound and total IAA and GA3 equivalent assayed from Chamaecostu	S
<i>cusnidatus</i> represented as + standard error mean for each value	

cuspidulus represented as ± standard error mean for each value							
Hormones	Form of hormones Control		Experimental				
	Free IAA	2.45±0.03	4.90±0.01				
IAA(222nm)	Bound IAA	2.08 ± 0.008	3.54±0.02				
	Total IAA	4.51±0.05	8.45±0.01				
	Free IAA	0.79±0.01	1.42±0.01				
IAA(280nm)	Bound IAA	0.72 ± 0.005	1.24±0.01				
	Total IAA	1.52 ± 0.01	2.33±0.34				
	Free GA3	11.66±0.33	19.66±0.33				
GA3(254nm)	Bound GA3	9.66±0.33	17.66±0.33				
	Total GA3	21.33±0.66	37.33±0.66				

Fable 7: IAA concentration in Stevi	a rebaudiana
--	--------------

Treated sample	Sandard	Control		Experimental	
	O.D.	O.D.	Concentration in mg/ml	O.D.	Concentration in mg/ml
Free	2.257	2.412	21.38	2.491	19.51
Bound	2.257	2.201	19.51	2.234	19.80
*IAA concentration in maximilat 222mm					

*IAA concentration in mg/ml at 222nm

Figure 4: Graph showing IAA concentration at 222nm in Stevia rebaudiana (free, bound and total)

Figure 5: Graph showing IAA concentration at 280 nm in Stevia rebaudiana (free, bound and total)

Table 8: IAA	concentration	in	Stevia	rebaudiana
--------------	---------------	----	--------	------------

Treated sample	Standard	Control		Experimental		
	O.D.	O.D.	Concentration in mg/ml	O.D.	Concentration in mg/ml	
Free	2.482	0.399	3.21	0.526	4.27	
Bound	2.482	0.378	3.05	0.426	3.43	

*IAA concentration in mg/ml at 280nm

Table 7. OAS concentration in Stevia rebaududud						
Treated sample	Standard	Control		Experimental		
	O.D.	0.D.	Concentration in mg/ml	O.D.	Concentration in mg/ml	
Free	0.020	0.046	46	0.051	51	
Bound	0.020	0.041	41.33	0.045	45.66	

Table	9: (GA3	concentration	in	Stevia	rel	baudi	ana
						_		

*GA3 concentration in mg/ml at 254nm

Figure 6: Graph showing GA3 concentration at 254nm in Stevia rebaudiana (free, bound and total)

Hormones	The form of hormones	Control	Experimental	
	Free IAA	21.45±0.33	22.07±0.04	
IAA(222nm)	Bound IAA	19.51±0.01	19.80±0.01	
	Total IAA	41.22±0.01	41.90±0.005	
	Free IAA	3.21±0.012	4.27±0.02	
IAA(280nm)	Bound IAA	3.05±0.02	3.43±0.01	
	Total IAA	6.41±0.01	7.71±0.005	
	Free GA3	46±0.6	51±0.6	
GA3(254nm)	Bound GA3	41.33±0.7	45.66±1.2	
	Total GA3	87.33±1.2	96.66±1.8	

 Table 11: The concentration of free, bound and total IAA and GA3 equivalent assayed from Stevia rebaudiana

 represented as ± standard error mean for each value

3.2 DISCUSSION

Plants do absorb and resonate to external frequencies in the form of sound waves as conceptualised and established by Sir Jagdish chandra Bose a Nobel Prize winner in 1977, who was renowned for his work on the physiology of plants. He believed that plants could feel and were aware of their surroundings. He was the first person to prove that plants feel pain and understand affection. He demonstrated the electrical nature of plant stimuli (like wounds, chemical agents, etc.). He researched the seasonal effect on plants and also the effect of chemical inhibitors and temperature on plants. Thus, he contributed significantly to agriculture also.

Sound waves are received by the plants and results in the faster protoplasmic movement (Godbole 2013). Due to the sound waves mechanical vibrations are generated by the charged cell membranes and wall. The mechanochemical enzymes which use chemical energy in the form of ATP to produce mechanical vibrations in cells contributes to the sound wave generation in plant cells. These mechanisms leads to the nanomechanical oscillations of cytoskeletal components of the plant cells that generates both high and low wave frequency vibrations. The synchronized sound waves in the form of Indian classical ragaas acts as potent plant growth stimulant and as plant protectant. Plant growth stimulant in the sense that it elicits various effects in the plants. Starting from the enhancement of seed germination in the sense showing early seed germination and healthy seedling growth. Musical sound promotes the plant growth by regulating synthesis of phytohormones Indole3-acetic acid and Gibberellic acid (Bochu et al., 2004; Ghosh et al., 2016). Plant growth promotion can also be related to that of the enhancement of photosynthetic activity. The sound waves manipulates the expression of photosynthetic related genes that leads to an increase in the photosynthetic rates in plants (Jeong et al., 2008).

In the present research experiments, it was also seen that there was an increment in the overall growth of the plant body. Both the medicinal plant species *Stevia rebaudiana* and *Chamaecostus cuspidatus*was subjected to soft harmonic sound waves of octaves (synchronized sound waves) through Indian musical instruments). By analysing the growth, it was noticed that there was an increment in the growth of the treated plants. The present study also showed that there was efficient increment in the phytohormonal contents of treated plants as compared to that of the untreated control plants. In both *Chamaecostus cuspidatus* and *Stevia rebaudiana* the total concentration of GA₃ was found to be 37.33mg/ml and 96.77mg/ml in treated plants respectively. Similarly the concentration of IAA at 222nm was found to be 2.33 and 7.71mg/ml and at 280nm was found to be 8.45mg/ml and 41.90mg/ml in treated *Chamaecostus cuspidatus* and *Stevia rebaudiana* respectively.

4. ACKNOWLEDGEMENT

The authors would like to sincerely acknowledge the Department of Botany, Ravenshaw university, for providing all the supports and the Infrastructeral facilities required to carry out the entire work. We also acknowledge the Acoustical and Biochemistry laboratory where the entire experimental work was done. Our special thanks acknowledge go to our supervisior Prof. Sanhita Padhi for her immense support and timely supervision.

REFERENCES

- Bazmi, N., Khan, W. A., Shahzaad, S., & Khan, N. (2004). Sargam lessons: Sa, Re, Ga, Ma. Virtual Music Publications Pvt Ltd, 6-108.
- Bochu, W., Yoshikoshi, A., & Sakanishi, A. (1998). Carrot cell growth response in a stimulated ultrasonic environment. *Colloids Surf. B Biointerfaces*, 12, 89–95. doi: 10.1016/S0927-7765(98)00061-7
- Creath, K., & Schwartz, G. E. (2002). Effects of music on the growth of plants: Evidence of info-energy resonance effects? In: Tucson 2002: Towards a Science of Consciousness. Tucson, AZ: University of Arizona, Center for Consciousness Studies, 1-119.
- Ergün, N., Fatih, T., & Atilla, Y. (2002). Auxin (Indole-3-acetic acid), Gibberellic acid (GA3), Abscisic Acid (ABA) and Cytokinin (Zeatin) Production by Some Species of Mosses and Lichens. *Turkish Journal of Botany*, 26, 13-18.
- Ghosh, R., Mishra, R. C., Choi, B., Kwon, Y. S., Bae, D. W., Park, S. C., ... & Bae, H. (2016).

31

Corrigendum: exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. *Scientific Reports*, *6*, 37484.

- Godbole, M. (2013). Does music affect plant growth? 3-6. http://www.buzzle.com/articles/does-music-affectplant-growth.html
- Hageseth, G. T. (1974). Effect of noise on the mathematical parameters that describe isothermal seed germination. *Plant Physiology*, 53, 641-643.
- Jeong, M. J., Shim, C. K., Lee, J. O., Kwon, H. B., Kim, Y. H., Lee, S. K., ... & Park, S. C. (2008). Plant gene responses to frequency-specific sound signals. *Molecular breeding*, *21*(2), 217-226.
- Jun-Ru, Z., Shi-Ren, J., & Lian-Qing, S. (2011) Effects of music acoustic frequency on Indoleacetic Acid in plants. *Agricultural Science and Technology*, 12, 1749-1752.
- Lapp, D. R. (2002). The physics of music and musical instruments. Wright Center for Innovative Science Education.Tufts University, Medford, Massachusetts, 1-119.
- 2] R. H. E. Hassanien, T. Hou, Y. Li, B. Li,, "Advances in Effects of
- Sound Waves on Plants", Journal of Integrative Agriculture, vol.

- Shah N. (2001). Visualization of Indian Classical Music: A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Technology. Department of Computer Science and Engineering. Indian Institute of Technology, Kanpur, 1-61.
- Sharma, D., Gupta, U., Fernandes, A. J., Mankad, A., & Solanki, H. A. (2015). The effect of music on physico-chemical parameters of selected plants. *International Journal of Plant, Animal and Environmental Sciences*, 5, 282-287.
- Ünyayar, S., Topcuolu, F., & Ünyayar, A. (1996). A modified method for extraction and identification of indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA) and zeatin produced by *Phanerochate chrysosporium* ME 446. *Bulgaria Journal of Plant Physiology*, 22(3-4), 105-110.
- V. Chivukula, S. Ramaswamy, "Effect of different types of music on
- Chivukula, V., & Ramaswamy, S. (2014). Effect of different types of music on *Rosa Chinensis* Plants. *International Journal of Environmental Science and Development*, 5, 431-434.
- Weinberger, P., & Measures, M. (1978). Effects of the intensity of audible sound on the growth and development of Rideau winter wheat. *Canadian Journal of Botany*, 57, 1036-1039.