Scholars Academic Journal of Biosciences

Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Journal homepage: <u>https://saspublishers.com</u> OPEN ACCESS

Botany

Ethnomedicinal Investigation on Koya Dora Tribes of Rampa Hills, Alluri Sitarama Raju District, Andhra Pradesh, India

Prema Chandra Sekhar¹, Vasa Padmaja¹, Balaraju Chandra Mouli¹, Padal SB^{2*}

¹Department of Botany, SGA Govt. Degree College, Yellamanchili-531055, A.P, India ²Departments of Botany, Andhra University, Visakhapatnam-530003, A.P, India

DOI: 10.36347/sajb.2023.v11i07.008

| Received: 13.06.2023 | Accepted: 18.07.2023 | Published: 29.07.2023

*Corresponding author: Padal SB

Departments of Botany, Andhra University, Visakhapatnam-530003, A.P, India

Abstract

Original Research Article

An ethnomedicinal investigation was carried out in Rampa Hills, Alluri Sitaramaraju District, Andhra Pradesh. India. The indigenous knowledge of local traditional uses was collected through questionnaire and personal interviews during field trips. The identification and nomenclature of the listed plants were based on the flora of Andhra Pradesh. A total of 60 plants species belong to 57 genera and 30 families were identified by taxonomic description and locally by ethnomedicinal knowledge of people existing in the region. Plant specimens collected, identified, preserved and mounted were deposited in the department of botany, Andhra University, Visakhapatnam for future references. **Keywords:** Ethnomedicinal plants, Investigation, Koya Dora, Rampa hills, Alluri Sitaramaraju District.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Ethnobotanical investigations have led to the documentation of a large number of wild plants used by tribals for meeting their multifarious requirements (Anonymous, 1990). From 1960, Jain started intensive field studies among tribal areas of central India (Jain, 1963 a-c; 1964 a-b; 1965 a-b). India in inhabited by over 80 million tribals belonging to about 550 tribal It is estimated that about 17,500 communities. angiosperm species alone are occurring in India (Jain, 2000). The flora of India is very diverse on one hand and rich in endemic taxa on the other. These factors are of significance for the richness of ethnomedicine and also for its uniqueness (Jain, 1997). Singh et al., (1981) published 29 medicinal plants which were commonly used by local tribes of Mannanur forest and also studied their biological activity. Rama Rao et al., (1984) reported 7 unknown or less known medicinal plants which are exclusively used for various ailments by the aboriginals. Hemadri, (1985) studied the medicinal wealth of Chittoor district. Prakasa Rao and Harasreeramulu, (1985) presented authentic data on 52 selected medicinal plants along with their ethnobotanical uses and distribution in Srikakulam district. Rao and Henry, (1996) reported the ethnomedicinal practices of Jatapu and Savara tribal communities of Srikakulam district. Padal et al., (2010) reported ethnomedicinal

plants used by tribal people of Paderu division, Visakhapatnam district.

MATERIAL AND METHODS

Study area

The majority of the people in the Rampa hills are Koya Dora. They are, as a class, more civilized and less excitable than the Konda reddy. They are generally of better status and mix more freely with the low country men than the Konda reddy. At least 80 percent of the total area of the Rampa hills is covered with forests, the rest being under either shifting cultivation on hill sides, or permanent cultivation on low grounds. In the hills, the forest consists of a mixed deciduous type, the predominating species being Annogeissus mixed with bamboos, Cleistanthus and soft woods. On the hill-tops a few crooked and stunted Dalbergia latifolia occur. On the slopes where the soil is shallow and poor, inferior species, such as Sterculias Cochlospermum, and Bombax occur. There is a good sprinkling of tamarind trees on some of the hills, which seem to yield a fair crop. At the foot of the hills and in the "lankas" the growth consists generally of Xylia xylocarpa and Terminalia with a few Pterocarpus marsupium. On the stream banks are usually found a few large mango trees, Terminalia arjuna and Bambusa arundanacea.

Citation: Prema Chandra Sekhar, Vasa Padmaja, Balaraju Chandra Mouli, Padal SB. Ethnomedicinal Investigation on Koya Dora Tribes of Rampa Hills, Alluri Sitarama Raju District, Andhra Pradesh, India. Sch Acad J Biosci, 2023 Jul 11(7): 268-271.

Methodology

The approaches and methodologies for ethnomedicinal work, suggested by Jones, (1941), Schultes, (1960, 1962), Jain, (1989) were followed. Emphasis was given mainly on intensive field work in selected tribal habitations. The ethnobotanical information was collected through interviews. discussions and own observations (Jain and Rao, 1997; Jain, 1981). The ethnomedicinal data presented here are the outcome of a series of intensive field studies conducted over a period of one and a half years in 34 interior tribal pockets with good forest cover in the study area.

RESULT AND DISSUCUSSION

During exploration trips, medicinally useful information have been recorded on 60 plant species belonging to 57 genera and 30 families were recorded which are exploited by the tribals for their day to day living (Table 1). The family-wise analysis of ethnomedicinal data revealed that of the 30 families the dominant ones are Caesalpiniaceae represented by 5 species followed by Fabaceae, Asteraceae, Asclepiadaceae and Apocynaceae with 4 species, Rubiaceae, Myrtaceae, Moraceae, Euphorbiaceae and Convolvulaceae with 3species, Solanaceae, Mimosaceae and Araceae with 2 species and remaining 17 families have single species. From the present study it is clearly evident that the local people used trees were 20 species followed by herbs 18, shrubs 11, climbers were 10 and parasites 1 species.

Depending upon the plant part used for medicinal purposes root constitutes the highest 22 species, followed by leaf 12 species, stem bark 8 species, flowers and bark were 3 species each, Seed, Root bark, Whole plant and Latex were each one 2 species and the remaining each one was single species. 60 species reported in the present study are used in curing 29 different ailments/diseases either single or in combination. The following ailments are Acidity, Antifertility, Antiseptic, Aphrodisiac, Bone fracture, Chest pain, Cobra bite, Dysmenorrhoea, Dyspepsia, Earache, Epilepsy, Fever, Headache, Paralysis, Skin diseases, Stomach pain, Abortion, Allergy, Fractures, Gonorrhoea, Leucorrhoea, Anthelmintic, Burns, Jaundice, Rheumatism, Diarrhoea, Dysentery, Boils and Asthma.

S.No	Name of Taxa	Family	Habit	Parts	Ailments
1	Alangium salvifolium	Alangiaceae	Tree	Leaf	Rheumatism
2	Amaranthus spinosus	Amaranthaceae	Herb	Root	Dyspepsia
3	Buchanania lanzan	Anacardiaceae	Tree	Stem bark	Boils
4	Annona squamosa	Annonaceae	Tree	Root	Abortion
5	Alstonia venenata	Apocynaceae	Shrub	Stem bark	Anthelmintic
6	Holarrhena pubescens	Apocynaceae	Shrub	Bark	Asthma
7	Ichnocarpus friutescens	Apocynaceae	Climber	Root	Epilipsy
8	Wrightia tinctoria	Apocynaceae	Tree	Latex	Asthma
9	Amarphophallus paeoniifolius	Araceae	Herb	Corm	Bone fracture
10	Arisaema tortuosum	Araceae	Herb	Tuber	Headache
11	Caryota urens	Arecaceae	Tree	Inflorescence	Aphrodisiac
12	Aristolochia indica	Aristolochiaceae	Climber	Root	Diarrhoea
13	Calotropis gigantea	Asclepiadaceae	Shrub	Root	Stomach pain
14	Gymnema sylvestre	Asclepiadaceae	Climber	Root	Cobrabite
15	Hemidesmus indicus	Asclepiadaceae	Climber	Root	Diarrhoea
16	Tylophora indica	Asclepiadaceae	Climber	Leaf	Asthma
17	Eclipta prostrata	Asteraceae	Herb	Plant	Acidity
18	Elephantopus scaber	Asteraceae	Herb	Root	Anthelmintic
19	Vernonia cinerea	Asteraceae	Herb	Seed	Leucorrhoea
20	Xanthium strumarium	Asteraceae	Herb	Root	Boils
21	Caesalpinia bonduc	Caesalpiniaceae	Shrub	Seed	Abortion
22	Cassia absus	Caesalpiniaceae	Herb	flower	Asthma
23	Cassia alata	Caesalpiniaceae	Herb	flower	Asthma
24	Cassia occidentalis	Caesalpiniaceae	Herb	Root	Anthelmintic
25	Tamarindus indica	Caesalpiniaceae	Tree	Bark	Asthma
26	Capparis zeylanica	Capparidaceae	Shrub	Root bark	Earache
27	Terminalia arjuna	Combretaceae	Tree	Bark	Asthma
28	Argyreia nervosa	Convolvulaceae	Climber	Leaf	Boils

 Table 1: Ethnomedicinal plants used by Koya Tribes of Rampa Hills, Alluri District

Prema Chandra Sekhar et al., Sch Acad J Biosci, Jul, 2023; 11(7): 268-271

S.No	Name of Taxa	Family	Habit	Parts	Ailments
29	Evolvulus alsinoides	Convolvulaceae	Herb	Leaf	Jaundice
30	Ipomoea obscura	Convolvulaceae	Climber	Leaf	Rheumatism
31	Bridelia retusa	Euphorbiaceae	Tree	Stem bark	Chest pain
32	Euphorbia hirta	Euphorbiaceae	Herb	Leaf	Dysentry
33	Jatropha curcas	Euphorbiaceae	Shrub	Latex	Burns
34	Butea monosperma	Fabaceae	Tree	Stem bark	Antifertility
35	Canavalia gladiata	Fabaceae	Climber	Root	Diarrhoea
36	Erythrina suberosa	Fabaceae	Tree	Root	Dysentry
37	Tephrosia hirta	Fabaceae	Herb	Root	Fever
38	Aloe vera	Liliaceae	Tree	Leaf	Boils
39	Viscum articulatum	Loranthaceae	Parasite	Stem	Fractures
40	Woodfordia fruticosa	Lythraceae	Shrub	Flower	Diarrhoea
41	Sida acuta	Malvaceae	Herb	Root	Boils
42	Soymida fbrifuga	Meliaceae	Tree	Root	Dysmenorrhoea
43	Azadirachta indica	Mimosaceae	Tree	Leaf	Allergy
44	Xylia xylocarpa	Mimosaceae	Tree	Root	Gonorrhoea
45	Artocarpus heterophyllus	Moraceae	Tree	Leaf	Skin diseases
46	Ficus benghalensis	Moraceae	Tree	Leaf	Boils
47	Streblus asper	Moraceae	Tree	Root	Rheumatism
48	Eucalyptus globulus	Myrtaceae	Tree	Leaf	Antiseptic
49	Eugenia bracteata	Myrtaceae	Shrub	Root	Dysentry
50	Syzygium cumini	Myrtaceae	Tree	Stem bark	Burns
51	Vanda tassellata	Orchidaceae	Herb	Root	Fractures
52	Vetiveria zizanoides	Poaceae	Herb	Root	Allergy
53	Haldinia cordifolia	Rubiaceae	Tree	Stem bark	Leucorrhoea
54	Ixora pavetta	Rubiaceae	Shrub	Stem bark	Jaundice
55	Tarenna asiatica	Rubiaceae	Shrub	Stem bark	Dysentry
56	Cardiospermum halicacabum	Sapindaceae	Climber	Leaf	Burns
57	Smilax zeylanica	Smilacaceae	Climber	Root	Paralysis
58	Solanum nigrum	Solanaceae	Herb	Whole plant	Gonorrhoea
59	Solanum surattense	Solanaceae	Herb	Root bark	Jaundice
60	Helicteris isora	Sterculiaceae	Shrub	fruit	Dysentry

CONCLUSIONS

The present study was conducted to document the ethnomedicinal plant diversity of Rampa Hills, Alluri Sitaramaraju district of Andhra Pradesh, India as well as to explore the traditional knowledge or belief of these plants used by the village people for their primary health care needs. The new generation is not very much interested in the indigenous methods of treating diseases. They are even not very concern about the importance of these herbal plants and its medicinal value. So it is important to study and record the uses of plants by different tribes and sub-tribes for futures study. Such studies may also provide some information to biochemists and pharmacologists in screening of individual species and in rapid assessing of phyto-constituents for the treatment of various diseases.

Acknowledgements

The authors are thankful to the local people for their cooperation during the study period.

REFERENCES

- Anonymous. (1990). Ethnobiology in India: A Status Report. *Ministry of Environment and Forests*, Govt. of India, New Delhi. Pp.1-68.
- Jain, S.K. (1963a). Studies in Indian Ethnobotany less known uses of fifty common plants from the tribal areas of Madhya Pradesh. *Bull. Bot. Surv. India*, *5*, 223-226.
- Jain, S.K. (1963b). Observations on Ethnobotany of the tribals of Madhya Pradesh. *Vanyajati*, *11*, 177-183.
- Jain, S.K. (1963c). Studies in Indian Ethnobotany Plants used in medicine by the tribals of Madhya Pradesh. *Bull. Reg. Res. Lab., Jammu, 1*, 126-128.
- Jain, S.K. (1964a). The role of a botanist in folklore research. *Folklore*, *5*, 145-150.
- Jain S.K. (1964b). Wild plant foods of the tribals of Bastar. *Khadi Gramodyog*, *10*, 557-561.

- Jain, S.K. (1965a). The medicinal plant-lore of the tribals of the Bastar. *Econ. Bot.*, *19*, 236-250.
- Jain, S.K. (1965b). Wooden musical instruments of the Gonds of Central India. *Ethnomusicology*, *9*, 39-42.
- Jain, S.K. (2000). Global resurgence of ethnomedicobotany-The Indian Scene. J. Trop. Med. Plants, 1, 75-81.
- Jain, S.K., & Mitra, R. (1997). Ethnobotany in India: Retrospect and prospect. In: S.K. Jain (Ed.) *Contribution to Indian Ethnobotany* pp 1-15.
- Singh K. K., Palvi, S. K., & Singh, H. B. (1981). Survey and biological activity of some medicinal plants of Mannanur forest, Andhra Pradesh. *Ind. J. Forestry*, *4*, 115-118.
- Rama Rao, N., Sreekumar, P. V., & Henry, A. N. (1984). Ethnobotanical studies in Andhra Pradesh. Proc. 2nd Annual workshop on MAB Projects. 20-82, DOEn, New Delhi.
- Hemadri, K. (1985). Medicinal plant wealth of Chittoor district, India. *Indian Medicine*, *34*, 13-15.
- Prakasa Rao, K., & Harasreeramulu, S. (1985). Ethnobotany of selected medicinal plants of

Srikakulam district, Andhra Pradesh. Ancient Science Life, 4, 238-244.

- Rama Rao, N., & Henry, A. N. (1996). The Ethnobotany of Eastern Ghats in Andhra Pradesh, India. *Botanical Survey of India*, Calcutta.
- Padal, S. B., Murty, P. P., Rao, D. S., & Venkaiah, M. (2010). Ethnomedicinal plants from Paderu division of Visakhapatnam district, AP, India. *Journal of Phytology*, 2(8).
- Johne, S., Groeger, D., & Hesse. (1941). Alkaloids. 142. New alkaloids from Adhatoda Vasica. Helv. Chem. *Acta*. 54, 826
- Schultes, R.E. (1960). Tapping our heritage of ethnobotanical lore. *Economic Botany*, 14, 257-262.
- Schultes, R. E. (1962). Tapping our heritage of ethnobotanical lore. *Econ. Bot.*, *14*, 257-262.
- Jain, S. K. (1989). Methods and approaches in Ethnobotany, *Society of Ethnobotanists*, Lucknow
- Jain, S.K., & Rao, R.R. (1977). Hand book of Field and Herbarium methods. *Today and Tomorrow publishers*, New Delhi.
- Jain S.K. (1981). Glimpses of Indian Ethnobotany. *Oxford and IBH Publishing* Co, New Delhi, 1-134.