Scholars Academic Journal of Biosciences

Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Journal homepage: <u>https://saspublishers.com</u> **OPEN ACCESS**

Biosciences

Ornamental Flora in Landscaped Urban Areas: The Case of the University of San Pedro (South-West of Côte d'Ivoire)

ASSEH Ebah Estelle^{1*}, N'DRI Konan Ella¹, KOUASSI Koffi Brice Aymar¹, DIOMANDE Souleymane¹, AKE-ASSI Emma Epouse KOUASSI²

¹Department of Agriculture and New Technologies, Training and Research Unit in Agriculture, Fisheries resources and Agro-Industry, University of San Pedro, BPV1800 San Pedro, Côte d'Ivoire

²Botany Laboratory, Training and Research Unit Biosciences, University Felix HOUPHOUËT-BOIGNY, 22 BP 582 Abidjan 22, Côte d'Ivoire

DOI: https://doi.org/10.36347/sajb.2025.v13i01.008

| Received: 21.11.2024 | Accepted: 27.12.2024 | Published: 09.01.2025

*Corresponding author: ASSEH Ebah Estelle

Department of Agriculture and New Technologies, Training and Research Unit in Agriculture, Fisheries resources and Agro-Industry, University of San Pedro, BPV1800 San Pedro, Côte d'Ivoire

Abstract

Original Research Article

In a context where urban green spaces play a crucial role in improving quality of life and ecological sustainability, this study focuses on the ornamental flora of the University of San Pedro (USP), located in the south-west of Côte d'Ivoire. The aim is to characterise this flora and analyse the typology of the landscaped green spaces, reflecting the university's commitment to a sustainable and aesthetic environment. The methodology adopted was based on an itinerant survey of all the university's green spaces, enabling ornamental species to be identified and listed. The data collected was analysed in terms of floristic composition, biological and morphological types, geographical distribution and ornamental uses, using recognised botanical references. The survey identified 52 ornamental species in 48 genera and 31 families, with the Apocynaceae, Euphorbiaceae and Araceae families predominating. Most of the flora is made up of introduced species (86%), mainly of Asian origin, while local species are poorly represented. Shrubs and bushes dominate, with a variety of decorative characteristics such as foliage, flowers and habit. In addition, a near-threatened species on the IUCN red list has been identified, underlining the ecological importance of these areas. These results show the richness and diversity of USP's flora, while highlighting the need to make greater use of indigenous species. The study also highlights the role of university landscaping in promoting biodiversity and creating sustainable, aesthetically pleasing spaces in urban environments.

Keywords Ornamental Flora, Urban Biodiversity, Landscaping, Exotic Species, Sustainable Development.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Ornamental plants, through the beauty of their flowers or foliage, their fruit and their habit, are of aesthetic, economic and cultural interest to the people who use them (Kosh-Komba, 2022). They are used in various ceremonies such as births, weddings, deaths, anniversaries, etc. (Aké-Assi, 1996). They also help to improve the living environment and health of urban populations (Fall and Fall, 2001); (Aké-Assi, 2010); (Duchemin *et al.*, 2010); (Radji *et al.*, 2010), (Regnier, 2014). Nowadays, working with ornamental plants has become a basic reference for landscape architecture and urban planning. Indeed, there is great interest in the benefits of vegetation in the urban environment, as it plays a very significant role in the sustainability of urban space and sustainable development in general (Touirat, 2016). Given the ecological, socio-economic and cultural roles that plants play in a space (SEGUENA et al., 2010), the University of San-Pedro (USP) was quick to embrace nature by including vegetated spaces in its development plan and strategies. However, the heavy human intervention in the creation of green spaces in urban establishments can influence the composition and diversity of the flora present (Kouadio, 2016). Moreover, to date few studies have focused on the ornamental species used in landscaped university spaces and the resulting ornamental quality. It is therefore necessary to carry out a post-development assessment of the ornamental plant potential of developed spaces. It is in this context that this study was initiated. Its aim is to assess the ornamental plant composition of the green spaces at the University of San Pedro.

Citation: ASSEH Ebah Estelle, N'DRI Konan Ella, KOUASSI Koffi Brice Aymar, DIOMANDE Souleymane, AKE-ASSI Emma Epouse KOUASSI. Ornamental Flora in Landscaped Urban Areas: The Case of the University of San Pedro (South-West of Côte d'Ivoire). Sch Acad J Biosci, 2025 Jan 13(1): 63-74.

MATERIEL AND METHODS

Description of the Study Sites

The University of San-Pedro (USP) is located in the town of San-Pedro in the Bas-Sassandra district of south-west Côte d'Ivoire at latitude 4° 44′ 41″ north and longitude 6° 38′ 23″ west (Figure 1). With a surface area of 302 ha, this university opened its doors on 01 October 2021 with the mission of training students in the fields of Agriculture, Marine Sciences and Hospitality. Originally covered by a large primary forest characterised by immense expanses of tall green trees, the lush vegetation of the town of San-Pedro is today represented by the classified forests of Monogaga; Rapides Grah; and Haute Dodo and the TAÏ NATIONAL PARK (Kouassi, 2010). San Pedro's climate is subequatorial with two rainy seasons and two dry seasons (ANADER, 2017). Average rainfall in the region is 1,530 mm per year, spread over an average of 111 days a year. The Department of San-Pedro is watered by two main rivers: the San-Pedro and the Néro. The relief is a succession of lowlands, plains, low hills and sacred mountains. The region's soils are ferruginous and subject to heavy leaching due to high rainfall.

Figure 1: Geolocation map of the University of San Pedro

DATA COLLECTION

In this study, the roving survey method was adopted for data collection (AKE ASSI, 1984). This consisted of walking the landscaped university area in all directions, noting all the ornamental plant species encountered. The species encountered were identified and listed. Fertile samples were collected in order to build up a herbarium for verifying direct determinations. These verifications were made using the work of Aké-Assi (2002), Porter *et al.*, (2004), Aké-Assi *et al.*, (2010) and Aké-Assi E. (2015) and by comparison with specimens in the Herbarium of the Centre National de Floristique (CNF). The nomenclature used in this study is that of the phylogenetic classification of the Angiosperm Phylogeny Group (APG) in its latest version known as (APG IV 2016).

Analysis of the Data

The analysis of the data collected consisted in determining from the list obtained the number of species, genera and families of flora recorded during the inventories and calculating the corresponding percentages. The species were classified according to biological and morphological types, phytogeographical distribution, special status, decorative characteristics and

© 2025 Scholars Academic Journal of Biosciences | Published by SAS Publishers, India

their spatial position (mode of use) in the university landscape. For these various classifications, the work of (Raunkiaer 1934), (Aké Assi 1984), and (Aké Assi 2001; 2002; 2015), (Dieng *et al.*, 2019), (Kosh-Komba *et al.*, 2021), (UICN 2024) served as a basis. Ornamental plant diversity was expressed using generic diversity and family indices.

The generic diversity index (IDg) or generic coefficient (Cg) (1) is given by the ratio between the number of genera and the number of species: IDg = G/E with G= number of genera; E= number of species.

The family diversity index (IDf) or family diversity coefficient (Cf) (2) is given by the ratio between the number of families and the number of species:

IDf = E/F where F=number of families; E=number of species.

The more diverse a flora is, the fewer large genera and multi-specific families it contains. In other words, the flora is diverse when the index of families making up the flora is generally low. High values of this coefficient characterise impoverished flora (Aké-Assi *et al.*, 2020).

RESULTS

Typology of Eco-Landscaped Areas

During the floristic inventory, two types of ecolandscaped areas were observed. These were open spaces and semi-vegetated surfaces, represented in our study by honeycomb constructions. In the case of open spaces, the topsoil is directly linked to the natural soil strata. They are represented by areas with ground cover and other types of vegetation, either shrubs, trees or herbaceous plants, areas with ground cover only, and areas with decorative gravel surrounding a few plants (Figure 2).

Figure 2: Illustration of open-ground areas with ground cover and other types of vegetation (a), with ground cover only (b) and with decorative gravel surrounding a few plants (c)

In the case of honeycomb structures, there is either grass or a few plants. In these systems, the topsoil

is not in direct contact with the natural soil strata and plant growth is limited (Figure 3).

Figure 3: Overview of a semi-vegetated surface showing cells being revegetated

Flora Richness

The floristic inventory identified a total of 52 ornamental species, divided into 48 genera and belonging to 31 families. Table 1 provides a summary,

indicating for each species its biological type (TB), morphological type (TM), phytogeographical distribution (RG) and ecological status. With the exception of the genera Ixora and Terminalia, which

© 2025 Scholars Academic Journal of Biosciences | Published by SAS Publishers, India

Biological Type

Analysis of figure 4 shows that the ornamental flora recorded is mainly represented by Nanophanerophytes, Macrophanerophytes and Mesophanerophytes, with 17 species (32.70%), 16 species (30.77%) and 11 species (21.15%) respectively. The other biological types are poorly represented, with 4 species (7.7%) for Chamephytes, 3 species (5.77%) for Geophytes and 1 species (1.92%) for Therophytes.

Morphological Type

The morphological spectrum of this flora is dominated by shrubs, which account for 48.08% or 25 species overall. Trees, representing 26.92% or 14 species, and herbaceous plants, evaluated at 25% or 13 species, are not negligible in this flora (Figure 5).

Tablaan 1. Sum	amount of annoncented	anasies found on	the landsconed	aite of the T	Interaction of C	on Doda
Tableau 1: Sun	nmary of ornamental	species iound on	the landscaped	she of the U	inversity of S	an Pearo

N°	Species	Family	ТВ	ТМ	Phytogeographical distribution	Ornamental organ			
1	Acacia mangium Willd.	Fabaceae	mP	а	Australia and South- East Asia	appearence ornamental			
2	Acalypha Wilkesiana Mull. Arg.	Euphorbiaceae	np	b	oceanie	decorative foliage			
3	Adenium obesum Forsk.) Roem. Et Schult.	Apocynaceae	np	b	Africa	Organs combined of	Organs combined decorative		
4	Adonidia merrillii (Becc.) Becc	Araceae	mp	a	Philippines- Malaysia	decorative foliage			
5	Agave angustifolia Haw.	Agavaceae	Ch	h	Mexico	appearence orname	ental		
6	Agave sisalana Perrine	Agavaceae	Ch	h	Mexico	appearence orname	ental		
7	Aloe vera	Xanthorrhoeaceae	np	b	South Africa, Madagascar, Cape Verde	appearence orname	ental		
8	Alternanthera brasiliensis (L.) Kuntze, 1891	Amaranthaceae	np	h	Brazil	decorative foliage			
9	Allamanda cathartica L.	Apocynaceae	mp	b	Am	Decorative floweri	ng		
10	Annona muricata L.	Annonaceae	mp	b	Pan	appearence orname	ental		
11	Axonopus compressus (Sw.) P.Beauv.	Poaceae	G	h	Africa	decorative foliage			
12	Bambusa multiplex (Lour.) Raeusch.	Poaceae	mp	h	South-East Asia	decorative foliage			
13	Barleria Lupulina Lindl.	Acanthaceae	mp	b	Madagascar	Decorative flowering			
14	Bougainvillea glabra Choisy.	Nyctaginaceae	mp	b	Brazil	Plante à floraison decoratif			
15	Breynia disticha J.R.Forst.& G.Forst	Pyllanthaceae	np	b	Pacific Islands	Decorative flowering			
16	Caladium bicolor (Aiton) Vent	Araceae	G	h	Brazil	decorative foliage			
17	Carica papaya L.	Caricaceae	mp	b	Pan	appearence ornamental			
18	Catharanthus roseus (L.) G. Don	Apocynaceae	np	b	Madagascar	Decorative floweri	ng		
19	Codiaeum variegatum (L,) Rumph. E	Euphorbiaceae	np	b	Malaysia Oceania	decorative foliage			
20	Cordyline fruticosa (L.) A.Chev.	Dracaenaceae	mp	b	India	decorative foliage			
21	Cocos nucifera L.	Arecaceae	MP	а	Malaysia	appearence orname	ental		
22	Chrysopogon zizanoides (L.) Roberty	Poaceae	np	h	India	decorative foliage			
23	Delonix regia (Bojer ex Hook.) Raf.	Fabaceae	mp	а	Madagascar	Decorative floweri	ng		
24	Dieffenbachia picta (jacq.) schott	Araceae	np	b	Central America	decorative foliage			
25	Duranta erecta L.	Verbenaceae	np	b	Pt	decorative foliage			
26	Eucalyptus globulus Labill.	Myrtaceae	mP	а	Australia	appearence ornamental		appearence ornamental	
27	Eupatorium capillifolium	Asteraceae	np	h	United states	decorative foliage			
28	Euphorbia milii Des. Moul.	Euphorbiaceae	Ch	b	Madagascar	Organs combined of	lecorative		
29	Euphorbia tirucalli L.	Euphorbiaceae	np	b	Malaysia	Plant appearence o	rnamental		
30	Ficus benjamina L.	Moraceae	mP	а	Brazil	decorative foliage			
31	Heliconia psittacorum L.f.	Heliconiaceae	mp	h	Tropical Asia	Decorative floweri	ng		
32	Hibiscus rosa-sinensis	Malvaceae	np	h	China and India	Decorative floweri	ng		
33	Ixora chinensis Lam.	Rubiaceae	np	b	China and India	Decorative floweri	ng		
34	Ixora coccinea L.	Rubiaceae	np	b	West Indies	Decorative floweri	ng		
© 20	© 2025 Scholars Academic Journal of Biosciences Published by SAS Publishers, India 66								

Asseh Ebah Estelle et al, Sch Acad J Biosci, Jan, 2025; 13(1): 63-74

35	Jatropha integerrima Jacq.	Euphorbiaceae	mp	b	As/ Tropical Asia,	Decorative flowering
36	Justicia gendarusa	Acanthaceae	np	h	Mascarene Islands	decorative foliage
37	Kigelia africana (Lam.) Benth.	Bignoniaceae	Мр	а	Tropical Africa	Organs combined decorative
38	Livistona chinensis (Jacq) R.Br.	Araceae	Мр	а	Asia	decorative foliage
	Ex Mart.		_			_
39	Mangifera indica L.	Anacardiaceae	mP	а	Asia	Organs combined decorative
40	Musa paradisiaca L.	Musaceae	G	b	Tropical Asia	Organs combined decorative
41	Nerium oleander L.	Apocynaceae	mp	b	Mediterranean	Decorative flowering
					region	
42	Plumeria alba L.	Apocynaceae	mp	а	Tropical America	Organs combined decorative
43	Ravenala madagascariensis	Strelitziaceae	mP	а	Madagascar	Organs combined decorative
	Adans.					
44	Rauvolfia vomitoria Afzel.	Apocynaceae	mp	b	Africa/ Ivory Coast	appearence ornamental
45	Tectona grandis L.f.	Lamiaceae	mP	а	India	appearence ornamental
46	Terminalia catappa L.	Combretaceae	mp	а	India	appearence ornamental
47	Terminalia mantaly H.Perrier	Combretaceae	mp	а	Madagascar	appearence ornamental
48	Theobroma cacao L.	Malvaceae	mp	b	Amazonia	appearence ornamental
49	Thunbergia erecta(Benth.)	Acanthaceae	np	b	West Africa	Decorative flowering
	T.Anderson					
50	Turnera ulmifolia L.	Passifloraceae	Th	h	Tropical America	Organs combined decorative
51	Tradescantia spathacea Sw.	Commelinaceae	Ch	h	America	decorative foliage
52	Yucca aloifolia L.	Asparagaceae	mp	b	Tropical America	appearence ornamental

TB : biological type; TM: Morphological type; a : tree; b: schrubs; h: grass ; Ch:; G:; mp:; Th:; Mp

Family	Species number	Proportion (%)
Apocynaceae	6	11,53
Euphorbiaceae	5	9,61
Araceae	4	7,69
Acanthaceae	3	5,76
Poaceae	3	5,76
Agavaceae	2	3.84
Combretaceae	2	3.84
Fabaceae	2	3.84
Malvaceae	2	3.84
Rubiaceae	2	3.84
Amaranthaceae	1	1.92
Anacardiaceae	1	1,92
Annonaceae	1	1,92
Arecaceae	1	1,92
Asparagaceae	1	1,92
Asteraceae	1	1,92
Bignoniaceae	1	1,92
Caricaceae	1	1,92
Commelinaceae	1	1,92
Dracaenaceae	1	1,92
Heliconiaceae	1	1,92
Lamiaceae	1	1,92
Moraceae	1	1,92
Musaceae	1	1,92
Myrtaceae		
Nyctaginaceae		
Passifloraceae		
Pyllanthaceae		
Strelitziaceae		
Verbenaceae		
Xanthorrhoeaceae		
Total	52	100

Table 2: Distribution of species by family

Figure 4: Histogram of the distribution of ornamental species surveyed according to biological type

Figure 5: Histogram of the distribution of ornamental species surveyed according to morphological type

Origin of Ornamental Plants in the USP

The distribution of species according to phytogeographical affinities showed that introduced species are the most numerous with 45 species or 86% (Figure 6). Species belonging to the Guinéo-Congolaise (GC) region, characteristic of the dense forests of Côte d'Ivoire, Guinéo-Congolaise-Sudano-Zambézian (GC-SZ) link species generally found in the shrubby savannahs of Côte d'Ivoire and species in the SudanoZambézian (SZ) region, naturally located in the northern part of the country, are the least represented, with respectively 4 species (8%), 2 species (4%) and 1 species (2%). Among the introduced species, 36% or 17 species of the USP ornamental flora come from Asia, 30% or 14 species from America, 19% or 9 species from Africa, 11% or 5 species from Oceania and 4% or 2 species from Europe (Figure 7).

Figure 6: Phytogeographical distribution spectrum of species at national level

Figure 7: Distribution spectrum of introduced species by continent of origin

Special Status of the Ornamental Species Recorded Of the ornamental plants recorded on the University of San Pedro site, *Adonidia merrillii* (Becc.) Becc (Araceae) is the only species listed by the IUCN as Near Threatened (NT), Figure 8.

Figure 8: View of a foot of Adonidia merrillii (Becc.) Becc. (Arecaceae)

Flora Diversity

Overall, genus indices, like family indices, are low (Table 3). The five families with the highest diversity indices are, in descending order, the Apocynaceae, Euphorbiaceae, Araceae, Acanthaceae and Poaceae.

Table 3:	Genus and	family d	liversity	indices fo	r the	ornamental	l flora o	of the	University	of San	Pedro
I able 5.	Ochus ana	ranny c	any croney	marces 10	I UIIC	ormannenta	i nora (n une	omversity	or built	I curo

Family	Species number	Genus number	Generic diversity index (IDg)	Family diversity inc	lex
Apocynaceae	6	6	0,11538462	0,19354839	
Euphorbiaceae	5	5	0,09615385	0,16129032	
Araceae	4	4	0,07692308	0,12903226	
Acanthaceae	3	3	0,05769231	0,09677419	
Poaceae	3	3	0,05769231	0,09677419	
Agavaceae	2	2	0,03846154	0,06451613	
Combretaceae	2	2	0,03846154	0,06451613	
Fabaceae	2	2	0,03846154	0,06451613	
Malvaceae	2	2	0,03846154	0,06451613	
Rubiaceae	2	2	0,03846154	0,06451613	
Amaranthaceae	1	1	0,01923077	0,03225806	
Anacardiaceae	1	1	0,01923077	0,03225806	
Annonaceae	1	1	0,01923077	0,03225806	
Arecaceae	1	1	0,01923077	0,03225806	
Asparagaceae	1	1	0,01923077	0,03225806	
Asteraceae	1	1	0,01923077	0,03225806	
Bignoniaceae	1	1	0,01923077	0,03225806	
Caricaceae	1	1	0,01923077	0,03225806	
Commelinaceae	1	1	0,01923077	0,03225806	
Dracaenaceae	1	1	0,01923077	0,03225806	
Heliconiaceae	1	1	0,01923077	0,03225806	
Lamiaceae	1	1	0,01923077	0,03225806	
Moraceae	1	1	0,01923077	0,03225806	
5 Scholars Academic Jo	ournal of Biosciences]	Published by SAS Pu	blishers, India		

Asseh Ebah Estelle et al, Sch Acad J Biosci, Jan, 2025; 13(1): 63-74

Family	Species number	Genus number	Generic diversity index (IDg)	Family diversity index
Musaceae	1	1	0,01923077	0,03225806
Myrtaceae	1	1	0,01923077	0,03225806
Nyctaginaceae	1	1	0,01923077	0,03225806
Passifloraceae	1	1	0,01923077	0,03225806
Pyllanthaceae	1	1	0,01923077	0,03225806
Strelitziaceae	1	1	0,01923077	0,03225806
Verbenaceae	1	1	0,01923077	0,03225806
Xanthorrhoeaceae	1	1	0,01923077	0,03225806

Decorative Organs

The species recorded can be divided into four groups according to decorative type. These are: the flower, the decorative appearance or habit, the leaves and the combination of decorative organs (Figure 9). Leaves (32.70%) are the most common decorative feature among the species recorded. This is followed by species whose decorative character is the appearance or habit (28.85%) and the flower (23.07%). The combination of decorative organs is the least frequently observed characteristic (15.38%), Figure 10.

Arrangement of Ornamental Plants on the University of San Pedro Site

The ornamental flora of the University of San Pedro are divided into five categories according to their spatial arrangement. We distinguish between plants grown in isolation (30 species or 57.70%), plants in border or path alignments (8 species or 15.38%), plants grown in clumps (8 species or 15.38%), plants grown in living hedges (3 species or 5.77%) and ground cover plants or lawns (3 species or 5.77%) (Figure 11). Isolated plants include those cultivated for the beauty of their

flowers: Hibiscus rosa-sinensis, for the density and beauty of their foliage: Yucca alnifolia for the beauty of their general appearance: Ravenala madagascariensis Adans and for their fruit: Theobroma cacao (Figure 12). Alignment plants are grown for their general appearance: Acacia mangium Willd., the beauty of their flowers: Euphorbia milii and their leaves: Cordyline fruticosa (Figure 13). Tufted plants are generally grown for the beauty of their foliage: Breynia disticha, for the beauty of their flowering: Heliconia psittacorum, Turnera ulmifolia (Figure 14). Acalypha Wilkesiana, Ixora chinensis and Ixora coccinea have been grown as living hedges for the beauty of their foliage and flowers respectively (Figure 15). Axonopus compressus, Chrysopogon zizanoides and Tradescantia spathacea were grown as ground cover plants (Figure 16).

Other Uses of Ornamental Plants at the University of San Pedro

Several of the species recorded, apart from their predominant ornamental character, have various other uses. Table 4 summarises the other uses and the organs of these plants involved in these uses.

Figure 9: Some ornamental species according to decorative organ, d and e: decorative flowering; f and g: general decorative appearance; h and i: decorative foliage; i and j: combination of decorative organs (foliage and fruit)

© 2025 Scholars Academic Journal of Biosciences | Published by SAS Publishers, India

Figure 10: Histogram of species distribution according to decorative organs

Figure 11: Histogram of the distribution of ornamental plants according to their layout in the landscaped area of the University of San Pedro

Figure 12: Some ornamental species in isolation planting

Figure 13: View of some ornamental species in alignment planting

Figure 14: View of some ornamental species in tufts planting

Figure 15: View of some ornamental species in hedge planting

Figure 16: View of some ornamental land cover species

Asseh Ebah Estelle et al, Sch Acad J Biosci, Jan, 2025; 13(1): 63-74

1 able 4: various uses of ornamental plants from the University of San Pedro								
Species	Application	Part of the plant used						
Allamanda cathartica	Medicinal	Latex, leaves						
Aloe vera	Medicinal; cosmetic and dermatological	Pulp or gel; latex						
Agave sisalana Perrine	Textile	Textile fibre extracted from leaves						
Annona muricata L.	food	Fruit						
Carica papaya L.	food; médicinal	Fruit; leaves						
Catharanthus roseus (L.) G. Don	Médicinal	Dried leaves and aerial parts						
Cocos nucifera L.	food; cosmetics	Fruit						
Mangifera indica L.	food, médicinal	Fruit, barks						
Musa paradisiaca L.	food; cosmetics	Fruit, roots						
Nerium oleander	Médicinal; cosmetica and dermatological	Leaves, barks, flower,						
Theobroma cacao	food	Fruit						
Tectona grandis L.f.	Médicinal, timber	Leaves						

T-11. 4. W. • **T**T • • **D** 1

DISCUSSION

The floristic inventory carried out at the University of San Pedro identified 52 ornamental species, divided into 48 genera and belonging to 31 families. This relatively high number testifies to the wealth of ornamental flora on the site. Moreover, this flora is highly diversified, with low values for genus and family indices.

dominance The of Apocynaceae, macrophanerophytes and nanophanerophytes, shrubs and bushes can be explained by the fact that these species adapt well to the environmental conditions of the study area. Indeed, the relative importance of the biological and morphological types of a flora are strongly linked to the characteristics of the study environment (SAIDOU et al., 2021). Furthermore, the dominance of species belonging to these biological and morphological types and families is strongly linked to the selection of species by man. Indeed, the work of (Kouadio et al., 2016) has shown that the composition of urban ornamental flora is strongly impacted by human will. This observation is strongly perceptible in our study, since 41 species representing 86% of the ornamental flora surveyed are introduced or so-called exotic species, most of which are of Asian origin. The low representation of African species, particularly those from Côte d'Ivoire, reflects the low value placed on local or indigenous ornamental species, as highlighted by the work of (Aké-Assi, 2015). The presence of a species on the IUCN red list in the Near Threatened category proves that the University of San Pedro, through its green spaces, is contributing to the preservation of biodiversity. In addition, the diversification of eco-developed spaces offers a variety of environments conducive to the development of biodiversity and increases the ecological potential of the developed environment (IBGE, 2010). It is therefore important to encourage the design, implementation and landscape enhancement of university structures. The diversification of the decorative characteristics and arrangement of the species observed is a factor that favours the development of the attractiveness and beauty of the environment. Indeed, the aesthetic character of a

site is the result of the layout and arrangement of the species chosen (Kouadio et al., 2016).

CONCLUSION

The floristic inventory carried out at the University of San Pedro shows a rich and diverse ornamental flora, with 52 species divided into 48 genera and 31 families. This variety reflects both the institution's involvement in preserving and embellishing the environment and the strong influence of exotic species (86%), particularly Asian species (36%), in the development of green spaces. Analysis of the different biological, morphological and decorative types reveals that species with decorative foliage and habit are the most predominant, adapted to local conditions and carefully chosen for their aesthetic and ecological value. The existence of an almost endangered species on the IUCN red list also testifies to the importance of these green spaces for biodiversity. The study highlights the importance of enhancing the use of indigenous species to integrate local flora more harmoniously, while continuing to promote diversified and aesthetically pleasing landscaping. These efforts will help to make university spaces models of sustainability and attractiveness in the Ivorian urban landscape.

REFERENCES

- Aké Assi, E. (2015). Plantes à potentialité décorative de la flore du Sud de la Côte d'Ivoire : études taxinomique, ethnobotanique et essai de domestication de Thunbergia atacorensis Akoegninou & Lisowski (Acanthaceae), une espèce nouvellement introduite. Thèse de Doctorat, UFR Bios (APG IV 2016)
- Aké Assi, E., Adou, Y. C.Y., Ipou Ipou, J., Neuba, D. F., Aké Assi, L., & Traoré, D. (2010). Représentations des plantes ornementales pour les populations d'Abidjan et San Pedro, en Côte d'Ivoire. In : X. van der Burgt, J. van der Maesen & J.-M. Onana (eds), Systématique et Conservation des Plantes Africaines, Royal Botanic Gardens Kew, 289-296.
- Aké Assi, L. (2001). Flore de la Côte d'Ivoire 1, catalogue, systématique, biogéographie et Écologie.

Genève, Suisse : Conservatoire et jardin Botanique de Genève ; *Boissiera 57*, 396.

- Aké Assi, L. (2002). Flore de la Côte d'Ivoire 2, catalogue, systématique, biogéographie et Écologie. Genève, Suisse : *Conservatoire et Jardin Botanique de Genève, Boisseria, 58*, 441.
- Aké-Assi, A.E. (1996). Contribution à l'étude des plantes ornementales cultivées dans la région d'Abidjan (Côte d'Ivoire). Diplôme d'Etudes Approfondies (D.E.A.) d'Ecologie Tropicale (Option: Végétale), Faculté des Sciences et Techniques, Université de Cocody, Abidjan, 159.
- Aké-Assi, E., Kouassi, A. F., & N'Goran, B. K. (2020). Contribution à l'étude des plantes ornementales spontanées à usage alimentaire du sud de la Côte d'Ivoire. Am. J. innov. res. appl. Sci, 10(3), 130-138.
- Aké-Assi, L. (1984). Flore de la Côte-d'Ivoire : étude descriptive et biogéographique, avec quelques notes ethnobotaniques. Doctorat d'État, F.A.S.T., *Université d'Abidjan, Côte d'Ivoire*, 1206.
- APG VI (Angiosperm Phylogeny Group) (2016). Classification of the orders and families of flowering plants. *Botanical Journal of the Linnean Society*, *31*(2), 71-80.
- Contacts Fall, S. T., & Fall, A. S. (2001). Cités horticoles en sursis ? L'agriculture urbaine dans les grandes Niayes du Sénégal. Ottawa : CRDI, 140.
- Dieng, B., Mbaye, M. S., Mballo, R., Diouf, M., Diouf, J., Diouf, N., Gueye, F. K., KA S. L., SYDIBE M., Camara, A. A. &Noba, K. (2019). Caractérisation de la flore ornementale de la région de Dakar (Sénégal). J. Appl. Biosci, 138, 14029-14041.
- Duchemin, E., Wegmuller, F., & Legault, A. M. (2010). «Agriculture urbaine: un outil multidimensionnel pour le développement des quartiers ». VertigO - la revue électronique en sciences de l'environnement, 10(2). [En ligne], URL

: http://vertigo.revues.org/10436, DOI : 10.4000/vertigo.10436

- IBGE (2010). Maximiser la productivite ecologique : Renforcer la biodiversité sur chaque parcelle urbaine en rendant toute surface, bâtie ou non, riche en espèces végétales et animales. Bruxelles Environnement, 30.
- IUCN. (2024). The IUCN Red List of Threatened Species. Version 2024-2. https://www.iucnredlist.org
- Kosh-Komba, E. (2022). La flore horticole et ornementale de Centrafrique : quelques usages endogènes. Editions universitaires europeennes 120.
- Kouadio, Y. J. C., Vroh, B. T. A., Bi, Z. B. G., Yao, C. Y. A., & N'Guessan, K. E. (2016). Évaluation de la diversité et estimation de la biomasse des arbres d'alignement des communes du Plateau et de Cocody (Abidjan-Côte d'Ivoire). *Journal of Applied Biosciences*, 97, 9141-9151.
- Radji, R., Kokou, K., & Akpagana, K. (2010). Étude diagnostique de la flore ornementale togolaise Laboratoire de Botanique et Ecologie Végétale, Faculté des Sciences, Université de Lomé, BP : 1515, Lomé, TOGO. Journal of Biological and Chemical Sciences, 4(2), 491-508.
- Raunkier, C. (1934). *The life forms of plants and statistical plant of geography*, Oxford Londres, Angleterre, 632.
- Regnier, E. (2014). L'Agriculture urbaine dans la ville Africaine.
- Saidou, O., Mouctari, O. M. M., & Douma S. (2021). Caractérisation de la flore d'un parcours aride : cas de la station sahélienne expérimentale de Toukounous, Niger. *Rev. Ivoir. Sci. Technol, 38*, 55 76.
- Seguena, F., Soro, K., Fofana, H., & Traore, D., (2010). Le Jardin Botanique de Bingerville en Côte D'Ivoire. *European Journal of Scientific Research*, 46(4), 627-642.