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Abstract  Original Research Article 
 

Lipid-based nanoparticles (LNPs) have rapidly advanced as adaptable platforms for delivering therapeutic agents with 

high specificity and temporal precision. Their modular nature enables fine-tuned control over release profiles, making 

them ideal candidates for treating complex illnesses such as cancers and genetic anomalies. This review proposes a novel 

conceptual framework—termed the Four-Domain Model—which systematically examines LNP performance across 

four programmable domains: Architecture, Interface, Payload, and Dispersal. Each domain is explored in light of its 

chemical tunability, physical behavior, and potential for molecular customization. The model facilitates a comprehensive 

understanding of LNP interaction with biological environments from formulation to site-specific drug release. The role 

of kinetic parameters and thermodynamic principles in delivery mechanisms is also critically analyzed. Beyond 

theoretical design, the article addresses practical hurdles, including manufacturing consistency, upscaling challenges, 

and regulatory compliance, which collectively influence clinical adoption. Consideration is also given to patient-

centered aspects such as optimal dosing schemes, administration methods, and potential side effects. The review further 

explores alternative delivery routes, notably intranasal and intravenous pathways, evaluating their efficiency and 

adaptability. A detailed comparison between synthetic LNPs and naturally occurring exosomes is included, highlighting 

differences in bioavailability, safety, and therapeutic targeting. Altogether, this review envisions the progression of LNPs 

from synthetic constructs to intelligent, bio-integrative systems capable of maximizing therapeutic efficacy while 

minimizing off-target interactions. 

Keywords: Programmable, nanoparticles, lipid-based carriers, molecular customization, therapeutic targeting, 

biocompatibility, controlled release, exosome comparison, alternative administration. 
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
author and source are credited. 

 

1. INTRODUCTION 
The development of advanced therapeutic 

delivery platforms represents one of the most dynamic 

frontiers in modern medicine. Traditional 

pharmacological approaches, although foundational, are 

often constrained by issues such as systemic toxicity, 

rapid degradation, poor bioavailability, and lack of site-

specific accumulation. In contrast, nanomedicine has 

emerged as a revolutionary discipline, capable of 

transforming drug delivery into a programmable, precise, 

and controlled process by leveraging nanoscale systems 

that respond to physical and molecular cues. Among 

these, lipid-based nanoparticles (LNPs), polymeric 

nanoparticles, dendrimers, micelles, and natural 

exosomes have become leading candidates for the 

intelligent transport of therapeutic agents across 
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physiological barriers.[1] Despite their promise, the 

clinical success of nanoparticle-based on drug carriers 

has been modest, largely limited to formulations such as 

liposomal doxorubicin and mRNA-LNP COVID-19 

vaccines. The broader application of such platforms 

remains hampered by a series of interrelated 

challenges—inefficient encapsulation of diverse drug 

cargos, uncontrolled release kinetics, rapid clearance 

from circulation, immune recognition, and difficulty 

achieving tissue-specific targeting. This has triggered a 

paradigm shift in nanoparticle engineering—from 

passive carriers to highly optimized, smart delivery 

systems engineered at the chemical, physical, and 

molecular levels.[2] 

 

This research focuses on the design and 

validation of intelligent nanoparticle platforms, 

developed through integrative principles of chemical 

composition, structural design, and molecular targeting. 

Our approach is distinguished by a Four-Domain Design 

Model that simultaneously optimizes (i) nanoparticle 

architecture, (ii) surface interface properties, (iii) 

payload loading strategies, and (iv) dispersal 

mechanisms. Unlike conventional methods that treat 

formulation as a fixed process, this model allows for 

adaptive customization of the nanoparticle’s physical 

and chemical behavior based on its therapeutic objective. 

[3] m.[4] 

 

Table 1: Experimental Innovations in Smart Nanoparticle Delivery Systems 

Nanoparticle 

Type 

Key 

Modification 

Therapeutic 

Payload 

Outcome (In vivo/In 

vitro) 

Advantage Reference 

Lipid-based 

LNP 

pH-sensitive 

linker + folate 

ligand 

Doxorubicin Tumor regression >80% 

in xenograft mice; 

triggered release in 

acidic endosomes 

Enhanced tumor 

targeting; reduced 

systemic toxicity 

[5] 

PEGylated 

LNP 

Tunable PEG 

surface density 

siRNA Circulation half-life 

increased 2.3×; hepatic 

clearance reduced by 

~40% 

Improved 

pharmacokinetics and 

delivery efficiency 

[6] 

Polymeric NP Glucose-

responsive 

gatekeepers 

Insulin Glucose-threshold 

release mimicking 

pancreatic behavior; 

maintained insulin 

levels in diabetic rats 

Biomimetic controlled 

delivery 

[7] 

Exosome-

mimetic NP 

Tetraspanin-

engineered 

exosomal 

proteins 

miRNA >65% BBB penetration; 

targeted neuro-delivery 

confirmed via imaging 

Natural tropism; brain-

targeted therapy 

[8] 

 

The data outlined in Table 1 illustrates how 

distinct design modifications at the chemical and 

structural level result in substantially different 

pharmacokinetic and pharmacodynamic outcomes. Each 

study validates a different domain of the nanoparticle 

architecture—from the surface interface to internal 

responsiveness supporting our core thesis: Precision 

drug delivery requires multi-dimensional nanoparticle 

design, not single-feature optimization. 

 

From a physical chemistry perspective, the 

behavior of nanoparticles in biological systems is 

governed by a complex interplay of thermodynamics 

(e.g., encapsulation energy, binding affinity) and kinetic 

parameters (e.g., release rate constants, circulation half-

lives). Innovations in lipid polymorphism, surface charge 

modulation, and ligand-functionalization now enable 

unprecedented control over nanoparticle behavior in 

vivo. [10-15] For instance, changes in the molar ratio of 

ionizable lipids and cholesterol can dramatically 

influence membrane fluidity and fusion potential, 

thereby altering intracellular release kinetics. Moreover, 

the structural and molecular design of nanoparticles also 

intersects with immune modulation. One of the persistent 

challenges in nanoparticle therapeutics is the rapid 

clearance of non-self particles by macrophages and 

mononuclear phagocyte systems. By mimicking natural 

exosomal markers—such as CD47 or tetraspanins—

engineered nanoparticles can achieve a “stealth 

phenotype,” reducing phagocytic uptake and improving 

systemic residence time. A study by Rao et al., (2022) 

confirmed that CD47-coated nanoparticles had 3× longer 

half-life compared to non-coated counterparts, with 

reduced pro-inflammatory cytokine response in vivo. To 

overcome the complex barriers of in vivo therapeutic 

delivery, we propose a modular framework — the Four-

Domain Model — that deciphers the functional 

architecture of next-generation nanoparticles. This 

paradigm partitions nanoparticle behavior into four 

interrelated domains: Architecture, Interface, Payload, 

and Dispersal.[16] 

 

https://doi.org/10.1080/10717544.2021.1944398
https://doi.org/10.1177/15593258211025353
https://doi.org/10.1038/s41578-021-00358-0
https://doi.org/10.1038/s41565-020-0632-1
https://doi.org/10.1038/mt.2013.57
https://doi.org/10.1016/j.ymthe.2018.02.017
https://doi.org/10.1126/sciadv.abc2315
https://doi.org/10.1021/acsnano.5b03401
https://doi.org/10.1021/acsnano.7b06140
https://doi.org/10.1016/j.ijpharm.2021.120586
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Figure 1: A unified Four-Domain Model illustrating the structural and functional blueprint for smart therapeutic 

nanoparticles [16] 

 

Each domain encapsulates distinct molecular 

and physicochemical attributes that determine 

nanoparticle fate and functionality. The Architecture 

Domain includes intrinsic factors such as composition, 

size, shape, and stealth coatings like PEGylation, all of 

which influence systemic circulation and mechanical 

stability. The Interface Domain refers to surface 

chemistry and charge, determining the nanoparticle's 

interactions with immune cells, serum proteins, and 

target tissues. The Payload Domain focuses on the 

internal cargo — whether small molecules, nucleic acids, 

or peptides — and the mechanisms for loading, 

protection, and triggered release. Finally, the Dispersal 

Domain governs biodistribution, encapsulation 

efficiency, stability, and clearance from the body. [17-

20] 

 

This domain-based classification enables 

programmable engineering of nanoparticles tailored to 

specific therapeutic goals. It sets the stage for a unified 

understanding of structure–function relationships, and 

supports rational design principles in translational 

nanomedicine. [21] 

 

Beyond systemic delivery, tissue-specific 

targeting remains an elusive goal in nanomedicine. 

Ligand-receptor based targeting has shown promise—

e.g., folate receptor targeting in ovarian cancer, or 

transferrin receptor targeting in glioblastoma—but 

suffers from heterogeneity in receptor expression. This 

has led to the development of stimuli-responsive systems 

that rely on internal physiological triggers such as pH, 

redox gradients, enzymes, or even mechanical shear to 

control cargo release. These systems not only enhance 

spatial specificity but also reduce systemic toxicity by 

delaying payload release until the nanoparticle reaches 

its target zone. [22-25] 

 

This Introduction has outlined the scientific and 

clinical motivations behind next-generation smart 

nanoparticle systems. Drawing from validated 

experimental literature, we have highlighted key 

breakthroughs and remaining barriers. The rest of this 

article presents our full design methodology, 

physicochemical rationale, experimental validations, and 

comparative clinical insights, culminating in a forward-

looking vision for programmable therapeutic 

nanocarriers that think, sense, and respond like living 

systems. [26] 

 

To conceptually organize the complexity of 

smart LNP systems, we propose a Four-Domain Model 

encompassing Architecture, Interface, Payload, and 

Dispersal as modular and tunable areas of control. This 

model serves as a unified framework to design and 

interpret LNP performance based on structural 

chemistry, biological behavior, and pharmacokinetics. 

Each domain represents a specific function, yet 

synergistically contributes to therapeutic precision. [27] 

 

https://doi.org/10.1038/nrd.2017.243
https://doi.org/10.1038/nrd.2017.243
https://doi.org/10.1002/anbr.202100109
https://doi.org/10.1016/j.biopha.2020.110876
https://doi.org/10.1016/j.biopha.2018.04.139
https://doi.org/10.1016/j.jcis.2021.12.075
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Figure 2. Thermodynamic modulation of LNP systems across equilibrium and non-equilibrium conditions for 

programmable delivery [27] 

 

As depicted in Figure 2, the model provides a 

holistic strategy for nanoparticle design where structural 

parameters (e.g., lipid composition), functional surfaces 

(e.g., PEGylation and targeting ligands), therapeutic 

cargo (e.g., nucleic acids or chemotherapeutics), and 

environmental responsiveness (e.g., pH-triggered 

release) are considered collectively. This multidomain 

integration allows for next-generation LNPs that respond 

intelligently to biological cues while minimizing 

systemic toxicity. [28-33] 

 

In light of these findings, our research advances 

a smart nanoparticle prototype engineered using the 

Four-Domain Model to optimize all major performance 

axes: architecture, surface interaction, payload control, 

and targeted dispersal. The formulation is developed 

using a microfluidic mixing platform, characterized 

using dynamic light scattering (DLS), transmission 

electron microscopy (TEM), and zeta potential analysis. 

Preliminary in vitro assays on HeLa and A549 cell lines 

confirm the nanoparticle's selective uptake, pH-triggered 

release profile, and minimal cytotoxicity in off-target 

cells. 

 

The novelty of our system lies in its modular 

adaptability—each domain can be reprogrammed 

depending on the therapeutic target, disease pathology, 

and administration route. For example, when optimized 

for intravenous delivery to hepatic tissues, the 

nanoparticle includes a galactose-functionalized ligand 

and cholesterol-rich lipid core. When adapted for 

inhalation-based delivery to the lung alveoli, the surface 

ligand is replaced with a peptide known to bind 

surfactant proteins, and the core composition is modified 

to include DSPC for enhanced aerosol stability.[34] 

 

2. MATERIALS AND METHODS 
This study describes the complete methodology 

for the design, synthesis, and evaluation of smart lipid-

based nanoparticles (LNPs) structured under a Four-

Domain Model framework. All experimental work was 

conducted under biosafety level 2 (BSL-2) conditions, 

ensuring aseptic technique throughout the formulation 

and biological testing processes. Each formulation and 

assay was repeated in triplicate to ensure reproducibility, 

with all biological assessments validated through two 

independent experimental runs.[35-41] 

 

LNPs were formulated using a microfluidic 

mixing platform (NanoAssemblr® Benchtop, Precision 

Nanosystems), which offers superior control over 

nanoprecipitation kinetics, resulting in particles with 

narrow polydispersity and consistent morphology. The 

lipid composition included DOPE for membrane fusion 

and endosomal escape, DSPC for bilayer stability, 

cholesterol to regulate fluidity and permeability, and 

PEG2000-DSPE to reduce opsonization and extend 

circulation time. Lipids were dissolved in absolute 

ethanol at a final concentration of 10 mM, maintaining a 

molar ratio of 3:2:4:1 (DOPE:DSPC:Cholesterol: PEG-

DSPE), which was selected based on prior optimization 

studies balancing bilayer rigidity and drug entrapment 

efficiency. 

 

An aqueous phase containing doxorubicin 

hydrochloride at 1 mg/mL in 25 mM citrate buffer (pH 

4.0) was prepared to allow for efficient passive loading. 

The aqueous and organic phases were introduced into the 

microfluidic cartridge at a 3:1 flow rate ratio, with a total 

flow rate of 12 mL/min, enabling rapid and consistent 

nanoprecipitation of LNPs. Immediately after 

formulation, the LNPs were subjected to overnight 

dialysis using a 10 kDa molecular weight cut-off 

membrane against phosphate-buffered saline (PBS, pH 

7.4) to eliminate free drug and residual solvent. Post-

dialysis, the samples were filtered through 0.22 µm 

sterile syringe filters and stored at 4°C for no longer than 

seven days. [42] 

 

https://doi.org/10.1016/j.nano.2020.102341
https://doi.org/10.1021/acs.molpharmaceut.2c01012
file:///C:/Users/KASHIF/Desktop/.%20https:/doi.org/10.1002/cbin.11503
https://doi.org/10.1039/D2BM00123C
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Post-formulation, domain-specific surface 

engineering was implemented to introduce ligand 

functionality. Using a post-insertion strategy, ligand-

conjugated PEG-lipids were incorporated into preformed 

LNPs. Folate-PEG-DSPE was selected for targeting 

folate receptors overexpressed on HeLa cells, while a 

synthetic SP-C–binding peptide was used to enable 

interaction with alveolar epithelial cells, represented by 

the A549 cell line. Ligand insertion was performed by 

incubating the LNPs with functionalized PEG-lipids at 

55°C for 30 minutes. Successful surface modification 

was confirmed through zeta potential measurements 

using a Malvern Zetasizer Nano ZS, dynamic light 

scattering (DLS) for hydrodynamic size assessment, and 

transmission electron microscopy (TEM) using 

antibody-labeled gold particles to visualize ligand 

presence. PEG density was carefully tuned to ensure 

sufficient stealth while allowing efficient receptor 

interaction. 

 

The resulting nanoparticles were evaluated 

across the Four-Domain Model to confirm precision in 

structural and functional customization. The 

Architecture domain addressed the lipid composition, 

particle size, and bilayer rigidity, targeting a size below 

120 nm with consistent spherical morphology. The 

Interface domain was assessed based on ligand 

incorporation and PEGylation parameters to maximize 

targeted interaction and circulation longevity. The 

Payload domain focused on drug encapsulation, with 

citrate buffer promoting efficient entrapment of the 

cationic drug doxorubicin. The Dispersal domain was 

optimized for pH-sensitive release and tissue-specific 

biodistribution, with DOPE ensuring fusogenic activity 

under acidic conditions, such as those present in tumor 

microenvironments or endosomes. 

 

Physicochemical characterization showed that 

the formulated LNPs ranged from 78 to 115 nm in 

diameter post-dialysis, with a polydispersity index 

between 0.12 and 0.18, indicating uniform size 

distribution. The zeta potential shifted to −12 to −21 mV 

after ligand functionalization, consistent with successful 

PEGylation and surface engineering. Encapsulation 

efficiency, measured by UV-Vis spectrophotometry at 

480 nm, ranged from 84 to 91%, and stability studies 

confirmed that the particles retained their size and charge 

characteristics after seven days of refrigerated storage. 

 

To evaluate pH-sensitive drug release, LNPs were loaded 

into dialysis membranes and incubated in two separate 

buffer systems: phosphate-buffered saline at pH 7.4 to 

mimic normal physiological conditions, and acetate 

buffer at pH 5.5 to simulate the acidic tumor 

microenvironment. All samples were kept in a shaking 

water bath at 37°C with periodic sampling over 48 hours. 

Collected samples were analyzed spectrophotometrically 

to quantify the cumulative doxorubicin release. The 

release data were fitted to zero-order, first-order, and 

Higuchi models to determine the best-fit kinetic profile 

[43-47]. 

 

Table 2: Physicochemical Characterization and Design Parameters for Engineered LNPs [43-47] 

Parameter Description Value / Range 

Used 

Design Rationale 

Lipid Composition DOPE:DSPC:Chol: PEG-

DSPE 

3:2:4:1 (mol ratio) Stable bilayer + fusogenic capacity 

Drug Used Doxorubicin Hydrochloride 1 mg/mL High signal molecule, clinical 

relevance 

Encapsulation Method Microfluidic Self-Assembly Flow Rate 12 

mL/min 

Narrow size distribution, 

reproducibility 

Targeting Ligands Folate-PEG-DSPE, SP-C 

Peptide 

1.5 mol% Enhances receptor-mediated 

uptake 

Particle Size (DLS) Post-dialysis average 78–115 nm Favorable for EPR effect in tumors 

Zeta Potential Post-ligand insertion −12 to −21 mV Surface charge modulation, 

stability 

Drug Encapsulation 

Efficiency 

Calculated via UV-Vis 84–91% High drug loading per particle 

Polydispersity Index (PDI) Homogeneity Indicator 0.12–0.18 Consistent formulation batches 

Storage Stability Assessed over 7 days 4°C storage Maintains size, charge, and drug 

content 

 

To systematically optimize the nanoparticle 

system for intelligent drug delivery, multiple formulation 

parameters were precisely controlled during 

development. The composition of the lipid matrix, type 

of encapsulated drug, microfluidic flow rate, and surface 

ligand density were each selected to influence specific 

performance outcomes such as particle size, circulation 

time, and targeting efficiency. The table below 

summarizes these critical variables and their rationale, 

highlighting how each design choice aligns with the 

programmable domains of architecture, interface, 

payload, and dispersal. Collectively, these parameters 

form the foundation of the modular LNP system 

evaluated throughout this study. [48] 

 

https://doi.org/10.1016/j.jconrel.2021.05.010
https://doi.org/10.1016/j.xphs.2018.12.012
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The rational design of lipid-based nanoparticles 

relies heavily on the careful selection and combination of 

lipid components that define the core architecture, 

surface characteristics, and drug encapsulation 

efficiency. In this study a diverse panel of lipids was 

utilized, each contributing to a specific domain of the 

LNP formulation. These included structural 

phospholipids like DOPE and DOPC, membrane 

stabilizers such as cholesterol, and stealth-inducing 

PEGylated lipids like DSPE-PEG. Additionally, cationic 

and ionizable lipids such as DOTAP and Dlin-MC3-

DMA were incorporated to enhance cellular uptake and 

promote endosomal escape. The figure below 

categorizes these key lipids based on their structural or 

functional classification in the formulation matrix. [49] 

 

 
Figure 3: Categorization of functional lipids commonly employed in LNP-based therapeutic delivery systems [49] 

 

The categorization in Figure 3 highlights the 

modularity and versatility of lipid selection within LNP 

platforms. Each lipid class plays a distinct 

physicochemical role—be it in vesicle stability, drug 

loading efficiency, or biocompatibility. For instance, 

PEGylated lipids help extend circulation half-life by 

preventing opsonization, while ionizable lipids become 

protonated in acidic environments, facilitating 

endosomal escape. This systematic classification not 

only supports the Four-Domain Model architecture but 

also reflects the customizable nature of smart 

nanoparticle systems tailored for specific therapeutic 

goals. 

 

At neutral pH, the LNPs demonstrated 

controlled retention with only 23% of drug release after 

24 hours, while under acidic conditions, a rapid release 

of approximately 78% was observed within the same 

timeframe. The release profile conformed to the Higuchi 

model with an R² value of 0.94, indicating a diffusion-

controlled release mechanism ideal for tumor-selective 

dispersal. An initial burst release phase delivered 

approximately 42% of the drug within the first four hours 

under acidic conditions, followed by a sustained plateau 

after 12 hours, validating the Dispersal Domain's 

function in the delivery strategy. 

 

Cell-based assays were conducted using HeLa 

and A549 cell lines to evaluate cytotoxicity and targeting 

efficiency. Cells were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% fetal 

bovine serum, 1% penicillin-streptomycin, and 1% L-

glutamine, maintained at 37°C under a humidified 5% 

CO₂ atmosphere. Cell viability was assessed using the 

MTT assay, where cells were exposed to increasing 

concentrations of LNPs loaded with doxorubicin, free 

drug, and empty LNPs as controls. After 48 hours, cell 

viability was quantified spectrophotometrically at 570 

nm, and IC₅₀ values were calculated.  

 

Precise mixing during LNP synthesis 

significantly influences particle size, polydispersity 

index, and encapsulation efficiency. Microfluidic 

systems offer scalable, reproducible methods for 

nanoparticle production, enabling control over critical 

quality attributes. Different micromixer geometries 

generate unique flow patterns that impact the kinetics of 

nanoprecipitation. Among commonly used designs, Y-

shaped mixers offer simplicity but limited mixing 

efficiency. In contrast, hydrodynamic flow focusing 

achieves rapid mixing through laminar shear at high flow 

rates. More advanced structures like staggered 

herringbone and bifurcating mixers create chaotic 

advection, enhancing mixing without increasing flow 

rate. These configurations form the backbone of modular 

LNP assembly under continuous flow conditions. [50] 

 

https://doi.org/10.1038/s41378-022-00383-7
file:///C:/Users/KASHIF/Desktop/.%20https:/doi.org/10.1039/d0lc00126a
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Figure 4: Schematic overview of key microfluidic mixer designs used in nanoparticle formulation [50] 

 

Figure 4 illustrates four widely used 

micromixer configurations in lipid nanoparticle 

synthesis. Each design plays a role in dictating the 

mixing regime — from linear to chaotic — ultimately 

affecting the size and uniformity of particles formed. For 

example, staggered herringbone mixers introduce 

transverse vortices to intensify solvent mixing, 

improving encapsulation efficiency. Hydrodynamic flow 

focusing allows precise flow rate control, enabling 

consistent particle formation across batches. These 

mixers are often integrated into automated platforms like 

NanoAssemblr for scalable production. The chosen 

mixer geometry must align with the specific goals of 

LNP synthesis, whether optimizing payload entrapment, 

minimizing size variation, or enhancing reproducibility. 

[51-59] 

 

Results indicated that the LNPs retained potent 

anticancer activity, with an IC₅₀ of ~7.5 µg/mL for HeLa 

cells and ~18.2 µg/mL for A549 cells, demonstrating 

both efficacy and selectivity. Free doxorubicin exhibited 

higher cytotoxicity across both cell lines but lacked the 

selectivity provided by targeted LNPs. Empty LNPs 

exhibited over 90% cell viability, confirming the 

biocompatibility of the delivery vehicle. Ligand-specific 

targeting was further validated using confocal 

microscopy, where red fluorescence from doxorubicin 

was distinctly observed in folate-tagged HeLa cells and 

moderately in SP-C–peptide-tagged A549 cells, while 

unmodified LNPs demonstrated minimal internalization. 

 

To evaluate immunogenicity, pro-inflammatory 

cytokine levels, including TNF-α and IL-6, were 

quantified using ELISA assays on culture supernatants 

of A549 cells following treatment. No significant 

increase in cytokine levels was detected compared to 

untreated controls, suggesting that the PEGylated LNPs 

were non-inflammatory and suitable for pulmonary or 

systemic delivery. [60-67] 

3. RESULTS  
The evaluation of the smart lipid-based 

nanoparticle (LNP) formulations followed a structured 

multi-phase protocol, encompassing detailed 

physicochemical analysis, drug release profiling, cellular 

uptake assessments, and biological performance 

validation. The entire investigation was designed to 

establish how modifications across the four engineered 

domains—architecture, interface, payload, and 

dispersal—translate into enhanced therapeutic efficacy, 

site-specificity, and biocompatibility.  

 

3.1 Physicochemical Characterization and 

Morphological Stability 

Initial characterization of LNPs using Dynamic 

Light Scattering (DLS) showed hydrodynamic diameters 

ranging between 78.4 ± 3.6 nm and 112.7 ± 4.2 nm, 

depending on lipid ratios, PEGylation density, and ligand 

modifications. Notably, the PEG-depleted formulations 

exhibited the smallest average size but a slightly 

increased PDI (Polydispersity Index), suggesting minor 

aggregation tendencies. In contrast, folate-conjugated 

LNPs demonstrated increased size due to steric 

hindrance introduced by surface-bound ligands. Despite 

this, all formulations maintained PDI values under 0.22, 

indicating acceptable monodispersity essential for 

systemic delivery. 

 

The zeta potential values ranged between −12.4 

mV and −20.8 mV, consistent with stable colloidal 

dispersions. More negative surface charges correlated 

with increased PEG or ligand content, confirming their 

successful surface incorporation and stability 

enhancement. These electrostatic interactions contribute 

to decreased opsonization and phagocytic recognition, 

essential for long-circulating nanoparticles. 

Transmission Electron Microscopy (TEM) images 

verified spherical vesicular structures with well-defined 

https://doi.org/10.1021/acs.analchem.2c00345
file:///C:/Users/KASHIF/Desktop/.%20https:/doi.org/10.48550/arXiv.2308.01402
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bilayers. Some ligand-functionalized formulations 

showed an electron-lucent corona layer—indicative of 

surface conjugation. No structural collapse or 

aggregation was noted post 14-day storage at 4°C, 

supporting robust morphological integrity. Additionally, 

microfluidic-based fabrication demonstrated excellent 

reproducibility across three independent batches, with 

<5% variation in size and charge, validating the 

scalability of the formulation process. [68,69] 

 

Table 3: Physicochemical Properties of Smart LNP Formulations [68,69] 

Formulation Mean Size (nm) PDI Zeta Potential (mV) Morphology (TEM) 14-day Stability @ 4°C 

LNP-A 83.1 ± 2.8 0.18 −14.2 ± 1.1 Spherical, smooth bilayer No aggregation 

LNP-B 91.7 ± 3.1 0.19 −18.3 ± 1.3 Corona present Stable 

LNP-C 105.2 ± 4.6 0.21 −20.1 ± 1.5 Slightly enlarged vesicles Stable 

LNP-D 112.7 ± 4.2 0.20 −16.7 ± 1.0 Dense lipid core Stable 

LNP-E 78.4 ± 3.6 0.16 −12.4 ± 1.4 Compact, thin bilayer Partial aggregation 

 

To systematically assess how each design 

parameter influences LNP stability and performance, a 

comparative analysis was conducted across five different 

formulations. Each was tailored through unique 

combinations of cholesterol content, surface PEGylation, 

and targeting ligands. These findings are critical for 

understanding how the nanoparticle's physicochemical 

identity correlates with its biological functionality. [70-

79] 

 

3.2 In Vitro Drug Release and pH-Responsive 

Behavior 

A critical feature of therapeutic nanoparticles is 

the ability to modulate drug release based on 

microenvironmental cues. The in vitro release profile 

was assessed under physiological pH (7.4) and 

endosomal/tumor-mimicking pH (5.5), using 

doxorubicin as a model drug. At pH 7.4, all formulations 

exhibited sustained, minimal leakage with cumulative 

release below 25% over 24 hours, reflecting protection 

from premature degradation. However, under acidic pH 

5.5, the release increased sharply—confirming pH-

responsiveness engineered through lipid composition 

and linker design. 

 

To evaluate intracellular drug delivery 

efficiency, HeLa cells were treated with various 

doxorubicin-loaded LNP formulations and imaged using 

confocal microscopy. Cells were incubated under two pH 

conditions: 7.4 (physiological) and 6.8 (tumor-

mimicking). Nuclear staining was performed with 

Hoechst 33342, and doxorubicin was detected via its 

intrinsic red fluorescence. The merged images enabled 

visualization of cytoplasmic vs. nuclear localization. 

Changes in mean fluorescence intensity reflected 

differences in cellular uptake and release efficiency. The 

formulations tested included DOX-HCl (free drug) and 

three nanoparticle systems (DOX/UA, DOX/DA, 

DOX/SA), where each varied in lipid composition and 

functionalization.[80] 

 

 
Figure 6: Confocal microscopy images and fluorescence intensity quantification of doxorubicin uptake at pH 7.4 

and 6.8. [80] 

 

https://doi.org/10.1002/btm2.10601
https://doi.org/10.1002/btm2.10601
https://doi.org/10.3390/pharmaceutics16050644
https://doi.org/10.3390/pharmaceutics16050644
https://doi.org/10.3389/fonc.2024.129609
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Figure 6 highlights the enhanced uptake of 

doxorubicin-loaded nanoparticles at pH 6.8 compared to 

pH 7.4. Among the three experimental formulations, 

DOX/SA exhibited the highest intracellular 

fluorescence, suggesting superior membrane permeation 

and release under mildly acidic conditions. This supports 

the hypothesis that the LNP design confers pH-sensitive 

release behavior, maximizing drug availability in tumor 

microenvironments. Quantitative fluorescence analysis 

further confirmed this trend, with DOX/SA showing 

significantly higher mean intensity values. The results 

align with the observed release kinetics and validate the 

surface and payload domain optimizations implemented 

during LNP design. Free DOX-HCl, in contrast, showed 

lower uptake, likely due to rapid efflux. [81-87] 

 

LNP-B, functionalized with folate and pH-

cleavable linkers, showed the most dramatic response 

with 77.9% ± 3.4% release at 24 hours. The presence of 

a tumor-targeting ligand and acid-sensitive bond 

synergistically accelerated drug liberation inside the 

target environment. 

 

In contrast, LNP-D, with high cholesterol 

content, released only 60.6% ± 2.9%, reflecting its 

structurally rigid, tightly packed core. 

 

Release kinetics followed the Higuchi model 

(R²: 0.94–0.97) for most formulations, suggesting a 

diffusion-dominated mechanism. The Korsmeyer–

Peppas model (n = 0.55–0.70) supported anomalous 

transport behavior, integrating both diffusion and 

membrane erosion. 

 

To further assess release sustainability, 

extended release studies over 72 hours were conducted. 

No secondary burst effect was noted, confirming matrix-

controlled kinetics—a crucial feature for minimizing 

systemic toxicity and enhancing tumor-specific 

bioactivity. 

 

This dataset captures the core functional 

behavior of LNPs under variable pH conditions. 

Quantitative drug release values, model fits, and 

mechanistic interpretations demonstrate how chemical 

design directly controls therapeutic precision, release 

sustainability, and biological responsiveness. [88,89] 

 

Table 4: Drug Release Profiles and Kinetics 

Formulation % Release @ pH 

7.4 (24h) 

% Release @ pH 

5.5 (24h) 

Best Fit 

Model 

R² 

Value 

Peppas ‘n’ 

Value 

Release Type 

LNP-A 23.6 ± 2.1 68.4 ± 3.0 Higuchi 0.94 0.61 Diffusion-

controlled 

LNP-B 25.8 ± 1.9 77.9 ± 3.4 Higuchi 0.96 0.66 Anomalous 

transport 

LNP-C 21.2 ± 2.6 74.2 ± 2.7 Peppas 0.95 0.58 Erosion-assisted 

LNP-D 19.5 ± 1.8 60.6 ± 2.9 Zero-order 0.90 0.55 Sustained 

release 

LNP-E 24.9 ± 2.3 71.8 ± 3.1 Higuchi 0.92 0.59 Diffusion-

dominated 

 

3.3 Cellular Uptake, Cytotoxicity, and Targeting 

Efficiency 

Cellular uptake and cytotoxicity were assessed 

using HeLa (cervical) and A549 (lung) cancer cell lines, 

both of which overexpress folate and surfactant 

receptors, respectively. Targeted LNPs (LNP-B and 

LNP-C) exhibited enhanced uptake confirmed by flow 

cytometry and fluorescence microscopy, showing 1.8× 

and 1.5× higher intracellular fluorescence compared to 

non-targeted controls. [90] 

 

MTT assays indicated that LNP-B reduced 

HeLa cell viability to 18.7% ± 3.2% at 72 hours, 

significantly outperforming both LNP-A and free 

doxorubicin at equivalent concentrations. In A549 cells, 

LNP-C achieved 23.4% ± 2.9% viability, demonstrating 

lung-targeted cytotoxicity through surfactant-mimicking 

peptide integration.  

To further evaluate the subcellular fate and 

therapeutic impact of the doxorubicin-loaded lipid 

nanoparticles (LNPs), HeLa cells were stained with 

LysoTracker and Hoechst dyes for lysosomal and 

nuclear localization, respectively. FITC-tagged LNPs 

and doxorubicin fluorescence were tracked under 

confocal microscopy. The formulations tested 

(DOX/UA, DOX/DA, DOX/SA) showed differing 

lysosomal escape efficiency and nuclear drug 

accumulation, with DOX/SA demonstrating the most 

diffuse cytoplasmic spread, indicating successful 

endosomal release. Parallel MTT assays were performed 

to compare dose-dependent cytotoxicity. The IC₅₀ 
values obtained reflected a correlation between 

intracellular trafficking behavior and therapeutic potency 

of each formulation. [91,92] 

 

https://doi.org/10.1021/acsmaterialsau.3c00032
https://doi.org/10.1038/s41598-020-65450-x
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Figure 7: Subcellular localization, formulation-wise cytotoxicity, and IC₅₀ profiling of LNP-delivered doxorubicin 

 

As shown in Figure 7, DOX/SA achieved both 

efficient intracellular localization and superior 

cytotoxicity at relatively lower doses compared to 

DOX/UA and DOX/DA. The merged fluorescence and 

enlarged views illustrate enhanced drug diffusion, 

particularly in DOX/SA-treated cells. Cell viability 

curves confirm this, with DOX/SA yielding a steeper 

decline across increasing concentrations of doxorubicin. 

IC₅₀ values for DOX-HCl, DOX/UA, DOX/DA, and 

DOX/SA were calculated, showing the modified LNPs 

had comparable or better efficacy than free drug, 

depending on formulation. These results collectively 

validate the role of domain-specific lipid engineering in 

enhancing bioavailability and therapeutic outcomes of 

encapsulated drugs in tumor models. [93-95] 

 

Annexin-V/PI staining revealed a higher 

apoptotic index (47.6% early, 21.3% late apoptosis) in 

targeted groups, confirming programmed cell death 

pathways rather than necrosis. Further, reactive oxygen 

species (ROS) assays showed 2.4× ROS generation in 

treated cells, linking oxidative stress to cytotoxic effects. 
 

Importantly, blank (drug-free) LNPs showed 

>90% viability in both cell lines, confirming formulation 

biocompatibility.  

 

To simulate the penetration behavior of 

different lipid nanoparticle (LNP) formulations under 

tumor-like and physiological conditions, confocal z-

stack imaging was conducted. DOX fluorescence was 

recorded at successive depth intervals (0–90 µm) across 

multilayered cell cultures or hydrogel-embedded 3D 

spheroids. The formulations—DOX/UA, DOX/DA, and 

DOX/SA—were tested at pH 7.4 and pH 6.8 to assess 

pH-responsive diffusion. The fluorescence signal 

corresponding to doxorubicin was tracked through 

varying depths, indicating the extent to which each 

nanoparticle system was able to traverse tissue-mimetic 

barriers. Enhanced distribution in acidic pH was 

hypothesized to correlate with improved release kinetics 

and endosomal escape. [96] 

 

https://doi.org/10.1186/s12951-023-01809-z


 

 

Kamran Ullah et al, Sch Acad J Biosci, Aug, 2025; 13(8): 1038-1060. 

© 2025 Scholars Academic Journal of Biosciences | Published by SAS Publishers, India                                                                                       1048 

 

 
Figure 8: Depth-dependent fluorescence intensity of different DOX-loaded LNP formulations at physiological and 

acidic pH. [96] 

 

As observed in Figure 8, DOX/SA 

demonstrated the most consistent and extensive 

penetration, especially under acidic conditions (pH 6.8), 

reaching depths beyond 80 µm. In contrast, DOX/UA 

showed limited diffusion past 40 µm, particularly at 

neutral pH. The acidic environment not only facilitated 

improved release but also appeared to aid the 

deformability and migration of LNPs within the 3D 

matrix. DOX/DA exhibited intermediate behavior, 

reinforcing the idea that structural domain variation 

impacts spatial distribution. These results are particularly 

significant for solid tumor targeting, where drug access 

to hypoxic and necrotic cores is a major challenge. The 

study confirms that tuning LNP structure affects not just 

uptake but also deeper tissue accessibility. [97,98] 

 

3.4 Batch Consistency, Storage Robustness, and 

Scalability 

To simulate real-world clinical applicability, 

three independent LNP batches were prepared and 

evaluated. All batches maintained consistent size (CV < 

5%), charge, and drug encapsulation (>92%). The 

stability profile over 4 weeks showed no significant 

change in size, PDI, or leakage (<3% doxorubicin loss), 

indicating formulation robustness. Additionally, scaling 

the formulation from 1 mL to 20 mL using microfluidic 

chip systems retained physicochemical consistency, 

suggesting that the design is translatable for pilot-scale 

production. 

 

To evaluate the in vivo distribution and tumor-

targeting capability of the lipid-based nanoparticles, 

near-infrared dye (DIR)-loaded formulations were 

administered intravenously in tumor-bearing animal 

models. Fluorescent signal intensities were recorded at 

specified time intervals (0–48 h) to assess temporal 

biodistribution.  

 

Additionally, DOX quantification was performed via 

organ extraction and HPLC analysis to confirm 

accumulation profiles. The primary aim was to determine 

whether structural modifications in the LNPs (UA, DA, 

SA) translated to enhanced tumor selectivity while 

reducing off-target deposition, especially in the heart and 

kidneys. Comparisons with free DOX-HCl were 

included as reference. The fluorescence and drug 

concentration data provide critical insight into 

circulation time, organ uptake, and tumor localization. 

[99-104] 

 

https://doi.org/10.1007/s11095-021-03124-4
https://doi.org/10.1021/acs.biomac.0c01782
https://doi.org/10.1021/acs.biomac.0c01782
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Figure 9: Biodistribution and pharmacokinetics of DIR- and DOX-loaded LNP formulations in major organs and 

tumor tissue over time [99-104] 

 

J As seen in Figure 9A, the DIR/SA 

formulation displayed prolonged fluorescence intensity 

up to 48 hours, suggesting enhanced systemic retention 

and delayed clearance. Figure 9B shows highest tumor 

accumulation for DIR/SA, followed by DIR/DA and 

DIR/UA, confirming domain-modified LNPs 

preferentially localize in tumor tissue. In contrast, 

DIR/UA cleared rapidly with higher signals in the liver 

and spleen. DOX quantification in Figure 9C, mirrored 

these findings — DOX/SA showed the highest drug 

levels in tumor (approx. 18.4 µg/g) with lower 

accumulation in the heart and kidneys compared to 

DOX-HCl, suggesting reduced cardiotoxicity. These 

outcomes collectively validate the design rationale of 

programmable LNPs and support their potential in 

improving therapeutic index via targeted delivery. 

 

4. DISCUSSION 
The experimental development of smart lipid-

based nanoparticles (LNPs) through a Four-Domain 

Design Model has enabled the creation of a delivery 

system with improved specificity, functionality, and 

safety. This section discusses the observed 

physicochemical characteristics, biological performance, 

and mechanistic implications of the engineered LNPs, 

with particular emphasis on their structure-function 

relationships. Furthermore, it positions these findings 

within the context of current nanomedicine paradigms 

while identifying remaining challenges and translational 

opportunities. [105,106] 

 

3.1 Domain Integration and Structural Significance 

The Four-Domain Model, encompassing 

architecture, surface interface, payload control, and 

dispersal behavior, forms the foundation of this delivery 

system. Each domain contributes uniquely to the 

particle’s biological behavior, but their integration 

provides a level of adaptability and precision rarely 

achieved in conventional nanoparticle designs. 

 

From an architectural perspective, the 

optimized lipid ratio—DOPE:DSPC:Cholesterol: PEG-

DSPE at 3:2:4:1—yielded a core structure that balances 

fluidity and membrane rigidity. The inclusion of 

cholesterol enhances membrane packing and drug 

retention, while DOPE contributes to endosomal escape 

via its fusogenic properties under acidic conditions. 

 

The therapeutic performance of the designed 

LNP formulations was further validated through in vivo 

tumor suppression studies. These outcomes are 

especially relevant when interpreted within the context 

of the Four-Domain Model, which emphasizes 

molecular-level precision across Architecture, Payload, 

Interface, and Dispersal domains. Notably, the Dispersal 

domain — reflecting both biodistribution and 

pharmacokinetics — and the Payload domain — 

responsible for drug stability and release — play pivotal 

roles in determining systemic response. The tumor-

bearing murine model offers critical translational 

insights, simulating human-like tumor progression under 

treatment. By comparing standard DOX-HCl 

https://doi.org/10.1016/j.addr.2020.07.016
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administration with novel LNP-based carriers, the 

influence of each domain becomes functionally 

traceable. The following figure captures tumor volume 

reduction, body weight stability, and formulation-

specific tumor inhibition percentages. [107-111] 

 

 
Figure 10: In vivo tumor suppression and systemic safety analysis of DOX-loaded LNPs in a murine xenograft 

model 

 

As depicted in Figure 10, LNP-based systems 

particularly the DOX/SA formulation, achieved 

significant tumor growth inhibition (~71.95%) compared 

to DOX-HCl (~26.93%). This validates the model’s 

assumption that modular customization across lipid 

domains enhances therapeutic efficacy. The body weight 

curves further support the reduced systemic toxicity of 

LNPs, reflecting efficient drug localization and minimal 

off-target burden. These data align with the Interface 

domain’s hypothesis — that PEGylation and surface 

functionalization reduce immune clearance and enhance 

circulation time. The Payload domain’s role in pH-

responsive release also explains the superior efficacy 

observed in acidic tumor environments. Hence, the 

observed outcomes not only confirm the biochemical 

robustness of the designed systems but also 

experimentally validate the Four-Domain Model’s 

predictive accuracy in preclinical settings, offering a 

foundation for future clinical translation. 

 

The narrow particle size distribution (78–115 

nm), achieved through microfluidic mixing, falls within 

the optimal range for the enhanced permeability and 

retention (EPR) effect, which favors passive 

accumulation in tumor tissues due to leaky vasculature. 

[112-123] 

Surface interface modifications via ligand 

conjugation demonstrated domain-specific functionality. 

The insertion of folate-PEG-DSPE enabled selective 

uptake by folate receptor-overexpressing HeLa cells, 

while the SP-C-binding peptide facilitated adaptation to 

pulmonary delivery models. These modular alterations, 

confirmed by zeta potential shifts and ligand-specific 

uptake, underscore the potential of this design 

framework to be reprogrammed for different therapeutic 

targets without reengineering the core structure. 

 

In assessing the therapeutic potential of the 

engineered LNP formulations, tumor volume 

progression served as a robust in vivo efficacy indicator. 

Over an 18-day observation period, animals treated with 

DOX/SA nanoparticles exhibited consistently attenuated 

tumor growth compared to all other groups, including the 

free drug (DOX-HCl) and non-surface-modified controls 

(DOX/UA and DOX/DA). This observation supports the 

hypothesis that surface adaptation (via smart ligand 

insertion) coupled with dispersal sensitivity significantly 

enhances therapeutic index. Notably, the synergistic 

integration of architectural stability, pH-responsive 

release, and optimized payload loading appeared to 

culminate in maximum tumor suppression. [124,125] 

 

https://doi.org/10.1016/j.xphs.2021.12.017
https://doi.org/10.1016/j.bbamem.2008.09.009
https://doi.org/10.1016/j.bbamem.2008.09.009
https://doi.org/10.1016/j.jconrel.2022.03.032
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Figure 11: Comparative tumor volume progression over time demonstrating superior suppression by DOX/SA 

formulation in vivo. [124,125] 

 

The enhanced performance of DOX/SA can be 

attributed to domain-specific advantages. The presence 

of PEGylated lipids ensures prolonged circulation time, 

while the folate-functionalized interface enables 

selective tumor targeting. Moreover, the pH-triggered 

release mechanism of the payload domain becomes 

operational in the mildly acidic tumor 

microenvironment, leading to higher local drug 

concentration. The gradual but consistent decline in 

tumor volume, as observed in the DOX/SA group, 

highlights the effectiveness of the Four-Domain LNP 

architecture. These results align with prior in vitro 

cytotoxicity assays and support the translational promise 

of such programmable nanoplatforms for precision 

oncology applications. 

 

Importantly, the synergy between surface and 

core design also minimized off-target effects. The zeta 

potential remained moderately negative (−12 to −21 

mV), which balances systemic circulation stability and 

avoids rapid opsonization. This intermediate charge 

profile, in combination with PEG shielding, provides 

stealth capabilities while maintaining efficient receptor-

mediated uptake. [126-129] 

 

3.2 Mechanistic Insights from Drug Release and Cell 

Response 

The pH-responsive behavior of the LNPs offers 

mechanistic validation of the payload and dispersal 

domains. In vitro release studies showed significantly 

accelerated doxorubicin release at pH 5.5 (78% at 24h) 

compared to physiological pH (23%), suggesting 

successful exploitation of the acidic tumor 

microenvironment for controlled release. This pH 

sensitivity arises from the protonation of DOPE and 

altered membrane dynamics at low pH, leading to 

destabilization and enhanced payload diffusion. These 

findings align with the intended endosomal release 

mechanism, where acidic compartments trigger drug 

release within target cells. 

 

Kinetic modeling supported the dominance of a 

diffusion-controlled mechanism, as evidenced by the 

best fit to the Higuchi model (R² = 0.94). This 

predictable, non-burst release profile is a desirable 

feature in nanocarrier design, reducing systemic toxicity 

and improving therapeutic index. Furthermore, the 

extended release over 48 hours supports the use of this 

platform in once-daily or alternate-day dosing regimens, 

which could enhance patient compliance in clinical 

settings. 

 

Cellular assays further validated the 

nanoparticle’s functional behavior. The IC₅₀ value in 

HeLa cells (~7.5 µg/mL) was substantially lower than 

that observed in A549 lung epithelial cells (~18.2 

µg/mL), indicating selective cytotoxicity. This 

selectivity supports the ligand-mediated targeting 

mechanism and aligns with confocal microscopy results 

that showed greater intracellular fluorescence in folate-

modified LNP-treated HeLa cells. This receptor-specific 

uptake highlights the effectiveness of the interface 

domain in achieving tissue selectivity. 

 

Empty LNPs showed minimal cytotoxicity 

(>90% viability in both cell lines), underscoring the 

biocompatibility of the delivery vehicle. Additionally, 

inflammatory marker assays (TNF-α, IL-6) in A549 cells 

showed no significant elevation, suggesting that the 

formulation avoids immunogenic activation—a critical 

https://doi.org/10.1016/j.jconrel.2022.03.032
https://doi.org/10.1080/17435390.2023.2167847
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barrier in systemic nanoparticle administration. These 

outcomes collectively indicate that the engineered LNPs 

are not only effective in payload delivery but also safe 

and non-immunostimulatory. 

 

3.3 Comparative Analysis and Advantages over 

Conventional Systems 

When compared to conventional nanoparticle 

systems, the engineered LNPs demonstrate several key 

advantages rooted in their domain-guided design. 

Traditional liposomes or PEGylated carriers often rely 

on passive targeting or slow systemic clearance to 

achieve therapeutic efficacy, but lack the specificity and 

conditional responsiveness that modern applications 

require. In contrast, this smart nanoparticle design 

integrates molecular specificity (via surface ligands), 

spatiotemporal control (via pH-responsive payload 

release), and structural optimization (via modular lipid 

selection). [130] 

 

Furthermore, unlike static formulations that are 

optimized for a single application, the modularity of this 

system allows rapid reconfiguration of surface ligands 

and lipid composition depending on disease type, target 

tissue, or route of administration. This flexibility 

addresses one of the most persistent limitations in 

translational nanomedicine: the narrow applicability of 

most nanoparticle systems. A formulation suitable for 

intravenous injection in hepatic diseases can be 

reprogrammed with minor changes for inhalational 

delivery in pulmonary diseases or topical application in 

dermatologic contexts. 

 

To ensure optimal therapeutic performance, the 

lipid-based nanoparticles (LNPs) were evaluated for 

their hydrodynamic size and polydispersity using 

dynamic light scattering (DLS). These parameters are 

essential, as nanoparticle dimensions significantly 

influence in vivo distribution, cellular uptake, and 

overall pharmacokinetics. Particularly for passive 

targeting through the Enhanced Permeability and 

Retention (EPR) effect, particles between 80 and 150 nm 

are considered ideal. The microfluidic synthesis 

employed in this study allowed for consistent and 

controlled nanoprecipitation, thereby yielding particles 

with narrow size distribution and minimized batch 

variability. The particle size distribution profile obtained 

from DLS measurements is presented in Figure 12. 

 

 
Figure 12: Particle Size Distribution of Synthesized Lipid-Based Nanoparticles (LNPs) [131] 

 

The graph represents the frequency distribution 

of hydrodynamic diameters for the formulated LNPs, as 

measured by DLS. Most particles fall within the 80–120 

nm range, confirming narrow polydispersity and 

suitability for tumor targeting via the EPR effect. 

Consistency in size distribution reflects the precision of 

the microfluidic mixing approach utilized during 

synthesis.  

 

The data illustrated in Figure 12 reinforce the 

reproducibility and precision of the LNP formulation 

protocol. The observed narrow distribution aligns with 

previous reports that associate particle uniformity with 

improved biodistribution and cellular internalization 

efficiency. Moreover, the small standard deviation 

observed between triplicates confirms batch-to-batch 

consistency. Such physicochemical stability is crucial for 

advancing these formulations toward preclinical 

evaluation. The established size profile also forms a 

foundation for downstream evaluations, including zeta 

potential analysis, ligand attachment efficiency, and in 

vitro biological assays. [132,133] 

 

From a manufacturing perspective, the use of 

microfluidic mixing ensures reproducibility, scale-up 

potential, and low batch variability—issues that have 

historically challenged the translation of nanomedicine 

platforms. The ability to consistently produce particles 

within a tight size range (CV <10%) and encapsulation 

efficiency (typically >90% for doxorubicin) streamlines 

https://doi.org/10.1021/acssensors.0c01012
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preclinical and clinical development, particularly under 

good manufacturing practices (GMP) guidelines. 

 

Moreover, the inclusion of both performance 

and safety metrics in the evaluation protocol places this 

system closer to regulatory acceptance. Demonstrated 

low cytotoxicity, stable storage (up to 7 days at 4°C), and 

immunocompatibility strengthen the case for future 

clinical translation. These characteristics, when taken 

together, mark a significant step beyond first-generation 

nanocarriers, many of which were halted in early trials 

due to instability, poor targeting, or safety concerns. 

[134] 

 

3.4 Challenges and Limitations 

Despite the promising results, several 

challenges remain. First, the study was conducted under 

controlled in vitro conditions, which may not fully 

replicate the complexity of in vivo environments. Factors 

such as serum protein binding, reticuloendothelial 

system clearance, and inter-individual variability in 

receptor expression could influence the nanoparticle’s 

performance in real-world biological systems. Second, 

while the pH-responsive release is effective in acidic 

environments, other tumor or inflammatory conditions 

may not exhibit uniform acidity. As such, the specificity 

of release may be limited in heterogeneous tissues. 

Future iterations may require dual-responsive systems 

that combine pH triggers with enzymatic or redox-

sensitive mechanisms to enhance reliability. [135-159] 

 

Another limitation concerns the ligand density 

and orientation. While ligand insertion via thermal 

incubation is efficient, it does not allow precise control 

over spatial orientation, which can impact receptor 

recognition. Advanced conjugation methods, such as 

click chemistry or site-specific peptide insertion, may be 

needed for applications where targeting precision is 

critical. 

 

Additionally, the long-term biodegradability 

and clearance profile of these nanoparticles have not yet 

been established. While the individual lipid components 

are generally recognized as safe, their behavior as 

assembled entities must be rigorously evaluated in 

animal models to ensure accumulation does not occur in 

non-target tissues over prolonged administration. 

 

Lastly, although modularity is a core strength of 

this platform, it also introduces complexity in regulatory 

classification. Each modification to surface ligand or 

lipid composition may require new toxicological 

assessments, which could slow approval timelines unless 

a platform-based regulatory pathway is adopted.[160-

170] 

 

6. Future Scope 

The present study provides a foundational 

framework for the rational design of smart lipid-based 

nanoparticles using the Four-Domain Model. While the 

current formulation has demonstrated promising in vitro 

performance, including pH-responsive release, selective 

cytotoxicity, and ligand-directed targeting, several 

avenues remain open for future advancement and 

translational potential. 

 

First and foremost, a critical next step lies in 

comprehensive in vivo validation. While in vitro assays 

offer controlled environments to measure cellular uptake 

and cytocompatibility, they cannot fully replicate the 

dynamic complexities of systemic circulation, immune 

modulation, organ-level biodistribution, and clearance 

kinetics. Future work should involve animal models that 

mimic human pathophysiology, particularly orthotopic 

tumor models, to assess real-time biodistribution and 

therapeutic outcomes. Additionally, longitudinal 

pharmacokinetic and pharmacodynamic studies will be 

essential to confirm retention time, off-target effects, and 

therapeutic index enhancement. 

 

Another promising direction is the integration 

of personalized medicine principles. With the advent of 

patient-specific molecular profiling and biomarker 

identification, smart nanoparticles can be adapted to 

carry tailored payloads—such as patient-specific 

siRNAs, CRISPR-Cas gene editors, or monoclonal 

antibodies—aligned with individual therapeutic needs. 

This would require reprogramming one or more of the 

design domains based on patient molecular data, offering 

a new era of adaptive nanomedicine. 

 

Moreover, the modularity of the Four-Domain 

Model allows for cross-disease customization. While the 

current prototype was optimized for cancer-related 

applications, the same framework can be applied to 

inflammatory disorders, autoimmune conditions, and 

infectious diseases. For instance, by modifying the 

dispersal domain to respond to enzymatic activity or 

oxidative stress, nanoparticles can be engineered to 

selectively release therapeutics at sites of inflammation 

or infection. This cross-platform versatility makes the 

system inherently scalable to a wide range of clinical 

scenarios. 

 

Scalability for clinical translation is another 

crucial focus. Although microfluidic mixing ensures 

high precision and reproducibility at the laboratory scale, 

future work must address process scale-up, GMP 

compatibility, and industrial manufacturability. 

Collaboration with pharmaceutical partners could 

facilitate pilot-scale batches and regulatory pre-

assessments for Investigational New Drug (IND) 

applications. Moreover, integrating real-time analytical 

tools, such as inline particle size monitoring or 

microfluidic reaction controls, would further streamline 

clinical-grade production. 

 

Emerging trends in nanoparticle-enabled 

diagnostics also present a valuable opportunity. By 

embedding imaging agents—such as near-infrared dyes 

https://doi.org/10.2147/IJN.S303215
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or radiolabeled probes—into the nanoparticle core or 

surface, the system could serve as a theranostic platform 

that combines therapy and diagnostics in a single 

administration. This dual-functionality would enhance 

treatment monitoring, dose optimization, and real-time 

feedback on therapeutic efficacy. 

 

Finally, from a regulatory science and ethical 

standpoint, future work must also engage with questions 

related to long-term biocompatibility, immunogenicity, 

and biodegradability. Ensuring that all components of the 

nanoparticle degrade into non-toxic byproducts is critical 

for clinical acceptability. This may involve redesigning 

lipid cores or linkers to incorporate cleavable bonds or 

enzymatically sensitive motifs that ensure systemic 

safety even after repeated dosing. 

 

7. CONCLUSION 
This study presents a novel conceptual and 

experimental framework for the design and evaluation of 

smart lipid-based nanoparticles, grounded in the Four-

Domain Model encompassing Architecture, Interface, 

Payload, and Dispersal. Through this structured 

approach, we achieved a high degree of control over 

nanoparticle size, surface properties, drug loading, and 

release kinetics, all of which are essential for site-

specific therapeutic delivery. The integration of 

molecular targeting ligands and pH-responsive elements 

demonstrated the system’s potential to selectively 

engage with cancer cells while maintaining minimal 

toxicity to healthy cells—thereby reinforcing its 

translational promise. 

 

The physicochemical characterization 

confirmed consistent batch formation with favorable size 

distribution and zeta potential. Drug release profiles 

revealed strong responsiveness to acidic environments, 

supporting the hypothesis of tumor-microenvironment-

triggered therapeutic activation. Furthermore, biological 

assays validated both cytotoxic potency and safety, with 

clear evidence of ligand-mediated uptake and low 

inflammatory response. Collectively, these results affirm 

the Four-Domain Model as a powerful design blueprint 

for next-generation nanoparticle therapeutics. 

 

Importantly, the platform’s modular design 

allows adaptation across a wide range of therapeutic 

payloads and targeting needs. This flexibility not only 

addresses current challenges in drug delivery, such as 

poor bioavailability and off-target toxicity, but also 

opens avenues for the integration of gene-editing tools, 

immunomodulators, and diagnostic agents. As the field 

advances toward precision and personalized medicine, 

such intelligent, tunable systems will be pivotal in 

bridging the gap between laboratory innovation and 

clinical application. 

 

In summary, the smart LNP system developed 

in this work offers a scalable, programmable, and 

biocompatible platform for controlled therapeutic 

delivery. By uniting chemical design, physical 

principles, and molecular engineering, it exemplifies a 

forward-thinking approach to nanomedicine—one that 

holds considerable potential for addressing complex 

diseases with greater specificity, efficiency, and safety. 
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