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Abstract  Review Article 
 

Cardiovascular disease (CVD) is a serious principal cause of death globally thrusting a huge economic load. There is no 

diagnostic and therapeutic strategy for the prevention of CVD. MiRNAs have been reported to play a significant role in 

cardiovascular pathologies. MicroRNA-132 (miR-132) is involved in cardiac apoptosis, impaired calcium handling, 

cardiac hypertrophy, pathological cardiac remodelling, oxidative stress, and angiogenesis. These cardiac 

pathophysiological effects are caused by miR-132-mediated downregulation of SIRT1, FoxO3, SERCA2A, and PTEN 

target gene expression. CDR-132L and other antimiR-132 long non-coding RNAs significantly inhibited miR-132 

expression in pathophysiological cardiac remodelling and also cardiac apoptosis. These miR-132 targeting approaches 

can have great therapeutic potential. Present review intended to highlight the therapeutic and biomarker potential of 

miR-132 in the diagnosis and treatment of CVD various types. The potential clinical benefits of miR-132 inhibition 

through CDR-132L and other antimiR-132 long non-coding antisense oligonucleotides strategies have also been 

highlighted. 

Keywords: Cardiovascular disease (CVD), MicroRNA-132 (miR-132), Biomarker, Therapeutic target, Cardiac 

remodelling, Long non-coding RNAs (lncRNAs). 
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INTRODUCTION  
According to the stats cardiovascular disease 

(CVD) is a top-tier cause of death on global scale [1] will 

reach 23.6 million deaths annually by 2030.[2] The most 

common manifestations of cardiovascular diseases are 

peripheral artery disease (PAD), and coronary artery of 

myocardial infarction (and MI).[3] Undeterred by the 

advancements in the field of medicine and technology 

the risk of mortality and readmission due to heart failure 

(HF) prevailed up and around to 15% high within a year 

striking a massive economic freight. [4,5,6]  

 

The high incidence rate and impairment in 

outcomes indicate that there is an urgent need of 

developing diagnostic and therapeutic options for the 

prevention of CVD. 

 

MicroRNAs are small non-coding RNAs 

(ncRNAs) of about 18-25 nucleotides long which stall 

gene expression by binding to 3’ untranslated regions of 

target messenger RNA provoking their target messenger 

RNA binding with ribosomes and inhibit their 

translation.[7,8,9] For the first time, microRNAs 

(miRNAs) were discovered in 1990.[10] So far more 

than 2300 human miRNA have been discovered 

censoriously involved in cellular differentiation, 

apoptotic, physiological, and pathophysiological 

processes via regulation of human 60% genes at post-

transcriptional planate.[11,12,13] miRNA involvement 

in CVD has been documented for the previous 15 years. 

[14] In cardiovascular disease biology, microRNAs 

regulate processes intricate in the development and 

prolongation of the heart and its functions. Boarding 

affirmations advocated that miRNAs up or down 
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modulations lead to heart failure (HF).[15] Many 

miRNAs can be readily detected by the PCR 

technique.[16,17] Unregulated miRNAs have been 

associated with numerous cardiovascular 

pathologies.[18,19,20] MiRNA’s role in CVD provides a 

new perspective on disease mechanisms and has revealed 

biomarker and therapeutic potential.[21] Amid them, 

miR-132 is deftly reported to be involved in 

hypertrophic, apoptotic, angiogenic, and fibrotic 

processes responsible for the pathological development 

of cardiac vascular diseases. This rationale indicates that 

miR-132 may be a possible potential biomarker and 

therapeutic target for cardiovascular diseases prevention 

and treatment.  

 

MiR-132 a highly conserved microRNA 

present on chromosome 17 is clustered randomly in a 

tandem array sharing a common seed origin with miR-

212.[22,23] The generation of miR-132 is regulated at 

the transcriptional level and during post-transcriptional 

events.[13,24] MiR-132 transcription is positively 

regulated by the cAMP response element-binding protein 

(CREB) [25] and is negatively regulated by repressor 

element 1 silencing transcription factor (REST). Besides 

of these miR-132 regulation occurs by extracellular 

signal-regulated kinase (ERK1/2) via downstream 

CREB phosphorylation and mitogen and stress-activated 

kinase (MSK).[26,27] 
 

This review was carried out in accordance with 

the guidelines of systematic preferred reporting items for 

systematic and meta-analysis (PRISMA) holding in 

favoured reporting items.[28] A systematic documented 

literature search on the therapeutic and diagnostic 

significance potential of miR-132 in the cardiovascular 

disease was carried out following PRISMA (Fig. 1). 

Available research articles correlated to the subject were 

acknowledged by using the following search keywords; 

“role of miR-132 in the cardiovascular disease”, “miR-

132 therapeutic and diagnostic potential in 

cardiovascular disease”, “miR-132 and CVD”, 

“regulation of miR-132 in various cardiovascular 

diseases, etc. Overall x articles were found from PubMed 

central, Google Scholar and Embase. After the removal 

of duplicates total left articles were x. A total of x 

titles/abstracts were excluded because of no focus on the 

area of the study. The remaining x articles were reviewed 

for eligibility, from which only x research articles were 

established for eligibility. The left of the articles was 

repudiated due to irrelevant information, duplication, or 

language issues. A total of x exclusive, significant, and 

full-text research articles were selected for the data 

extraction. 

 

 

 
Fig.1: Relation of miR132 with different types of CVD’s 

 

Role of miR-132 in different types of cardiovascular 

diseases 

Cardiovascular disease is a major death cause 

globally.[29] Previously it is reported that 17 million 

death resulted from cardiovascular disease.[30] 

Peripheral artery disease (PAH), atherosclerosis (AS), 

coronary artery disease (CAD), and ischemic cardiac 

stroke are the most common manifestations of CVD.(5) 

MiRNAs have a major crucial role in cardiac 

pathological processes including acute myocardial 

infarction (AMI), other CVD types such as AS, HF, 

cardiac hypertrophy and arrhythmias.[31,21] MiRNAs 
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have a significant role in regulating cardiovascular 

function and also have a major role in all aspects of 

cardiovascular biology.[32] We have emphasized the 

miR-132 because it is a highly characterized inducible 

gene.[33] miR-212/132 family which is reported to be a 

highly conserved family of miRNAs when upregulated 

backs the cardiac hypertension, vascular remodeling, and 

hypertension.[34] 

 

Atherosclerosis (AS) 

 In atherosclerosis development cardiac 

endothelial dysfunctioning plays a crucial role.[35] MiR-

132 causes inflammation in the cardiac endothelial by 

SIRT1 regulation modulation.[36] Previously it has been 

shown that vascular smooth muscle cells (VSMCs) make 

vascular walls and VSMCs' abnormal behaviour causes 

atherosclerosis. [37] It is also documented that miR-132 

in VSMCs is significantly expressed in the in-vivo and 

modulates their behaviour during various stress 

conditions.[38] Numerous studies reported that miR-132 

promotes the VSMCs phenotypic switching in case of 

atherosclerosis. It is seen that phenotype switching helps 

in the plaque formation in case of AS.[39] A study 

conducted by Jin et al., in which they analysed Ang-II 

mediated regulatory microRNA profile in VSMCs. It is 

observed that Ang-II caused upregulation in the level of 

miR-132 in VSMCs which resulted in an increased level 

of monocyte chemotaxis protein-1 (MCP-1) through 

phosphate and tensin homolog (PTEN).[40] MiR-132 

overexpression leads to VSMCs differentiation induced 

by cilostazol through PTEN expression inhibition 

showing miR-132 overexpression (fig. 1) adverse 

consequences which occured on differentiation of 

VSMCs.[41] Inhibition of VSMCs phenotypic switching 

can protect from advanced stages of AS disease. When 

miR132-3p is expressed along with the other three 

microRNAs (miR150-5p, miR141-5p, and miR138-5) 

are majorly invoked in phenotypic switching from 

synthetic to contractile. Hsa-miR132-3p with accession 

number MIMAT0000426 showed the phenotypic switch 

score of 1.56 and the con/syn average ratio obtained was 

0.53.[42] Angiogenesis is the process which causes 

formation of new blood vescles from already existing 

blood vescles ones. Angiogenesis is involved in 

ischemic-related cardiovascular disease pathologies. 

MiR-132 higher expression as a proangiogenic 

microRNA is observed in the endothelial cells and 

atherosclerotic lesions in the mice model.[43] 

Phenotypic switching of VSMCs promotes plaque 

formation which is a prerequisite for AS development 

[39]. Combined marking diagnostic potential of miR-

132, miR-133, miR-1, and miR-122 cognate with clinical 

atherosclerosis in patients (n = 182) with metabolic 

syndrome than any other single miRNA.[44] Loss of a 

functional gene called von Hippel Lindau [45] and 

hypoxia induction [46] caused increased levels of miR-

132 by targeting RASA1 and Spred 1 leading to Ras 

MAPK pathway activation acting as an angiogenic 

switch.[47,23] In ischemic hearts, disease exosomes 

mediated delivery of miR-132 causes therapeutic 

angiogenesis.[48,49] Increased expression of miR-132 

induced by isoproterenol is related to CREB 

phosphorylation by activation of mitogen-activated 

protein kinase pathway (MAPK/ERK).[50,51] On the 

other hand shreds of evidence showed that miR-132 has 

no major effect on cardiac capillary densities and on 

angiogenesis.[34,52] Even induction of antimiR-132 

leads toward improved capillary density in the pressure 

overload-induced ischemic cardiomyopathy in the 

porcine animal model.[53]  

 

Heart Failure (HF)  

Heart failure (HF) is an intricate set of clinical 

disorders, which engenders faulty cardiac structure or 

dysfunction resulting in either ventricular filling or 

compromised ejection function.[54] Multiple heart 

diseases with clinical manifestations of fluid retention, 

dyspnoea, and fatigue. end up with HF. Owing to high 

indisposition and deaths from HF deaths no 

predominantly idyllic treatment plan.[55] Sarcoplasmic 

endoplasmic reticulum calcium ATPase 2 (SERCA-2) 

plays an important in cardiac muscle contraction and 

relaxation and impairment in the SERCA-2 expression 

can lead to cardiac impairment.[56] MiR-132/212 is 

found to be a regulator of SERCA-2 expression.[57] 

Previously it is documented that miR-132 down 

regulates SERCA2 activity by directly inhibiting the 

PTEN which is a direct target of miR212/132 and loss of 

function in cardiac cells leads to havoc decrease in 

cardiac contraction.[58,59] MiR-132/212 KO mice 

showed increased cardiac muscles contractility and 

defaulted expression of miR-132/212 along with 

SERCA-2 in the patients with end-stage HF leads to 

dilated, ischemic and hypertrophic 

cardiomyopathies.[60] Plenty of evidence suggested that 

miRNAs are involved in heart failure.[15] APCs 

transplantation anti-fibrotic and pro-angiogenic actions 

are mediated by miR-132 in-vitro in hypoxia and a 

murine model of MI.[61] For the first time when 

antimiR-132 has injected into an animal model, the level 

of FOXO3 regenerated alongside cardiac dilation, 

reduced cardiac mass, and left ventricular hypertrophy 

were reported.[62] Apoptosis resulting from cardiac 

stress, such as the case in case myocardial infarction, 

subsidizes an irreparable cardiomyocyte loss following 

adverse cardiac remodelling. It is well established that 

miR-132/212 frolics an anti-apoptotic role by triggering 

the phosphatidylinositol-3 kinase/protein B signalling 

pathway in cardiomyocytes.[52] Nrf2 a leucine zipper 

protein is called nuclear factor erthroyd2 related factor 2 

which is responsible for the cellular resistance against 

oxidants showed increased expression during antimiR-

132 treatment in the porcine model of pressure 

overloaded induced HF. Nrf2 prevents maladaptive 

cardiac refashioning and HF also conserves cardiac 

fibroblast and cardiomyocytes function.[63,64] 

Irrespective of this study Masson et al., documented 

inverse results. They analysed the circulating level of 

miR-132 level in 953 symptomatic and chronic patients 

with HF and documented higher circulating levels of 
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miR-132. MiR-132 plasma level was independently 

associated with increased HF severity and envisaged 

lesser rates of fatal and non-fatal HF events. Following 

considerable risk factors (clinical, demographic, and 

echocardiographic) adjustments and standard N-terminal 

pro-B type natriuretic peptide (NT proBNP) 

concentration, miR-132 showed the coalition with HF 

hospitalization (confidence interval = 0.66 to 0.95, HR = 

0.79, 95% and p = 0.01). NT proBNP and B-natriuretic 

peptide (BNP) both are considered the standard test for a 

confirmed diagnosis of HF.[65] In addition, miR-132 

enhanced risk determination far from conventional risk 

elements for heart failure (HF) alongside the continual 

reclassifying index of 0.205 with a p-value of 

0.001.[66,67] MiR-132 overexpression causes HF 

hospitalization and CVD deaths. MiR-132 inhibition 

results in improved cardiac remodelling in patients with 

non-ischemic heart failure (IHF). miR-132 inhibition by 

antimir-132 resulted in improved cardiac improved 

cardiac (systolic and diastolic) function in the animal 

models bylling.[68]  

 

Cardiac fibrosis (CF) 

Evidence revealed that angiotensin II regulates 

the expression of miR-132/212 in hypertensive humans 

and rats. the angiotensin II receptor (AT1R) signalling 

plays an intrinsic role in the regulation of miR-132 and 

miR-212 through activation of the heterotrimeric G 

protein known as Gαq dependent signalling pathway in 

HEK293N cells.[69] promoting myocardial fibrosis.[70] 

Indeed in bypass-operated patients, AT1R blocker 

treatment caused the downregulation of miR132 and also 

miR-212 in human arteries.[71] Previously it is proved 

that the miR-132/212 family regulates autophagy of 

cardiomyocytes and HF by regulating transcription of 

FoxO3 which is a pro autophagic and anti-hypertrophic 

transcription factor (TF) present in 

cardiomyocytes.[72,73,74] MiR-132 has a Profibrotic 

nature which was confirmed by Schimmel et al., who 

confirmed that miR-132 enhances the proliferation and 

migration of the cardiac fibroblasts which it might be 

possible due to repression of autophagy by FoxO3 

targeting.[75] Opposite to these findings, some studies 

have reported downregulation of miR-132 in HF mice 

and also Angiotensin II treated cardiac fibrosis. MiR-132 

upregulation promotes inhibitory effects on cardiac 

fibrosis in rats with MI-induced HF. The same inhibitory 

effect was reported in the canine model with atrial 

fibrillation and also observed in the rats with dilated 

cardiomyopathy induced by doxorubicin.[76,77,70] 

Animal studies have shown that Ang-II converting 

enzyme blocker Ramipril a drug used for the acute 

kidney injury disease treatment also show cardio 

protective roles like fibrosis, apoptosis and cardiac 

hypertrophy by partial attenuation of miR-132 

expression.[78] Profibrotic factor called TGF-β1 has a 

potent role in the fibrosis promotion and plays multiple 

roles in fibrosis remodelling via smad dependent 

pathways in various number of diseases.[79,80] During 

HF or myocardial ischemia, TGF-𝛽1 signaling can 

induce fibrosis of cardiac fibroblasts and promote the 

synthesis of collagen and fibronectin, finally promoting 

myocardial fibrosis.[81] 

 

Myocardial Infarction (MI) 

It is also reported that miR-132 is 

downregulated in the cardiac cells of MI-infected rats. 

Increased regulation of miR-132 leads to inhibition of 

apoptosis of cardiomyocytes and pathological cardiac 

remodelling. These beneficial effects are achieved 

supposed to be achieved by miR-132 mediated 

repression of interleukin-1β.[82] MiR-132 

overexpression inhibits H2O2 mediated oxidative stress 

in the H9C2 cell lines resulting in improved apoptosis 

and cell feasibility under in-vitro environment I/R 

induced AMI in-vivo.[64,83] Cardiac fibroblasts are 

considered as the most numerous cardiac cells 

accounting for nearly 70% of the entire number of 

cardiac cells.[84,85] APCs transplantation anti-fibrotic 

and pro-angiogenic actions are mediated by miR-132 in-

vitro in hypoxia and a murine model of MI.[61] Li et al., 

estimated the lower expression of miR-132 which was 

inversely related to the cTnI in 35 patients compared 

with 55 parallel control in the early phase of AMI and the 

receiver operating curve (ROC) intimated that miR-132 

can be a likely biomarker for AMI untimely phase 

detection.[86] Chen et al., conducted a study in which 

they had shown a decreased level of miR-132 within a 

week of post-MI. In miR-132 KO mice the infarct size 

was greater than the wild-type mice and worse cardiac 

function was observed at 14 and 28 days. But when a 16 

mg/kg dose of miR-132 mimic was injected then the 

infarct size was reduced and cardiac function also 

improved on day 28 following MI remodelling.[87] 

Conversely, it is also documented that miR-132 

overexpression firstly increases at 12 h of post-MI and 

then starts to decrease at 24 h, but increases 

inconsequentially again within 1 month of post-MI. 

Though miR-132 loss improved cardiac contractility in 

MI mice, it also reduced cardiomyocytes angiogenesis 

and also their survival, eventually not improving general 

cardiac performance and fibrosis remodelling in 4 weeks 

of post-MI mice as compared with wild-type one.[88] 

Long non coding RNA muscle blind like splicing 

regulator 1 antisense RNA 1 (LncRNA MBNLA–AS1) 

negative regulates miR-132 and SOX4 which is a SRY-

related high mortality group box 4 is a straight target of 

miR-132-3p and is regulated by LncRNA MBNLA–AS1 

via mirR-132-3p. enhanced expression of SOX4 plartilay 

reduces the apoptotic effect of LncRNA MBNLA–AS1 

in myocardial cells and LncRNA MBNLA–AS1 in case 

of acute myocardial infarction (AMI).[89] 
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Fig.2: Inhibitory Role of mir-132 in regulation of different Genes in CVD Types 

 

Myocardial Ischemic Reperfusion Injury I/R 

MiR-132 inhibition by targeting silent 

information regulator type 1 gene (SIRT1) leads to 

activation of peroxisome proliferator-activated receptor-

gamma 1 alpha coactivator (PGC1α) signalling resulting 

in oxidative stress inhibition and impression of 

interleukin-1 caspase-1, nucleotide oligomerization 

domain-like receptors, pyrin domain containing 3 

(NLR3P) and mitigating myocardial ischemic 

reperfusion injury (I/R).[90] MiR-132 overexpression 

inhibits H2O2 mediated oxidative stress in the H9C2 cell 

lines resulting in improved apoptosis and cell feasibility 

under in-vitro environment I/R induced AMI in-

vivo.[64,8] Intracellular delivery of miR-132 after 

ischemic injury improves endothelial graft survival and 

also blood perfusion.[91]  

 

Acute Coronary Syndrome (ACS) 

In acute coronary syndrome (ACS) two entities: 

unstable angina pectoris (UAP) and acute myocardial 

infarction are present. Karakas et al., initially evaluated 

circulating miR-132 extent and cardiovascular events in 

1112 patients having CAD. Out of 1112 patients, there 

are stable angina pectoris (SAP) patients 682, and 430 

the acute coronary syndrome. After 4 years of median 

follow-up, Cox regression evaluation twiddle for gender 

and age showed that miR-132 has accurately forecasted 

cardiovascular death (p = 0.022, HR = 2.85 per 1 SD 

increase). C-statistics manifested sublime values of 

cardiovascular mortality (AUC = 0.737 for miR-

132).[92] Zeller et al., documented a lower expression 

level of miR-132 in UAP patients (n = 10).[93] 

 

 

Diabetic Cardiac Myoangiopathy (DM) 

Rawal et al., demonstrated that miR-132 

impairment alongside miR-126 is an initial change in the 

diabetic heart molecular signalling causing 

proangiogenic and antiangiogenic genes dysregulation. 

These gene modification results in the development of 

diabetic microangiopathy.[94] MiR-132 low and 

transcription factor 5 (E2F5) high expression levels are 

reported in the VSMCs obtained from diabetic rats or 

treated with high glucose. In this case upregulation of 

miR-132 results in the E2F5 down-regulation which 

proved to be beneficial in the proliferation and migration 

inhibition of high glucose VSMCs or diabetic rats.[95] 

 

Role of miR-132 in other types of CVD  

Pulmonary arterial hypertension (PAH) 

Pulmonary arterial hypertension (PAH) is a progressive 

disease caused by aberrant remodelling of smooth 

muscle cells (PASMCs) of small pulmonary arteries.[41] 

MiR-132 inhibits the PASMCs proliferation by directly 

targeting phosphatase and tensin homolog (PTEN) which 

is to be disclosed in the development of PAH. So, miR-

132 by regulating PASMCs via targeting PTEN can be 

used as a therapeutic target for PAH treatment.[96]  

 

Calcific valvular heart disease or (CVHD) 

Calcific valvular heart disease or CVHD which 

is considered as third most cardiovascular pathology 

after hypertension and CAD can be treated with 

adventitial pericytes (APCs) which have shown great 

therapeutic potential in models of MI and ischemic limb 

injury.[97,98,99,100] 
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Ischemic Heart Disease (IHD) 

Ma et al., documented that miR-132 delivery 

via exosomes in the mesenchymal stem cells derived 

exosomes (MSCDs) enhances the process of 

angiogenesis in peri-infarcted zone and improves heart 

function.[101]  

  

Towards clinical applications of miR-132 in CVD 

MiRNAs at the serum levels are very stable 

towards harsh conditions such as high temperature, 

boiling, changes in pH, freezing-thawing effect, proteins 

that bind RNA, high-density lipoproteins, and extended 

cold storage.[102,103 ,104] Irrespective of studies that 

had demonstrated that miR-132 can be used as a 

biomarker for the detection of CVD, a lot of factors have 

to be addressed such as the effect of drugs, food, age, and 

gender whether such factors affect miR-132 or not before 

clinical applications. MiR-132 showed differential 

expression patterns in different CVD types so the 

threshold biomarker potential has to be determined. 

 

Potential Clinical Benefits of miR-132 Expression 

Inhibition in CVD 

Various studies have documented that 

overexpression of miR-132 is involved in various 

physiological and pathophysiological of CVD. MiR-132 

overexpression causes HF hospitalization and CVD 

deaths. MiR-132 inhibition results in improved cardiac 

remodelling in patients with non-ischemic heart failure 

(IHF). miR-132 inhibition by antimir-132 resulted in 

improved cardiac (systolic and dismproved cardiac 

(systolic and diastolic) function in the animal models by 

miRNA sponge aiming tmiR-132/212 has effectively 

reduced cardiac hypertrophy induced by pressure 

overload in-vivo and showed better in-vitro effectiveness 

than present gold average antagomiRs in obstructing 

miRNA function.[105] No longstanding useful effect of 

miR-132 on cardiac function has been documented after 

permanent coronary ligation in the mice model (Lei et 

al.,, 2020). For the first time when antimiR-132 has 

injected into an animal model, the level of FOXO3 

regenerated alongside cardiac dilation, reduced cardiac 

mass, and left ventricular hypertrophy were reported.[62] 

In a study, when CHF pigs were administered with 

intravenous CDR132L to 1 month after MI for 3 to 5 

months and measured the effectiveness, the study 

established that CDR132L injection achieved 

considerably reverse cardiac remodelling, as 

demonstrated by abridged left ventricular end-systolic 

volume also left atrial volume on MRI scan and reduced 

myocardial interstitial fibrosis and cardiomyocyte 

mass.[68] antagomiR-132 treatment of pressure 

overload-induced cardiomyopathy porcine model 

showed improved capillary density.[53] 

  

Despite the fact that miR-132 targeting by 

anitmiR-132 in large animals improved cardiac 

remodelling and also improved cardiac function [68], 

miR-132 KO has also shown no long-term beneficial 

cardiac function.[88] miRNA sponge especially 

targeting the miR-132 has shown more effective to 

attenuate pressure overload-induced cardiac hypertrophy 

(CH) than the traditional gold standard animiR-132 

inhibition technique.[105] So the optimal strategy for 

miR-132 inhibition remained unclarified.  

 

Therapeutic potential of CDR132L mediated miR-

132 blocking in CVD 

antimiR-132 has the significant potential for 

inhibiting the effect of miR-132.[62,53] Furthermore, the 

inclusion of long noncoding RNA increases the 

thermodynamic stability of the duplex creation with 

existing target mRNA. The protective and other 

pharmacodynamics parameters of the CDR132L were 

assessed in a randomized phase 1b placebo-controlled 

study (NCT04045405). CDR132L is an earlier miR-132 

inhibitor antisense microRNA.[106]  

 

Hinkel et al., settled a conventional unusual 

preclinical porcine animal model having non-ischemic 

pressure overload hypertrophy by inserting an 

endovascular reduction stent in the descendant thoracic 

aorta and evaluated the effectiveness of antimiR-132 

intracoronary administration at the stent embedding time 

and later weeks. They found that antimiR-132 mediated 

decreased cross-sectional area of cardiomyocyte, 

hindered fibrosis, recovered capillary density, and left 

ventricular ejection fraction (LVEF). The value of 

antimiR-132wascontrol was 48.9 ± 1.0% vs 36.1 ± 1.7% 

respectively at the 8 weeks’ time pass.[53,107] Hinkel et 

al., results showed that CDR132L has significantly 

treated cardiac hypertrophic disease which is resulted by 

non-ischemic etiologies like systematic hypertension or 

aortic stenosis [108]. For inhibiting miR-132 CDR132L 

synthetic long noncoding RNAs (LNR) is the first 

antisense oligonucleotide inhibitor which is also 

optimized (antimiR-132).[109,62] In cardiac vascular 

diseases, a higher expression of miR-132 is involved in 

pathological cardiac remodelling. In a study post-MI, HF 

pig animal models undertook 90 mi left anterior 

descending artery occlusion trailed by reperfusion (I/R) 

the pigs one-month post-MI were put under treatment. 

For the assessment of efficacy biomarkers, 

hemodynamic and magnetic resonance imaging tests 

were performed. Animals were injected with CDR132L 

through intravenous injection on the monthly basis for 3 

to 5 months. A substantial EF improvement was 

observed in the treated animal groups. MRI results 

showed that the EF value up surged to 7.96% and 7.14% 

after 3 and 5 months of treatment respectively. 

Moreover, CDR132L likewise improved diastolic 

function as demonstrated by reduced edge-diastolic 

pressure-volume relation and the minimum rate of 

variation of left ventricular (LV) pressure demonstrated 

through hemodynamic assay and decreased level of 

plasma in NT-proBNP.[68] 

 

Täubel et al., conducted a first human Phase 1b 

randomized, double-blind, placebo-controlled 

therapeutic trials to assess pharmacokinetic 
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characteristics, and effectiveness of CDR132L in chronic 

ischemic heart failure (CHF) patients by targeting miR-

132. A total of 28 patients had left ventricular ejection 

fraction (LVEF) of 30% to 50% and NT-proBNP more 

than 125 ng/L. Age of 30 to 80 years old tangled in this 

study and indiscriminately assigned at 5:2 to the 

CDR132L group (cases total cases, in each cohort with 5 

patients getting 0.32, 1, 3, and 10 mg/kg body weight of 

CDR132L, correspondingly) and placebo group (8 cases 

with 0.9% saline). Following 6 weeks screening 

duration, subjects were given two dosages of CDR132L 

or placebo via intravenous injection on 1 and 28 days 

correspondingly, and the trial was completed on the 112th 

day. In this study, CDR132L was inoffensive and 

tolerated well. CDR132L clinical treatment stemmed in 

a constant and strident decrease in plasma miR-132 

magnitude in a dosage-dependent fashion. For the 

patients with ischemic chronic heart failure getting 

CDR132L standard clinical treatment, CDR132L can 

additionally decrease the median level of NT-proBNP up 

to 20% and tapered the QRS wave compared to placebo, 

and increases inessential cardiac fibrosis biomarkers 

additionally.[106]  

 

It will be precocious to conclude whether this 

method of miRNA targeting will be beneficial in humans 

or not. The safety and efficacy of CDR132L according 

to the above-reported studies dispense a great incitement 

for more research in HF patients.[110] 

 

Potential Clinical Benefits of miR-132 

Overexpression in CVD 

Present documented literature suggested that 

overexpression of miR-132 is involved in various cardiac 

pathologies and this is a reason that most therapies based 

on miR-132 inhibition and very less studies documented 

the miR-132 overexpression benefits in cardiac events. 

Apoptosis resulting from cardiac stress, such as the case 

in case myocardial infarction, subsidizes an irreparable 

cardiomyocyte loss following adverse cardiac 

remodelling. It is well established that miR-132/212 

frolics an anti-apoptotic role by triggering the 

phosphatidylinositol-3 kinase/protein B signalling 

pathway in cardiomyocytes.[52] In-vitro overexpression 

of miR-132 in cardiomyocytes causes increased 

resistance against hypoxia, cell (H9c2) death due to 

glucose deprivation, and hydrogen peroxide 

(H2O2).[64,77,88] It is also reported that miR-132 is 

downregulated in the cardiac cells of MI-infected rats. 

Upregulation of miR-132 leads to inhibition of apoptosis 

of cardiomyocytes and pathological cardiac remodelling. 

These beneficial effects are achieved supposed to be 

achieved by miR-132 mediated repression of interleukin-

1β.[82] The harmful effects of drugs on the 

cardiomyocytes can be diminished by overexpression of 

miR-132. In a study cardiomyocyte toxicity induced due 

to doxorubicin had been reversed by miR-132 

overexpression. A mouse model was made doxorubicin 

mediated cardiomyocytes toxic and miR122/132 

enhanced expression had been achieved by adenovirus 

(AVV). Resultantly there was an improved mass and 

wall thickness of LV, improved EF, and reduced 

apoptosis induced by doxorubicin.[111]  Chen et al., 

conducted a study in which they had shown a decreased 

level of miR-132 within a week of post-MI. In miR-132 

KO mice the infarct size was greater than the wild-type 

mice and worse cardiac function was observed at 14 and 

28 days. But when a 16 mg/kg dose of miR-132 mimic 

was injected then the infarct size was reduced and cardiac 

function also improved on day 28 following MI 

remodelling.[87] MiR-132 was essentially expressed by 

adventitial pericytes (APCs) and overexpressed resulting 

in enhanced phosphate stimulation, causing APCs’ 

confrontation to calcification by reducing the expression 

of many target genes related to osteogenic 

differentiation. Swine cardiac valve treatment with 

APCs-derived acclimatized medium provides them with 

resistance against enhanced phosphate-induced 

osteogenesis. This effect is refuted with the use of a miR-

132-silenced APCs medium.[112] 

 

Conversely, it is also documented that miR-132 

overexpression firstly increases at 12 h of post-MI and 

then starts to decrease at 24 h, but increases 

inconsequentially again within 1 month of post-MI. 

Though miR-132 loss improved cardiac contractility in 

MI mice, it also reduced cardiomyocyte's angiogenesis 

and also their survival, eventually not improving general 

cardiac performance and fibrosis remodelling in 4 weeks 

of post-MI mice as compared with wild-type one.[88] 

 

Limitations of miR-132 delivery or inhibition and 

future perspectives 

Multiple animals and human studies showed 

that miR-132 inhibition can reduce HF hospitalizations 

and deaths due to CVD. But it is still not clear whether 

inhibition of miR-132 in ischemic and non-ischemic HF 

can improve cardiac remodelling and it has to be 

addressed in future studies. Although administration of 

antimiR-132 can prevent short-term systolic and 

diastolic cardiac function the fact is that knocking down 

of miR-132 has no long-term beneficial effects in MI 

after the coronary artery ligation in mice models.[88] 

miR-132 is widely expressed and has different effects on 

different cell types and different organs.[113] For 

suppression of miR-132 expression in cardiac 

hypertrophy causes a delay in wound healing and 

neurodegenerative diseases.[114,47] Thus, further 

studies are required for the assessment of the safe effects 

of antimiR-132 target-specific administration. Although 

various approaches such as adeno-associated virus, 

liposomes, and miR-132 sponges are used for the 

effective delivery of miR-132 [9,39] but still none of 

these approaches is considered a standard approach for 

miR-132 delivery. In the future, more research on 

optimal therapeutic strategies and safe drug delivery is 

required to be documented before implementation into 

clinical practices to prevent heart failure.  
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CONCLUSION  
The above-presented studies documented that 

miR-132 expression plays a significant role in cardiac 

pathologies. The deregulation of miR-132 drives toward 

cardiac pathology. miR-132 has great biomarker and 

therapeutic promises in myocardial infarction (MI), 

atherosclerosis (AS), unstable angina pectoris (UAP), 

infarcted heart (IH), ischemic injury (I/R), and heart 

failure (HF). In cardiac stress and various pathological 

conditions, the miR-132 level gets increased and targets 

SIRT 1, PTEN, FoxO3, and SERCA2A are 

downregulated as mentioned in table 1. CDR-132L along 

with other antimiR-132 has significant down regulatory 

effects on miR-132 leading to improved cardiac function 

by reducing cardiac mass. But the reported studies 

contain a small sample size and most studies have been 

conducted on animal models. Besides these various 

studies have used cell lines in their studies. So, the 

therapeutic and diagnostic potential of miR-132 in 

various CVD types remained yet unclear. 
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