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Abstract: Benzoporphyrin derivatives have an enormous potential for application in natural and applied sciences. They 

act as excellent model for photosynthetic reaction center. They are an intermediate between porphyrins and 

phthalocyanines. Synthesis of benzoporphyrins have remained a big challenge in the field of research. Various synthetic 

methodologies are used in the past thirty to forty years, several advances have been developed to overcome the 

previously used procedure. This review is intended to cover the important synthetic utility of TBPs. 
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INTRODUCTION 

Porphyrin and their complexes have received 

considerable attention, because of their interesting excited 

state chemical properties, electron-transfer processes, 

biological processes, photo-physics and catalytic 

behaviours [1]. Porphyrins exist in various states in nature 

and act as centres of energy transfer and charge transfer 

processes. In nature, the photosynthetic reaction centers 

perform multistep electron transfer processes with high 

quantum efficiency and long lifetimes of the final charge 

separated states of around 1s [2]. From the structural point 

of view, the simplest representative of this class, 

tetrabenzoporphyrin (TBP), is an intermediate between 

“regular” nonextended porphyrins and phthalocyanines, 

partially retaining properties of both and providing a 

useful point in structure/property comparative studies. 

Tetrabenzoporphyrins have been studied substantially 

more than other extended porphyrins. Their unique 

photophysical [3,4], optoelectrochemical [5,6] and other 

physicochemical properties [7,8] have attracted interest in 

different areas. 
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The tetrabenzoporphyrins and related compounds 

have been the subjects of extensive studies as agents for 

PDT [9] optical limiters [10] and other types of nonlinear 

optical materials [11] luminescent markers for oxygen 

[12] and pH [13] in biomedical imaging, etc.  

 

Benzoporphyrin acts as a photochemical hole-

burning material, since it gets oxidized easily than other 

porphyrins due to enlargement of π-conjugated system; 

therefore, it becomes a better photochemical hole-burning 

material. The synthesis and properties for photosynthetic 

reaction center model compounds was a subject of 

intensive research [14-16]. Because the electronic 

spectrum of benzoporphyrin is similar to that of 

chlorophyll [17], benzoporphyrin may become a better 

model compound of the photosynthetic reaction center 

than tetraphenylporphyrin.  

 

Compared to regular porphyrins and phthalocyanines, 

the chemistry of tetrabenzoporphyrins and related 
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compounds has been little investigated. The meso-

substituted tetrabenzoporphyrins are now intensively 

studied. However, studies on the properties and 

applications of these macrocyclic compounds have often 

been faced with difficulties because of the low solubility 

in common organic solvents [18] and the poor 

compatibility with polymeric materials. These solubility 

problems may be overcome by introducing meso-

substituents as in the case of porphyrin, the solubility of 

which is improved by tetraphenyl-substitution at the 

meso-positions.  

 

The symmetrical and unsymmetrical benzoporphyrins 

can be synthesized by different approaches. Approaches to 

the TBP system [19] can be divided as follows.  

 

Low-temperature synthetic approaches  

The first approach mimics the standard porphyrin 

synthesis, i.e., condensation of pyrroles with meso-carbon 

donors. This includes low-temperature synthetis of 

tetrabenzoporphyrins by the condensation of aromatic 

aldehydes with isoindole synthons where the benzene ring 

is present in the latent form. The subsequent disclosure via 

retro-Diels-Alder reaction [20-22] or oxidation [23] is 

accomplished after formation of porphyrin ring (Scheme 

1). However, the corresponding isoindole synthons (e.g., 

tetrahydroisoindoles) are fairly unstable and difficultly 

accessible. So the use of such unstable synthons should be 

avoided. To overcome such problem another approaches 

were given in which use of bicyclooctadiene-fused pyrrole 

were oxidized by thermal retro-Diels-Alder reaction [24]. 

But these methods still suffered from a common serious 

drawback, which was the harsh conditions required for the 

aromatization step (either prolonged heating of metallated 

hexadecahydroTBP precursors with DDQ leading to 

partial overoxidation in the tetrahydroisoindole method, or 

heating over 200 °C to effect ethylene extrusion). Thus, 

the scope of these approaches was limited, which resulted 

in losses of valuable target porphyrins at the final stage of 

a long synthesis. Use of 4,7-dihydroisoindole which is a 

sofar- unknown simple pyrrole derivative as the precursor 

for the synthesis of TBPs led to the spontaneous 

aromatization of annelated rings and allow the mild 

reaction conditions of the final aromatization step [25]. Ito 

et al proposed the synthesis of meso-Chlorinated 

bicyclo[2.2.2]octadiene-fused porphyrins by chlorination 

of the free base TBCODP-H2 using N-chlorosuccinimide 

(NCS) followed by thermal retro-Diels-Alder reaction 

[26]. 

 

High temperature assisted template directed synthetic 

approach: 

First representatives of this group of compounds 

were reported in 1981 by Kopranenkov et al [27] who 

synthesized the zinc complex of meso-

tetraphenyltetrabenzoporphine from phthalimide and 

phenylacetic acid in the presence of zinc acetate. The 

authors assumed formation of partially meso-substituted 

products also, i.e., zinc complexes of mono-, di-, and 

triphenyltetrabenzoporphines. Since the reaction mixture 

consists of acetate ion as a source of methylene 

component which explained the formation of side 

products. Later on, the synthesis of meso-phenyl-

substituted tetrabenzoporphines was studied in detail by 

Ichimura et al [28] By fusion of potassium phthalimide 

with zinc phenylacetate at 360 
o
C for 1 h; the authors 

obtained a mixture of zinc complexes of meso-

phenylsubstituted tetrabenzoporphines. 

 

 

Moreover, the nature of such precursors and the 

possibility for further transformations restricts the number 

of substituents that could be introduced. The second group 

of methods, which subsequently led to a much wider array 

of TBP’s, stemmed from basic phthalocyanine 

synthesis[3,29-30] In these methods the meso-carbons in 

the porphyrin skeleton come not from electrophilic 

carbonyls, as in traditional porphyrin condensations 

(Rothmund/Adler-Longo/Lindsey), but from nucleophilic 

CH acids. As a result, unstable isoindoles can be replaced 

by readily available phthalimides or their derivatives. One 

version of this approach, developed by Lukyanets and co-

workers [31], appeared useful for the synthesis of 

Ar4TBP’s. According to their method, phthalimide is 

condensed with CH acids (e.g. arylacetic acids) in the 

presence of metal salts, which act as templates (Scheme 2 

& 3).  

 

However, the conditions required for the 

condensation were so harsh (fusion at 350-400 °C) that 

only inert substituents in the starting materials, such as 

alkyl or halogen could sustain the procedure.  

 

Zinc complexes of meso-tetraalkyltetra 

benzoporphyrins were synthesized for the first time in 

1984 following a three-step procedure utilizing 

monoalkylmalonic acids as starting compounds [32]. 

However, the large number of steps and low accessibility 

of the initial reagents stimulated search for more practical 

methods for the synthesis of meso-

tetraalkyltetrabenzoporphyrins. It is known that metal 

complexes of mesotetraaryltetrabenzoporphyrins can be 

obtained by template condensation of phthalimide with 

excess arylacetic acid in the presence of zinc(II) 

hydroxide[33]. To synthesize zinc complexes of meso-

tetraalkyltetrabenzoporphyrins in such a way, i.e., by 

reaction of phthalimide with excess aliphatic carboxylic 

acid zinc salt, were successful only in the case of lower 

carboxylic acids, propionic and butyric, while the 

reactions with zinc(II) octanoate, decanoate, and 

octadecanoate failed. Presumably, the reason is that it was 

impossible to attain sufficiently high temperature (320–

330°C) which was necessary to complete the process 

because of the low boiling point of the reaction mixture 

(250–270°C). Various derivatives of TBPs such as alkyl, 

alkyloxy, aryl and triphenyl aryloxy TBPs have been 

synthesized via this method [34-35] 
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Scheme 1: Reterosynthetic analysis of TBP systems 
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Scheme 2: Synthesis of benzoporphyrins 



 

 

 

Mishra S et al., Sch. Acad. J. Biosci., 2014; 2(4):255-261 
 

    258 

 

 

NH

O

O

N CH3

NHC

NH

O

NH

O

N
ON

+

-H2O

NH

O

O

+ RCH2COOH

C

NH

O

COOH
R

NH

O

N

O

R

Metallobenzoporphyrin

Zn salt

Zn salt

 
Scheme 3: Synthetic pathway for TBP via this approach 

 

Synthetic approach of unsymmetrical 

tetrabenzoporphyrins  

The available information on unsymmetrical 

tetrabenzoporphyrins is concerned mainly with meso-aryl-

substituted derivatives [36-38] while those having no 

substituents in the meso positions have been studied to a 

considerably lesser extent. Monobenzoporphyrin and its 

metal complexes (which were detected for the first time in 

oil [39] and were then prepared by synthetic methods [40] 

may be regarded as first representatives of that group of 

compounds. The procedure proposed [41] is based on the 

Diels–Alder reaction of protoporphyrin IX dimethyl ester 

with dimethyl acetylenedicarboxylate, followed by 

elimination of the angular methyl group from the adduct. 

However, this procedure has a limited applicability; 

therefore, Sapunov et al [42] later proposed to obtain 

unsymmetrical benzoporphyrins by joint condensation of 

imides derived from two different ortho-dicarboxylic 

acids. 
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Scheme 4: Reagents and conditions: a, DMM, Py, 140 

°C, pressure tube, 85%; b1, (i) PhSCl. CH2Cl2; (ii) Et3N; 

(iii) Oxone, MOH, 86% for three steps; b2, (i) PhSCl, 

CH2Cl2; (ii) MCPBA; (iii) DBU, 81% for three steps; c, 

CNCH2CO2 tBu, tBuOK, THF, Ar, 0 °C, 80–95%; d, 

TFA– CH2Cl2, Ar, rt, 35–40%; e, (i) Y = C6H4CHO, 

BF3·Et2O, CH2Cl2; (ii) DDQ, 25–35% for two steps; d + 

e, Y = C6H4CHO (X = H), AcOH, TosOH, CH2Cl2, 8–

12%; f, (i) M(OAc)2, MeOH–CHCl3; (ii) DDQ, THF or 

MeCN, reflux, M = Zn, Cu, Ni, 98% for two steps 

 

Gottumukkala et al synthesized water-soluble 

nido-carboranyl-TBP in six steps and 43% overall yield 

from butanopyrrole and carboranylbenzaldehyde using 

above mentioned approach [43]. 

 

A drawback of this method is that the reaction 

gives a mixture of porphyrins which are often difficult to 

separate on a preparative scale. The most reasonable 

procedure for the synthesis of unsymmetrical 

benzoporphyrins is likely to be stepwise condensation 

[44]. It is known that structurally related unsymmetrical 

porphyrazines containing both electron-donor and 

electron-withdrawing substituents and possessing a high 

dipole moment are very promising for use in various fields 

of science and techniques.  

 

      Aza-derivatives of meso-alkyl substituted 

tetrabenzopophyrines have been synthesized in literature 

with the purpose to determine the influence of nitrogen 

atoms in meso-positions of the tetrabenzoporphyrine 

macrocycle on the physico-chemical properties of 

porphyrines [45]. 

 

 
Scheme 5: Aza-derivatives of meso-alkyl substituted tetrabenzopophyrines 

 

The molecular structure of the metallo-

tetrabenzoporphyrins and H2TBP are as follows. Benzene 

rings attached to the pyrroles provide the structural 

similarity of the tetrabenzoporphyrins to the 

phthalocyanines. The symmetric structure of MgTBP and 

ZnTBP puts them in the point group D4h. According to 

Gouterman, the four-orbital model predicts a degenerate 

S0 →S1, transition (Q band) and a degenerate S0→S2, 

transition (Soret or B band), where both transitions are 

localized in the molecular plane [46]. The strong Soret 

and Q bands arise in part from the delocalized nature of 

the π-electrons shared by the 18 or 16 conjugated bonds in 

the ring. The Q transition is made possible by 

configuration interaction mixing. The addition of the 

benzo groups to the basic porphyrin ring presumably plays 

an important role in the nature of the bands. The increased 

size of the TBPs over the basic porphyrin ring results in a 

predicted red shift of the Soret and Q bands by about 50 

nm, utilizing the modified free electron molecular orbital 

method [47]. 

 

CONCLUSIONS 

We have described the various synthetic 

approaches for tetrabenzoporphyrinoids. Above all 

mentioned methodology two major approaches came into 

light, one is low temperature and another is high 

temperature method. However high temperature is a harsh 

condition and gives rise to several side products but it is a 

one pot condensation while synthesis at low temperature 

includes number of steps which further reduces the yield 

of desired product. So synthesis of TBP is still a 

challenging field for researchers.  
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