Scholars Academic Journal of Biosciences (SAJB)

Sch. Acad. J. Biosci., 2015; 3(4):338-347 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublishers.com

Research Article

ISSN 2321-6883 (Online) ISSN 2347-9515 (Print)

Estimation of urban tree biomass in Pachaiyappa's College, Chennai, India M. Udayakumar, S. Manikandan, T. Sekar^{*}

Department of Botany, Pachaiyappa's College, Chennai - 600 030, India

*Corresponding author Dr. T. Sekar Email: tsekar_bot@yahoo.com

Abstract: A quantitative study was conducted in Pachaiyappa's College to estimate dry biomass of trees. In total, two hectares were studied to estimate tree biomass. All trees with diameter at breast height (dbh) \geq 5 cm were measured and recorded. An available linear log-transformed region-specific regression equation was used to estimate above ground biomass (AGB) of trees in study plots. A total of 74 species spread in 63 genera and 31 families were recorded from a two hectare plot. Collectively, 552 trees (\geq 5 cm dbh; mean tree density 226 trees ha⁻¹) were inventoried from study area. Basal area (BA) of tree stand is 56.13 m² (28.07 m² ha). This study estimated 263.72 Mg tree dry biomass from two hectares. As on January 2014, each tree stored 238.88 kg C in trees. This study is an initial step towards the understanding of ecosystem services and roles of urban forests in Chennai metropolitan city (CMC). **Keywords:** Chennai metropolitan city; Institutional forest; Tamil Nadu; Tree biomass; urban forest.

INTRODUCTION

Urban forests and trees are getting more importance in developing countries. They are the vital components in urban biodiversity and play a major role in the abatement of global warming. Green house gases exhausted from fossil-fuels is one of the major contributors to surface temperature increase across the globe [1-3]. It has been shown that annually 2.6 billion Mg of carbon is accumulating in the atmosphere [4]. The current CO_2 concentration (400 ppm) is twice as high as it was only in eighteen thousand years ago, and 30% higher than pre-industrial concentration [5]. Trees with their autotrophic nature absorb CO₂, using it for metabolism and store excess in their organs as biomass [6]. They store approximately 90% of all biomass carbon on earth (c. 500 Giga ton C), this amount is not so different in size from sum of C in the atmosphere. Thus, atmospheric C content is highly sensitive to forest disturbances as well as forest biomass enrichments [7]. As emphasized by Moulton and Richards [8], Nowak [9,10] trees are the relatively inexpensive option that can significantly reduce CO₂ concentration and substantially purify the air in urban environment. To disseminate the importance of urban forests and trees many researchers did invaluable works across the globe. For instance, works of McPherson et al. [11] shed lights on the importance of urban trees in C sequestration in USA. Chen and Jim [12] and Yang et al. [13] researched on China's urban environments, reported their values. McPherson and Simpson [14] valued the ecosystem services provided by urban trees (53.17 to 83.38 US dollars/tree/year) in two cities at California, USA. To date very limited data are available for urban

trees and forests in CMC, thus the primary objective of this study was to estimate biomass storage of trees in an institutional forest in CMC.

METHODS

Study area

Chennai Metropolitan city is 34th largest city in the world with the human population of approximately 450 0000 [15]. CMC is one among the four mega-cities of the Indian subcontinent, and the capital city of Tamil Nadu state. The city is experiencing tropical dissymmetric climate and receiving bulk of the rainfall during north-east monsoon (September-December). Mean temperature and rainfall were 24-37 °C and 1300 mm [16]. East-side of the city is bounded by the Bay of Bengal and remaining three sides are bordered with Thiruvallur and Kanchipuram districts. CMC is endowed with rich plant diversity (1039 species) which include both native as well as introduced species. Pachaiyappa's College (PC) situated in heart of the city and endowed with good plant diversity [17, 18]. PC was established in the year 1842, the leading institutions for higher learning in south India. Strict rules and regulations are framed and strictly followed to protect plant lives in PC. Collection of plant materials both living and dead and cutting of trees are banned in PC. The forest type of this region is known as tropical dry evergreen forests (TDEF), at present very less amount of land is under TDEF (Governor's bungalow, Guindy National park. Theosophical society and Indian institute of science campus). Urbanization has reduced most of the native forest areas, however left some remnants here and there

in CMC [18]. Chennai is the least green covered metropolitan city (21%) in India and has very less, 0.46 m^2 green cover/city dweller, it is very less as per WHO norms, it suggests 9.0 m^2 green cover for each city dwellers [19].

Field survey

A two hectare (200m \times 100m) plot was established in PC. The plot was sub-divided into 10m \times 10m workable sub-plots for tree inventories. All trees with diameter at breast height (dbh) \geq 5 cm were measured and recorded. All recorded trees were marked with yellow paint. For multi-stemmed trees, stem diameter was measured individually, basal area (BA) calculated and summed. Tree measurements were undertaken during August 2013 to February 2014.

Estimation of basal area

Basal area (BA) is the area of stem measured at 137 cm above the ground.

i.e., Basal area of stem = Diameter at breast height (dbh) / π (3.14).

Regression equations and estimation of aboveground biomass

An available linear log-transformed regionspecific regression equation was used to estimate above ground biomass (AGB) of trees in study plots [18, 19]. AGB $_{dry}$ = exp (1.9724*LN (DBH) – 1.0717); where, AGB $_{dry}$ is aboveground dry biomass of tree (kg); DBH is stem diameter at breast height (cm); LN is natural logarithm; 1.9724 and 1.0717 are constants. The researchers developed the allometric formula by destructing healthy trees (DBH range 4.45 to 178.7 cm). They followed the guidelines of Pearson et al. [20] to develop regression equation. In the present study DBH of trees ranged from 5 to 176 cm. The coefficient of determination (r²) of allometric equation is high i.e. 0.98. Biomass values were multiplied by 0.50 to get carbon storage value of trees [21, 22].

RESULTS

Tree stand

A total of 74 species spread in 63 genera and 31 families were recorded from a two hectare plot. Collectively, 552 trees (\geq 5 cm dbh; mean tree density 226 trees ha⁻¹) were inventoried from study area (Table 1). *Polyalthia longifolia* was the most represented species with 141 individuals, followed by *Azadirachta indica* (83) and *Peltophorum pterocarpum* (56). While a red-listed tree *Guaiacum officinale*, and south Indian soapnut tree *Sapindus emarginatus* represented by just single individual in PC. Study plot dominated by native species. Evergreen trees are also abundant in PC.

Basal area

Basal area (BA) of tree stand is 56.13 m² (28.07 m² ha). Basal area of individual tree species ranged from 28.74 (=0.003 m²) (*Guaiacum officinale*) to 169953.3 cm² (=16.99 m²) (*Albizia saman*) (Table 2). Likewise, BA of individual family varied from 28.74 (=0.003 m²) (Zygophyllaceae) to 175585.0 cm² (=17.55 m²) (Mimosaceae) in study area (Table 3). The mean BA of trees in study area is 1016.97 cm² (=0.1 m²).

Biomass

This study estimated 263.72 Mg tree dry biomass from two hectares. In a hectare PC stored 131.86 Mg biomass in trees. *A. saman* had more biomass 75707.31 kg followed by *A. Indica* (50203.26 kg) and *Peltophorum pterocarpum* (29476.07 kg) (Table 4).

The percent contribution of individual species to total biomass ranged from a minimum of 0.004% (11.92 kg; *Guaiacum officinale* and *Mangifera indica*) to a maximum of 28.71% (75707.31 kg; *A. saman*). On average, each tree stored 477.76 kg AGB in study plots. Members of the family Mimosaceae stocked a large amount of biomass (80064.68 kg) followed by Meliaceae (50203.25 kg) and Caesalpiniaceae (45779.52 kg). While the families Zygophyllaceae, Ochnaceae and Lythraceae stored least amounts of biomass, 11.92, 16.99 and 19.29 kg respectively in study area (Table 5).

Contribution of families to forest biomass

The members of the family Mimosaceae contributed a higher proportion (80064.68 kg, 30.36%) followed by Meliaceae (50203.26 kg, 19.04%) and Caesalpiniaceae (45779.52 kg, 17.36%) to total biomass.

Carbon storage

As on January 2014, each tree stored 238.88 kg C in trees. Smaller trees (0-7 cm dbh) stored 3.8 to 5.58 kg C, while large trees accumulated, 1655.10 to 2774.60 kg C. Approximately, larger trees stored 500 to 700 times more C than low diameter class.

		Chennai	
S. no.	Botanical Name	Family	Vernacular (Tamil)
1.	Acacia auriculiformis	Mimosaceae	Pencil maram
2.	Achras sapota	Sapotaceae	Sappottaa
3.	Aegle marmelos	Rutaceae	Vilvam
4.	Alangium salviifolium	Cornaceae	Azhinjil
5.	Albizia lebbeck	Mimosaceae	Vaagai
6.	Albizia saman	Mimosaceae	Thoongu-moonchi maram
7.	Azadirachta indica	Meliaceae	Vaeppa maram
8.	Bassia latifolia	Sapotaceae	Iluppai
9.	Bauhinia recemosa	Caesalpiniaceae	Thiruvaatchi
10.	Bauhinia variegate	Caesalpiniaceae	Mandhaarai
11.	Bombax malabarica	Bombacaceae	Ilavampanchu
12.	Caesalpinia coriaria	Caesalpiniaceae	Kodivelam
13.	Caesalpinia pulcherrima	Caesalpiniaceae	Mayirkondrai
14.	Calophyllum inophyllum	Clusiaceae	Punnai
15.	Cassia biflora	Caesalpiniaceae	-
16.	Cassia fistula	Caesalpiniaceae	Sarakkondrai
17.	Cassia roxburgii	Caesalpiniaceae	Karunkondrai
18.	Cassine glauca	Celasraceae	Eeerkolli
19.	Casuarina equisetifolia	Casuarinaceae	Savukku
20.	Citrus aurantifolia	Rutaceae	Elumicchai
21.	Citrus medica	Rutaceae	Naarththankaay
22.	Coccoloba uvifera	Polygonaceae	Kadalthiratchai
23.	Cordia oblique	Boraginaceae	Mookkusali pazham
24.	Cordia sebestena	Boraginaceae	-
25.	Crescentia cujete	Bignoniaceae	Thiruvottukaay maram
26.	Dalbergia spp.	Papilionaceae	-
27.	Delonix regia	Caesalpiniaceae	Senkondrai
28.	Diospyros peregrine	Ebenaceae	Malai sappotta
29.	Eucalyptus spp.	Myrtaceae	Thaila maram
30.	Feronia elephantum	Rutaceae	Vilaa
31.	Ficus elastic	Moraceae	Indhiya rubber maram
32.	Ficus religiosa	Moraceae	Arasa maram
33.	Filicium dicipiens	Sapindaceae	Perani maram
34.	Gliricidia sepium	Papilionaceae	-
35.	Gmelina arborea	Verbenaceae	Kumizha maram
36.	Guaiacum officinale	Zygophyllaceae	-
37.	Guazuma ulmifolia	Sterculiaceae	Thenkaay maram
38.	Ixora pavetta	Rubiaceae	Korivi maram
39.	Jatropha curcas	Euphorbiaceae	Kaattaamanakku
40.	Kigelia africana	Bignoniaceae	Marachcurai
41.	Lannea coromandelica	Anacardiaceae	Udhiya maram
42.	Lawsonia inermis	Lawsonia inermis	Marudhaani
43.	Leucaena leucocephala	Mimosaceae	Thagara maram
44.	Markhamia stipulate	Bignoniaceae	-
45.	Millingtonia hotensis	Bignoniaceae	Maramalli
46.	Mimusops elengi	Sapotaceae	Magizha maram
47.	Mangifera indica	Anacardiaceae	Maamaram
48.	Morinda tinctoria	Rubiaceae	Manjanaththi
49.	Moringa oleifera	Moringaceae	Murungai
50.	Morus indica	Moraceae	Musumusukkai
51.	Murraya koenigii	Rutaceae	Karivaeppilai
52.	Ochna serrata	Ochnaceae	Serundhi
53.	Pheltophorum pterocarpum	Caesalpiniaceae	Manjal kondrai
54.	Phyllanthus acidus	Euphorbiaceae	Nelli maram

Table 1. Binomial, family and vernacular name (Tamil) of trees recorded in Pachaiyappa's College campus,

Udayakumar M et al., Sch. Acad. J. Biosci., 2015; 3(4):338-347

55.	Phyllanthus emblica	Euphorbiaceae	Malai nelli
56.	Pisonia alba	Nyctaginaceae	Latchakotta keerai
57.	Polyalthia longifolia	Annonaceae	Nettilingam
58.	Pongamia pinnata	Papilionaceae	Punga maram
59.	Premna latifolia	Verbenaceae	Munnai
60.	Psidium guajava	Myrtaceae	Koyyaa maram
61.	Pterospermum canascens	Sterculiaceae	Sempulavu
62.	Sapindus emarginatus	Sapindaceae	Soppukaay
63.	Saraca asoca	Caesalpiniaceae	Asoka maram
64.	Spathodea campanulata	Bignoniaceae	-
65.	Sterculia foetida	Sterculiaceae	-
66.	Syzygium cumini	Myrtaceae	Naaval
67.	Tabebuia rosea	Bignoniaceae	-
68.	Tamarindus indica	Caesalpiniaceae	Puliyamaram
69.	Tecoma stans	Bignoniaceae	Sornapatti
70.	Tectona grandis	Verbenaceae	Thekku
71.	Terminalia catapa	Combretaceae	Maattu vaadhumai
72.	Thespesia populnea	Malvaceae	Poovarasu
73.	Vitex altissima	Verbenaceae	Mayilaadi
74.	Vitex negundo	Verbenaceae	Nochchi

S.no	Botanical Name	Basal area (cm ²)
1	Acacia auriculiformis	911.62
2	Achras sapota	60.90
3	Aegle marmelos	161.22
4	Alangium salviifolium	346.81
5	Albizia lebbeck	3680.33
6	Albizia saman	169953.3
7	Azadirachta indica	100195.3
8	Bassia latifolia	882.24
9	Bauhinia recemosa	118.01
10	Bauhinia variegata	787.85
11	Bombax malabarica	8389.88
12	Caesalpinia coriaria	6070.09
13	Caesalpinia pulcherrima	32.88
14	Calophyllum inophyllum	30.97
15	Cassia biflora	161.22
16	Cassia fistula	790.44
17	Cassia roxburghii	3136.96
18	Cassine glauca	1146.49
19	Casuarina equasitifolia	2488.67
20	Citrus aurantifolia	103.34
21	Citrus medica	417.19
22	Coccoloba uvifera	127.38
23	Cordia obliqua	1227.18
24	Cordia sebestena	70.38
25	Crescentia cujete	513.77
26	Dalbergia spp.	4973.24
27	Delonix regia	21373.89
28	Diospyros peregrina	114.96
29	Eucalyptus spp.	8368.63
30	Feronia elephantum	1118.01
31	Ficus elastic	1277.22
32	Ficus religiosa	29477.57
33	Filicium dicipiens	1550.39
34	Gliricidia sepium	286.62

35	Gmelina arborea	175.87
36	Guaiacum officinale	28.74
37	Guazuma ulmifolia	20895.6
38	Ixora pavetta	191.16
39	Jatropha curcas	297.21
40	Kigelia africana	447.85
41	Lannea coromandelica	1214.35
42	Lawsonia inermis	40.49
43	Leucaena leucocephala	1039.72
44	Markhamia stipulata	330.97
45	Millingtonia hotensis	4942.63
46	Mimusops elengi	990.28
47	Mangifera indica	28.74
48	Morinda tinctoria	2105.81
49	Moringa oleifera	129.69
50	Morus indica	43.96
51	Murraya koenigii	111.41
52	Ochna serrata	40.52
53	Peltophorum pterocarpum	52263
54	Phyllanthus acidus	32.64
55	Phyllanthus emblica	303.02
56	Pisonia alba	199.04
57	Polyalthia longifolia	61244.55
58	Pongamia pinnata	5589.39
59	Premna latifolia	775.77
60	Psidium guajava	157.24
61	Pterospermum canescens	2179.69
62	Sapindus emarginatus	168.47
63	Saraca asoca	147.21
64	Spathodea campanulata	7988.87
65	Sterculia foetida	2379.77
66	Syzygium cumini	281.86
67	Tabebuia rosea	8617.91
68	Tamarindus indica	2410.51
69	Tecoma stans	145.74
70	Tectona grandis	10568.14
71	Terminalia catapa	1903.50
72	Thespesia populnea	100.39
73	Vitex altissima	296.25
74	Vitex negundo	210.98
	Total (2 hectare)	561370.00

Table 3. Basal area (cm	²) of families recorded in Pachaiyappa's College, Chennai, India
-------------------------	--

S.no.	Family name	Basal area (cm ²)
1	Anacardiaceae	1243.09
2	Annonaceae	61244.55
3	Bignoniaceae	22987.75
4	Bombacaceae	8389.89
5	Boraginaceae	1297.57
6	Caesalpiniaceae	87386.47
7	Casuarinaceae	2485.67
8	Celastraceae	1146.49
9	Clusiaceae	30.97
10	Combretaceae	1903.50
11	Cornaceae	346.81
12	Ebenaceae	114.96

Udayakumar M et al.	Sch. Acad. J. Biosci.,	2015; 3(4):338-347
---------------------	------------------------	--------------------

13	Euphorbiaceae	632.88
14	Lythraceae	46.49
15	Malvaceae	100.39
16	Meliaceae	100195.3
17	Mimosaceae	175585
18	Moraceae	30798.77
19	Moringaceae	129.69
20	Myrtaceae	8807.74
21	Nyctaginaceae	199.04
22	Ochnaceae	40.52
23	Papilionaceae	10849.27
24	Polygonaceae	124.38
25	Rubiaceae	2296.97
26	Rutaceae	1910.92
27	Sapindaceae	1718.86
28	Sapotaceae	1839.05
29	Sterculiaceae	25455.08
30	Verbenaceae	12027.04
31	Zygophyllaceae	28.74
	Total (2 hectare)	561370.00

S. no.	Botanical Name	Biomass
1.	Acacia auriculiformis	363.83
2.	Achras sapota	49.27
3.	Aegle marmelos	65.34
4.	Alangium salviifolium	139.08
5.	Albizia lebbeck	1428.64
6.	Albizia saman	75707.31
7.	Azadirachta indica	50203.26
8.	Bassia latifolia	612.90
9.	Bauhinia recemosa	48.03
10.	Bauhinia variegate	351.32
11.	Bombax malabarica	3267.01
12.	Caesalpinia coriaria	3779.34
13.	Caesalpinia pulcherrima	22.20
14.	Calophyllum inophyllum	23.85
15.	Cassia biflora	65.34
16.	Cassia fistula	316.32
17.	Cassia roxburghii	1247.60
18.	Cassine glauca	452.27
19.	Casuarina equisetifolia	989.79
20.	Citrus aurantifolia	115.25
21.	Citrus medica	535.10
22.	Coccoloba uvifera	51.79
23.	Cordia oblique	961.03
24.	Cordia sebestena	57.03
25.	Crescentia cujete	25.63
26.	Dalbergia spp.	1947.80
27.	Delonix regia	9472.31
28.	Diospyros peregrine	46.81
29.	Eucalyptus spp.	3263.49
30.	Feronia elephantum	441.18
31.	Ficus elastic	984.35
32.	Ficus religiosa	11352.95

Udayakumar M et al., Sch. Acad. J. Biosci., 2015; 3(4):338-347

33.	Filicium dicipiens	1465.67
34.	Gliricidia sepium	115.25
35.	Gmelina arborea	71.19
36.	Guaiacum officinale	11.92
37.	Guazuma ulmifolia	10508.66
38.	Ixora pavetta	77.29
39.	Jatropha curcas	381.93
40.	Kigelia africana	178.97
41.	Lannea coromandelica	478.65
42.	Lawsonia inermis	19.29
43.	Leucaena leucocephala	423.01
44.	Markhamia stipulate	133.64
45.	Millingtonia hotensis	2667.77
46.	Mimusops elengi	1007.85
47.	Mangifera indica	11.92
48.	Morinda tinctoria	831.10
49.	Moringa oleifera	104.16
50.	Morus indica	18.14
51.	Murraya koenigii	76.15
52.	Ochna serrata	16.99
53.	Peltophorum pterocarpum	29476.07
54.	Phyllanthus acidus	25.53
55.	Phyllanthus emblica	354.10
56.	Pisonia alba	80.43
57.	Polyalthia longifolia	26849.74
58.	Pongamia pinnata	2209.19
59.	Premna latifolia	529.59
60.	Psidium guajava	112.04
61.	Pterospermum canescens	2288.28
62.	Sapindus emarginatus	68.24
63.	Saraca asoca	59.74
64.	Spathodea campanulata	3109.09
65.	Sterculia foetida	947.59
66.	Syzygium cumini	113.36
67.	Tabebuia rosea	3306.28
68.	Tamarindus indica	941.2
69.	Tecoma stans	93.34
70.	Tectona grandis	4252.61
71.	Terminalia catapa	1631.90
72.	Thespesia populnea	41.29
73.	Vitex altissima	119.07
74.	Vitex negundo	85.73
	Total (2 hectare)	263724.00

Table 5. Biomass stored in families at Pachaiyappa's college campus, Chenna

S.no	Family name	Biomass (kg)
1	Anacardiaceae	490.58
2	Annonaceae	24869.74
3	Bignoniaceae	9849.35
4	Bombacaceae	3267.01
5	Boraginaceae	1018.07
6	Caesalpiniaceae	45779.52
7	Casuarinaceae	989.79
8	Celastraceae	452.27
9	Clusiaceae	23.85
10	Combretaceae	1631.90
11	Cornaceae	139.08

Udayakumar M	et al., Sch.	Acad. J. Biosci.,	2015; 3(4):338-347
--------------	--------------	-------------------	--------------------

12	Ebenaceae	46.81
13	Euphorbiaceae	761.67
14	Lythraceae	19.29
15	Malvaceae	41.29
16	Meliaceae	50203.26
17	Mimosaceae	80064.68
18	Moraceae	12355.45
19	Moringaceae	104.16
20	Myrtaceae	3494.90
21	Nyctaginaceae	80.43
22	Ochnaceae	16.99
23	Papilionaceae	4272.24
24	Polygonaceae	51.79
25	Rubiaceae	908.39
26	Rutaceae	1233.04
27	Sapindaceae	1533.91
28	Sapotaceae	1670.04
29	Sterculiaceae	13744.54
30	Verbenaceae	5058.20
31	Zygophyllaceae	11.92
	Total (2 hectare)	263724.00

DISCUSSION

Tree density

Stem density (226 trees ha⁻¹) of present study area is greater than those of urban forests (111.9 trees ha⁻¹) of Oakland, California [23]; Modesto, California (61 trees ha⁻¹) [24]; ten USA cities (mean = 147, range, 36 to 276) [6], Sacramento, USA (73 trees ha⁻¹) [25], and Beijing, China (79 trees ha⁻¹) [13]. However, tree density recorded in this study is lesser than in urban forests of three USA cities (563 \pm 77 ha⁻¹, range 332-674 ha⁻¹) [10].

Tree diameter classes

More than 70% of recorded trees were ≥ 15 cm dbh, this value is greater than those of Nowak [26], Dorney et al. [27] and Nowak [9] they reported 39%, 33% and 23% of urban trees with ≥ 15 cm dbh respectively from Oakland (California), Shorewood (Wisconsin), and three USA cities. In addition, large trees (77+ cm dbh) are abundant in present study than in US cities, (range 0.4 to 2.1%). Studied trees planted before *c*. 25 to 40 years.

Mean biomass and carbon storage of single tree

The mean biomass stored in a tree (477.76 kg) is notably higher than that of Yang et al. [13] they reported 162.6 kg mean biomass from urban areas of China. However, mean carbon stored in an individual tree in study area (238.88 kg) is not in-line with that of Nowak [10] who estimated approximately 20-50% more carbon per tree for urban trees in three USA cities. The differences in abundance of various tree diameter classes in urban forests have contributed to changes in mean tree biomass.

Carbon storage in a hectare

Carbon storage recorded in the study (65.93 Mg) is greater than those of urban forests in India, China, Germany and USA [6, 10, 13, 23, 27-32]. However, biomass storage of study area is lower than that of urban forests of Chicago and DuPage County, USA (128.0, 95.5 Mg C ha⁻¹) [10]. Quantity of stored biomass tends to vary with forest tree density, tree cover, stand basal area and tree diameter distributions.

Compared to present study institutional areas of US cities stored less carbon (mean, 41.0 Mg C ha⁻¹, Nowak [10]; 12.9 Mg ha⁻¹, Nowak [33]. However, institutional urban forests in Pune city stored more carbon (87.33 Mg ha⁻¹) [28] than in present study. Studies of this kind with large study areas are required to create a real picture of CMC's forests.

CONCLUSIONS

Biomass storage of the present study area is very well within the range of world's urban forests. However, compared to urban forests of some USA cities trees of CMC are less potent in terms of CO₂ absorption, O₂ production, C sequestration, and stem diameter growth yr⁻¹. Studies of this kind with large study areas are essential to reveal the actual potential of trees and urban forests in CMC. Pre-tested species selection and planting of relatively high C sequestering trees on vacant lands, river banks and parks, and nurturing, caring them to perform well could significantly reduce the CO₂ concentration, pollution and UHI effects in CMC. This study is an initial step towards the understanding of ecosystem services and roles of urban forests of CMC. CMC is the least green covered (9.5%; [34,35]) metropolitan city in India hence government authorities, urban planners, city developers and managers should allot more funds and allocate additional space for trees to increase green spaces.

REFERENCES

- 1. Schneider SH; The changing climate. Sci Am 1989;261:70–9.
- Hamburg SP, Harris N, Jaeger K, Karl TR, McFarland M, Mitchell JFB, et al.; Common questions about climate change. United Nations Environment Programme, USA: World Meteorology Organisation; 1997.
- 3. IPCC; Intergovernmental Panel on Climate Change. Climate Change 2007. The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007.
- Sedjo RA; Forests to offset the greenhouse effect. J Forest 1989;87:12–15.
- Neftel A, Oeschger H, Staffelbach T, Stauffer B; CO₂ record in the Byrd ice core 50 000–5000 years BP. Nature 1988;331:609–11.
- Nowak DJ, Crane DE; Carbon storage and sequestration by urban trees in the USA. Environ Pollut 2002;116:381–89.
- Rothman RH; Earth's carbon cycle: a Mathematical perspective. Am Mat Soc 2015;52:47-64.
- Moulton RJ, Richards KR; Costs of Sequestering Carbon through Tree Planting and Forest Management in the United States. USDA Forest Service, General Technical Report WO–58, Washington, DC; 1990.
- Nowak DJ; Urban Forest structure: The state of Chicago's urban forest. In: McPherson EG, Nowak DJ, Rowntree RA, editors. Chicago's urban forest ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report, NE– 186. U.S. Department of Agriculture, Forest Service, Radnor, PA: 1994a, p. 3–18.
- Nowak DJ; Atmospheric carbon dioxide reduction by Chicago's urban forest. In: McPherson EG, Nowak DJ, Rowntree RA, editors. Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report, NE–186, US Department of Agriculture, Forest Service, Radnor, PA; 1994b, p. 83–94.
- McPherson EG, Nowak DJ, Rowntree RA, editors; Chicago's urban forest ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report, NE–186, U.S. Department of Agriculture, Forest Service, Radnor, PA; 1994, 201 p.
- Chen Y, Jim CY; Assessment and valuation of the ecosystem services provided by urban forests. In: Carreiro MM, Song YC, Wu J, editors. Ecology, Planning and Management of Urban Forests, International Perspectives. The Netherlands: Springer; 2008, p. 53–83.

- 13. Yang J, McBride J, Zhou J, Sun Z; The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 2005;3:65–78.
- 14. McPherson EG, Simpson JR; A comparison of municipal forest benefits and costs in Modesto and Santa Monica, California, USA. Urban For Urban Green 2002;1:61–74.
- 15. Population Census India, 2011. Retrieved on 1st March, 2012 from http://www.census2011.co.in/census/district/21chennai.html
- Chennai district website, 2012. Climate and Weather of Chennai Metropolitan. Retrieved January 15th, 2012 from http://www.chennai district/tn.nic.in.
- 17. Mayuranathan PV; The flowering plants of Madras city and its immediate neighbourhood. Bulletin of the Madras government museum, Madras: Government Press, India: 1929.
- Udayakumar M, Ayyanar M, Sekar T; Angiosperms, Pachaiyappa's College, Chennai, Tamil Nadu, India. Check List 2011;7:37–48.
- Mariappan M, Lingava S, Murugaiyan R, Krishnan R, Kolanuvada SR, Thirumeni RSL; Carbon Accounting of Urban Forest in Chennai City using Lidar Data. Eur J Sci Res 2012;81:314-328.
- Pearson T, Walker S, Brown S; Source book for land use, land–use change and forestry projects. Winrock international, Airlington, USA; 2005.
- Leith H; The role of the vegetation in the carbon dioxide content of the atmosphere. J Geophys Res 1963;68:3887–98.
- Whittaker RH, Likens GE; Carbon in the biota. In: Woodwell GM, Pecans EV, editors. Carbon in the biosphere, U.S. Atomic Energy Commission. Technical information services, Office of the information services, USA; 1973, p. 281–302.
- Nowak DJ; Historical vegetation change in Oakland and its implications for urban forest management. J Arboric 1993a; 19:313–19.
- McPherson EG, Simpson JR, Peper PJ, Xiao Q; Benefit–Cost Analysis of Modesto's Municipal Urban Forest. J Arboric 1999;25:235–48.
- Birdsey RA, Heath LS; Carbon changes in U.S. Forests. In: Joyce LA, editor. Productivity of America's Forests and Climate change: USDA Forest Service, General Technical Report RM-271; 1995.
- Nowak DJ; Urban forest development and structure: analysis of Oakland, California. Ph.D. Dissertation. University of California, Berkeley; 1991.
- Dorney JR, Guntenspergen GR, Keough JR, Stearns F; Composition and structure of an urban woody plant community. Urban Ecol 1984;8:69– 90.
- Waran A; Carbon sequestration potential of trees in and around Pune city. Masters thesis, University of Pune, India 2001; p. 31.

- 29. Dwyer JF, McPherson EG, Schroeder HW, Rowntree RA; Assessing the benefits and costs of urban forest. J Arboric 1992;18:227–34.
- Rowntree R, Nowak DJ; Quantifying the role of urban forests in removing atmospheric carbon dioxide. J Arboric 1991;17:269–75.
- 31. Nowak DJ, Noble MH, Sisinni SM, Dwyer JF; Assessing the US urban forest resource. J Forestry 2001;99:37–42.
- 32. Strohbach MW, Haase D; Above-ground carbon storage by urban trees, Leipig, Germany: Analysis of patterns in a European city. Landscape Urban Plan 2012;104:95-104.
- 33. Nowak DJ; Atmospheric carbon reduction by urban trees. J Environ Manage 1993b; 37:207–17.
- 34. The Hindu 2011; National daily news paper, Chennai, Tamil Nadu India, date 03/10/2011, p. 3.
- 35. Muthulingam U, Thangavel S; Density, diversity and richness of woody plants in urban green spaces: A case study in Chennai metropolitan city. Urban For Urban Gree 2011;11:450-459.