Scholars Academic Journal of Biosciences (SAJB)

Abbreviated Key Title: Sch. Acad. J. Biosci. ©Scholars Academic and Scientific Publisher A Unit of Scholars Academic and Scientific Society, India www.saspublishers.com ISSN 2347-9515 (Print) ISSN 2321-6883 (Online)

Medicine

FDP and D-Dimer in Patients of H1N1 Pneumonia: Association with Hypoxia and Mortality?

Dr. Aradhna Singh¹, Dr. Laxmi Kant Goyal^{2*}, Dr. Sujata Agrawal³, Dr. Kamlesh Sharma⁴, Dr. Debajyoti Maji⁵, Dr. Komal Jangir⁶

¹Assistant Professor, Department of Medicine, SMS Medical College, Jaipur India

²Assistant Professor, Geriatric Medicine SMS Medical College, Jaipur India

³Assistant Professor, Department of Medicine, SMS Medical College, Jaipur India

⁴Assistant Professor, Department of Medicine, SMS Medical College, Jaipur India

⁵Senior Resident, Department of Medicine, SMS Medical College, Jaipur India

⁶Senior Resident, Department of Medicine, SMS Medical College, Jaipur India

Original Research Article

*Corresponding author Dr. Laxmi Kant Goyal

Article History *Received:* 12.03.2018 *Accepted:* 25.03.2018 *Published:* 30.04.2018

DOI:

10.36347/sajb.2018.v06i04.001

Abstract: Influenza an infection has been found to be associated with disseminated intravascular coagulation (DIC) and pulmonary micro embolism. This study assesses marker of thrombus formation (FDP, D-dimer levels) in H1N1 patients and their association with morbidity (hypoxia) and mortality. The preliminary data of an ongoing, analytical, case-control study among H1N1 infected are presented. Twenty H1N1 infected patient having radiographic evidence of pneumonia, having age >18 years and less than 60 years were included in this study, after taking informed consent (the case). Twenty age and sex matched were also included in this study that had bilateral pneumonia, but were H1N1 negative (the control). The patients who had heart disease, cerebro-vascular diseases, haemorrhagic disorder, coagulation disorder, diabetes, hypertension, received injection recently, hepatic disorder, malignancy, recent surgery or infections other than H1N1 were excluded. Pregnant females were also excluded from this study. The nasopharyngeal-swab specimens were collected from each study participants at the time of hospitalization and analysed by of a real-time reverse-transcriptase-polymerase- chain-reaction (RT-PCR) assay. The venous blood samples were taken for FDP and D-dimer at same time. Among the 20 cases, 13/20 were FDP positive, and 5/20 controls were FDP positive (P<0.05). Hypoxia was higher in cases (17/20) as compared to controls (7/20) (P<0.05). FDP positivity was associated with significantly higher frequency of hypoxia (15/20) and high mortality (10/20) (P<0.05 for each). D-dimer positivity was associated with significantly higher frequency of hypoxia (15/20) and high mortality (10/20) (P<0.05 for each). Ddimer/FDP positivity was associated with significantly higher frequency of hypoxia and high mortality in H1N1 infected patients. Keywords: H1N1 Flu, D-dimer, FDP, Thrombus, Mortality.

INTRODUCTION

Influenza a (H1N1) has become world-wide now, since its initial spread from Mexico in 2009[1]. Various studies had reported that the most common population affected by H1N1 is young population, and the most common cause of death is pneumonia, ARDS with rapidly developing hypoxic respiratory failure [2-4].

Influenza A infection has been found to be associated with disseminated intravascular coagulation (DIC) and pulmonary micro embolism [5,6]. Similarly, in cases of H1N1 influenza ("swine flu"), both thrombotic and haemorrhagic complications are noticed, including deep venous thrombosis, pulmonary embolism, and pulmonary haemorrhage [6-16]. The hall mark of H1N1 Pneumonia-ARDS is widespread inflammation of lung parenchyma. It may be postulated that this wide-spread lung inflammation damages the endothelial cells, and the affected endothelial cells becomes activated, and therefore, synthesize and secrets tissue plasminogen activator and other mediators, which are responsible for microthrombus formation in lungs, leading to ARDS and respiratory failure [17-19].

This study was carried out to assess marker of thrombus formation (FDP, D-dimer levels) in H1N1 patients and their association with morbidity (hypoxia) and mortality.

MATERIALS AND METHODS

This study is an ongoing, analytical, casecontrol study, being conducted at a tertiary care Medical College hospital among H1N1 infected patients, after due approval from institutional ethics committee. The preliminary data of only 20 H1N1 infected patients are being reported here. The presented data are of only three month duration. H1N1 infected patient having radiographic evidence of pneumonia, having age >18 years and less than 60 years were included in this study, after taking informed consent (the case). Twenty age and sex matched were also included in this study that had bilateral pneumonia, but were H1N1 negative (the control).

The patients who had heart disease, cerebrovascular diseases, haemorragic disorder, coagulation disorder, diabetes, hypertension, received injection recently, hepatic disorder, malignancy, recent surgery or infections other than H1N1 were excluded. Pregnant females were also excluded from this study.

The nasopharyngeal-swab specimens were collected from each study participants at the time of hospitalization, and the collected specimens were transported to the institutional laboratory within 6 hours, in a transport medium, keeping 2-4°C temperature. The specimens were analysed by of a real-time reverse-transcriptase–polymerase- chain-reaction (RT-PCR) assay.

The venous blood samples were collected from left anticubital vein for complete blood count, random blood sugar, renal function test, and liver function test, FDP, D-dimer, PT-INR and LDH from all study participants at the time of hospitalization. Arterial blood gas analysis (ABG) was also performed at the same time.

STATISTICAL ANALYSIS

Microsoft Excel[®] and SPSS[®] 17.0 for Windows[®] were used for data storage and analysis. Continuous variables were expressed as mean \pm standard deviation. Student's t test and Chi-Square test were used to determine statistical difference between variables. Statistical significance was set at P value \leq 0.05.

RESULTS

The male: female ratio in case group was 1:1, while in control group, it was 2:3. The age of cases was 42 ± 11.06 years (range 23-60 years), and controls was 43.85 ± 10.41 years (22-60 years). The cases and controls were age-sex matched (P>0.05). Among the cases, 13/20 were FDP positive, and 5/20 controls were FDP positive (P<0.05). Hypoxia was higher in cases (17/20) as compared to controls (7/20) (P<0.05). The mean levels of LDH and PT-INR were higher in H1N1 positive cases, while mean SpO2 was lower. (P<0.05 for each). (Table No.1)

FDP positivity was associated with significantly higher frequency of hypoxia (15/20) and high mortality (10/20) (P<0.05 for each). (Table No.2)

D-dimer positivity was associated with significantly higher frequency of hypoxia (15/20) and high mortality (10/20) (P<0.05 for each). (Table No.3).

	H1N1 Positive	H1N1 Negative	р	Sig
	(n 20)	(n 20)		
M:F	10:10	8:12	0.751	NS
Age (Years)	42±11.06	43.85±10.41	0.589	NS
FDP positivity (n)	13	5	0.025	Sig
D-dimer positivity (n)	13	5	0.025	Sig
Hypoxia (n)	17	7	0.003	Sig
Mortality(n)	12	2	0.002	Sig
SpO2 (mean±sd)	73.60±14.28	93.10±06.47	0.001	Sig
LDH (mean±sd)	875.3±377.2	450.3±211.2	0.001	Sig
PT-INR (mean±sd)	1.9±1.744	1.1±1.309	>0.05	Sig

Table-1: Characteristics of study participants

Table-2: FDP a	and morbidity/	mortality among	study	participants

Hypoxia 15 9 0.01 Sig Mortality 10 4 0.039 Sig		FDP positive	FDP negative	Р	Sig
Mortality 10 4 0.039 Sig	Hypoxia	15	9	0.01	Sig
	Mortality	10	4	0.039	Sig

Table-3: D-dimer and morbidity/mortality among study participants

	D-dimer positive	D-dimer negative	Р	Sig
Hypoxia	15	9	0.01	Sig
Mortality	10	4	0.039	Sig

DISCUSSION

The preliminary results of an ongoing study are being presented in the article. In this study, we found higher mortality in H1N1 positive cases as compared to H1N1 negative controls of bilateral pneumonia with ARDS.

The FDP positivity and hypoxia were observed in significantly higher number in H1N1 positive cases, indicating role of H1N1 pneumonia in hypoxia and FDP d-Dimer positivity. LDH levels were also raised in H1N1 positive cases with is in echo with a previous report [20].

D-dimer and FDP positivity was associated with significantly higher frequency of hypoxia (15/20) and high mortality (10/20). A study from Mexico also revealed higher d-Dimer/FDP positivity among H1N1 cases who died[21]. In a study, there were 10/12 deaths caused by H1N1 which had higher D-dimer levels, which is similar to our study. So it can be stated that the disease course is indirectly determined by the increased D-dimer via its effect of hypoxia (SpO2)[1].

The findings of hypoxia along with prolong PT-INR and positiveFDP/D-dimer raise the possibility that disseminated intravascular coagulation and/or pulmonary embolism may have played a role in the pathogenesis. The same observations were also made in a previous study[20].

The negative correlation between oxygenation index and D-dimer of H1N1 positive patients was found in one study, indicating the importance of D-dimer in predicting respiratory failure[1]. The possible explanation of association between D-diner positivity and respiratory failure (hypoxia) may be formation of pulmonary microthrombus[1].

The mechanism of thrombus formation is a complex phenomenon, consisting of three chief elements, namely primary haemostasis, secondary fibrinolysis.22 haemostasis/coagulation, and The fibrinolysis is initiated by tissue plasminogen activator, along with other mediators after their synthesis, and release from endothelial cells. The tissue plasminogen activator, along with other mediators, collectively converts plasminogen to plasmin, which hydrolyses polymerized fibrin strands into soluble fibrin degradation products and degrades the fibrin clot, which results in formation of fibrin degradation products (FDP)[23].

In this study all the possible causes of raised D-dimer were excluded such as heart disease, cerebrovascular diseases, haemorragic disorder, infections other than H1N1,coagulation disorder, diabetes, hypertension, any recent injection, hepatic disorder, malignancy, recent surgery or pregnancy. Thus, the only possibility of raised D-dimer and FDP is thrombus formation. In Mexican studies, pulmonary embolism was found in patients of H1N1 positive pneumonia [24-25]. The pulmonary thrombi also explain the hypoxia and respiratory failure. There are various studies supporting this notion and evaluating acute infection as a risk factor for thrombosis [26-28]. Various infection are documented as a risk factor for thrombosis [17–19, 29].

LIMITATIONS

Our study had some limitations. We included patients with radiographic evidence of bilateral Pneumonia only, and not included H1N1 positive patient without radiographic evidence of Pneumonia. So whether our findings can be extrapolated to those H1N1 positive cases without pneumonia is debatable. We have not estimated levels of FDP and D-dimer quantitatively, andthus, have not measured correlation of these with hypoxia. This study was done at a tertiary care centre, and recruited admitted patients only, resulting in a limited sample size, thus the nature of the investigation and the results do not imply a general case, and further studies with a larger sample size are needed.

CONCLUSION

This study showed that H1N1 positivity and D-dimer/FDP positivity was associated with significantly higher frequency of hypoxia and high mortality.

REFERENCES

- 1. Wang ZF1, Su F, Lin XJ, Dai B, Kong LF, Zhao HW, Kang J. Serum D-dimer changes and prognostic implication in 2009 novel influenza A(H1N1). Thromb Res. 2011;127(3):198-201
- Singh V, Kishoria N, Meena M. Retrospective study of H1N1 positive patients in western Rajasthan. Global Journal Research Analysis 2017;6:79-83
- Louie JK, Acosta M, Winter K, Jean C, Gavali S, Schechter R, Vugia D, Harriman K, Matyas B, Glaser CA, Samuel MC. Factors associated with death or hospitalization due to pandemic 2009 influenza A (H1N1) infection in California. Jama. 2009 Nov 4;302(17):1896-902.
- Puvanalingam A, Rajendiran C, Sivasubramanian K, Ragunanthanan S, Sarada S, Gopalakrishnan S. Case Series Study of the Clinical Profile of H1N1 Swine Flu Influenza. JAPI 2011; 59:14-6.
- Davison AM, Thomson D, Robson JS. Intravascular coagulation complicating influenza A virus infection. Br Med J 1973;1:654–655.
- Harms PW, Schmidt LA, Smith LB, Newton DW, Pletneva MA, Walters LL, Tomlins SA, Fisher-Hubbard A, Napolitano LM, Park PK, Blaivas M, Fantone J, Myers JL, Jentzen JM. Autopsy findings in eight patients with fatal H1N1 influenza. Am J Clin Pathol 2010;134:27–35.
- 7. Agarwal PP, Cinti S, Kazerooni EA. Chest radiographic and CT findings in novel swine-origin

Available online at https://saspublishers.com/journal/sajb/home

Aradhna Singh et al., Sch. Acad. J. Biosci., Apr 2018; 6(4): 299-302

influenza A (H1N1) virus (S-OIV) infection. AJR Am J Roentgenol 2009;193:1488–1493.

- Soto-Abraham MV, Soriano-Rosas J, Diaz-Quinonez A, Silva-Pereyra J, Vazquez-Hernandez P, Torres-Lopez O, Roldan A, Cruz-Gordillo A, Alonso-Viveros P, Navarro-Reynoso F. Pathological changes associated with the 2009 H1N1 virus. N Engl J Med 2009;361:2001–2003.
- Adalja AA. Hematemesis in a 2009 H1N1 influenza patient. Am J Emerg Med 2010;28:846– 854.
- 10. Gilbert CR, Vipul K, Baram M. Novel H1N1 influenza A viral infection complicated by alveolar hemorrhage. Respir Care 2010;55:623–625.
- 11. Mauad T, Hajjar LA, Callegari GD, da Silva LF, Schout D, Galas FR, Alves VA, Malheiros DM, Auler JO, Jr., Ferreira AF, Borsato MR, Bezerra SM, Gutierrez PS, Caldini ET, Pasqualucci CA, Dolhnikoff M, Saldiva PH. Lung pathology in fatal novel human influenza A (H1N1) infection. Am J Respir Crit Care Med 2010;181:72–79.
- 12. Mukhopadhyay S, Philip AT, Stoppacher R. Pathologic findings in novel influenza A (H1N1) virus ("swine flu") infection: Contrasting clinical manifestations and lung pathology in two fatal cases. Am J Clin Pathol 2010;133:380–387.
- 13. Shachor-Meyouhas Y, Kassis I. Petechial rash with pandemic influenza (H1N1) infection. Pediatr Infect Dis J 2010;29: 480.
- Venkata C, Sampathkumar P, Afessa B. Hospitalized patients with 2009 H1N1 influenza infection: The Mayo Clinic experience. Mayo Clin Proc 2010;85:798–805.
- 15. Bunce PE, High SM, Nadjafi M, Stanley K, Liles WC, Christian MD. Pandemic H1N1 influenza infection and vascular thrombosis. Clin Infect Dis 2011;52:e14–e17.
- Calore EE, Uip DE, Perez NM. Pathology of the swine-origin influenza A (H1N1) flu. Pathol Res Pract 2011;207:86–90.
- 17. Van Wissen M, Keller TT, Ronkes B, Gerdes VE, Zaaijer HL, van Gorp EC, Brandjes DP, Levi M, Büller HR. Influenza infection and risk of acute pulmonary embolism. Thrombosis journal. 2007 Dec;5(1):16.
- Klein SK, Slim EJ, De Kruif MD, Keller TT, Ten Cate H, van Gorp EC, Brandjes DP. Is chronic HIV infection associated with venous thrombotic disease? A systematic review. Neth J Med. 2005 Apr 1;63(4):129-36.
- Ohrui T, Takahashi H, Ebihara S, Matsui T, Nakayama K, Sasaki H. Influenza A virus infection and pulmonary microthromboembolism. Tohoku J Exp Med 2000;192:81–6
- Tutuncu EE1, Ozturk B, Gurbuz Y, Haykir A, Sencan I, Kuscu F, Dede G, Kilic AU, Senturk GC. Clinical characteristics of 74 pandemic H1N1 influenza patients from Turkey. Risk factors for fatality. Saudi Med J. 2010;31(9):993-8.

- Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, Hernandez M, Quinones-Falconi F, Bautista E, et al. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med 2009; 361: 680-689.
- 22. Dahlback B. Blood coagulation and its regulation by anticoagulant pathways: Genetic pathogenesis of bleeding and thrombotic diseases. J Intern Med 2005;257:209–223.
- Goeijenbier M, van Wissen M, van de Weg C, Jong E, Gerdes VE, Meijers JC, Brandjes DP, van Gorp EC. Review: Viral infections and mechanisms of thrombosis and bleeding. J Med Virol. 2012;84(10):1680-96.
- Centers for Disease Control and Prevention (CDC). Intensive-care patients with severe novel influenza A (H1N1) virus infection - Michigan, June 2009. MMWR Morb Mortal Wkly Rep 2009;58:749–52
- 25. Gill JR, Sheng ZM, Ely SF, Guinee Jr DG, Beasley MB, Suh J, Deshpande C, Mollura DJ, Morens DM, Bray M, Travis WD. Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections. Archives of pathology & laboratory medicine. 2010 Feb;134(2):235-43.
- 26. Lozinguez O, Arnaud E, Belec L, Nicaud V, Alhenc-Gelas M, Fiessinger JN, Aiach M, Emmerich J. Demonstration of an association between Chlamydia pneumoniae infection and venous thromboembolic disease. Thrombosis and haemostasis. 2000 Jun;83(06):887-91.
- Koster T, Rosendaal FR, Lieuw ALD, Kroes AC, Emmerich JD, van Dissel JTl. Chlamydia pneumoniae IgG seropositivity and risk of deepvein thrombosis. Lancet 2000;355:1693–6
- 28. Smeeth L, Cook C, Thomas S, Vallance P, Hall AJ, Hubbard R. Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet 2006;367:1075–9
- 29. Keller TT, van Wissen M, Mairuhu AT, van Doornum GJ, Brandjes DP. Acute respiratory tract infections in elderly patients increase systemic levels of hemostatic proteins. J Thromb Haemost 2007;5:1567–9.

Available online at https://saspublishers.com/journal/sajb/home