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Abstract  Original Research Article 
 

Egyptian cotton leafworm, Spodoptera littoralis, is one of the key pests that cause great damage to cotton plant as well as 

other field and vegetable crops. Plant products, as a promising alternative to the synthetic insecticides, have now been 

established worldwide. In this work we studied for the first time the insecticidal activity of the sesquiterpene compound, 

nerolidol, and its effect on growth, development and metamorphosis of S. littoralis. The newly moulted larvae of 5
th

 

(penultimate) or 6
th

 (last) instar larvae were fed on castor bean leaves previously treated with seven concentrations of 

Nerolidol (400, 200, 100, 50, 25, 12.5 & 6.25 ppm) for 24 hr. The most important results could be summarized as 

follows. Nerolidol exhibited various degrees of insecticidal activity against larvae, pupae and adults, regardless the 

instar under treatment. Nerolidol was found more toxic after treatment of last instar larvae (LC50=42.24 ppm) than after 

treatment of penultimate instar larvae (LC50=50.01 ppm). A remarkable reduction of larval weight gain was recorded, in 

a dose-dependent course. Similarly, the larval growth was drastically suppressed. The larval and pupal durations were 

significantly prolonged. Some percentages of the treated 5
th

 instar larvae failed to completely moult into the 6
th

 instar, 

only at the higher three concentrations. Also, some larvae developed into larval-pupal intermediates. Nerolidol exerted a 

strong inhibitory action on the pupation rate in a dose-dependent course while the adult emergence was partially 

blocked, only at the higher concentrations. Nerolidol failed to exert anti-morphogenic action on S. littoralis after 

treatment of 5
th

 instar larvae, but  treatment of 6
th

 instar larvae only with the higher two concentrations resulted in an 

impaired morphogenesis of some pupae.  

Keywords: ecdysis, intermediates, malformation, metamorphosis, mortality, moult, pupation, toxicity. 
Copyright © 2021 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

INTRODUCTION  
Cotton from the genus Gossypium is one of the 

economic crops. It is one of the major sources of fiber. 

Also, cotton plants produce a large amount of seeds [1]. 

These seeds are rich in protein and have been considered 

as a valuable source of oil and fodder
 
[2]. In addition, 

cotton plants typically contain high content of gossypol, 

a terpenoid, within the glands of seed kernels [3]. The 

Egyptian cotton leaf worm Spodoptera littoralis (Boisd.) 

(Lepidoptera: Noctuidae) is the most destructive pest of 

the cotton plant and several field crops, as well as 

vegetables and several ornamental crops [4-7]. It is 

distributed in many European countries
 
[8-10], Asia 

Minor and the Middle East countries [11-13]. Moreover, 

this insect pest has a very wide host range of at least 90 

plant species of economic importance belonging to 44 

families [14-16]. Over the years, the number of attacked 

plants by S. littoralis increased to more than 112 species 

[16, 17-20]. 

 

Although different cultural, mechanical and 

physical control measures have been applied for the 

management of S. littoralis in Egypt, no satisfactory 

results can be obtained, most farmers, however, prefer 

using synthetic pesticides for obtaining fast results 

[21-24]. Over the past 50 years, the widespread and 

extensive uses of many environmentally-hazardous 

insecticides had led to the development of quick 

resistance of S. littoralis to the many of these chemicals 

[25-28], beside to their hazardous residues in the 
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environment [29, 30]. In some detail, the development of 

S. littoralis resistance to the synthetic pyrethroids, 

carbamates, organophosphorus and other chemical 

insecticides has been correlated with the development of 

cross-resistance in many cases [31]. Also, application of 

synthetic insecticides is expensive [32]. Beside to these 

problems, many pesticides are insoluble in water, so 

large quantities of organic solvents are needed and most 

of these solvents contaminate the ecosystem [33]. 

Therefore, searching for new alternative, effective and 

safer for human health, economic animals, non-target 

organisms and ecosystem, is prerequisite [34-36]. One of 

the chief components of Integrated Pest Management is 

the application of plant extracts, oils and secondary 

metabolites which are included in the class of 

'biopesticides', in addition to certain bacteria, viruses, 

animals, and certain minerals [37, 38]. In this context, 

botanicals have been used as effective toxicants, growth 

regulators, antifeedants and repellents against a wide 

spectrum of agricultural and public health insects 

[39-42]. These biopesticides are effective alternative to 

synthetic insecticides because of their low toxicity to 

humans and animals, low environmental pollution and 

other applications. They are generally more eco-friendly 

alternatives for the insect control [43-45].  

 

The monoterpenes, phenylpropenes and 

sesquiterpenes have reported to exhibit different 

biological activities against some economic insect pests 

as they can act as insecticides [46-48], insect growth 

regulators [49], antifeedants [50] and repellents [51, 52]. 

On the other hand, few studies were reported in the 

current literature on the antifeedant and growth 

inhibitory effects of these plant products against S. 

littoralis [45, 53-55]. In Egypt, few studies [56-58] 

revealed the insecticidal activities of different 

monoterpenes, phenylpropenes and sesquiterpenes 

against larvae of S. littoralis.  

 

Nerolidol 

(3,7,11-trimethyl-1,6,10-dodecatrien-3-ol, Molecular 

Formula: C15H26O) is known as one of the most 

important acyclic sesquiterpenes. Chemically, nerolidol 

exists in two isomers, a trans form and a cis form [59]. It 

is synthesized as an intermediate in the production of 

(3E)-4,8-dimethy-1,3,7-nonatriene, a herbivore-induced 

volatile that protects plants against herbivore attacks and 

attracts some predatory insects [59]. The (E)-nerolidol 

was identified as a potent signal that elicits the plant 

defenses, such as the tea plant [60]. For more 

information, see Boncan et al. [61], 

Wroblewska-Kurdyk et al. [62] and Favaris et al. [63]. 

Different commercial uses of nerolidol are reported for 

cosmetics [64] and non-cosmetic products [65]. Also, 

nerolidol is widely used in the food industry as a flavor 

enhancer in many food products [59]. In medicine, it is 

currently under testing as a skin penetration enhancer for 

the transdermal delivery of therapeutic drugs [65, 66]. 

For more information, see Klopell et al. [67], Nogueira 

Neto et al. [68] and Javed et al. [69].  

 

With regard to the pest control, Nerolidol 

isomers act as insect attractants [70], antifeedants [71], 

larvicidal [72] and ovicidal agent [73, 74]. 

Wróblewska-Kurdyk et al. [75] evaluated the effect of 

Nerolidol isomers on the host-plant selection behaviour 

of the peach potato aphid Myzus persicae. In a recent 

study, Benelli et al. [76] recorded a high toxicity of 

(E)-nerolidol against the aphid Metopolophium 

dirhodum. Depending on the results of da Silva et al. 

[77], Azamax
®
 was more toxic than the oils of 

Melaleuca leucadendra and (E)-nerolidol against 

Tetranychus urticae. However, the oils and (E)-nerolidol 

were more toxic to Plutella xylostella than Azamax
®
. 

Recently, also, Hamadah et al. [78] recorded some 

adverse effects of nerolidol on the adult performance and 

reproductive potential of S. littoralis. The objective of 

the present study was to assess the insecticidal activity of 

Nerolidol and its effect on growth, development and 

metamorphosis of S. littoralis.  

 

MATERIALS AND METHODS  
The insect culture 

A sample of Egyptian cotton leaf worm 

Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) 

pupae was kindly obtained from the culture of 

susceptible strain maintained for several generations in 

Plant Protection Research Institute, Agricultural 

Research Center, Doqqi, Giza, Egypt. In the laboratory 

of Insect Physiology, Faculty of Science, Al-Azhar 

University, Cairo, a culture was established under 

laboratory controlled conditions (27+2
o
C, 65+5% R.H., 

photoperiod 14 h L and 10 h D). Rearing procedure was 

carried out according to Ghoneim [79] and improved by 

Bakr et al. [80]. Egg patches were kept in Petri dishes 

until hatching. The hatched larvae were transferred into 

glass containers containing a layer of dry saw dust and 

tightly covered with muslin cloth secured with rubber 

bands. For feeding, larvae were provided daily with fresh 

castor bean leaves Ricinus communis. The developed 

pupae were collected and placed in clean jars provided 

with a layer of moistened saw dust. All jars had been 

kept in suitable cages provided with branches of fresh 

Tafla plant, Nerium oleander, as oviposition sites. The 

emerged adults were provided with 10% honey solution 

on a cotton wick as a food source. Moths were allowed to 

mate and lay eggs on branches. The egg patches were 

collected daily, and transferred into Petri dishes for the 

next generation. 

 

The tested compound and concentration preparation 

The tested nerolidol 98% (an acyclic 

Sesquiterpene) in the present study was purchased from 

ABCR GmbH, Karlsruhe, Germany. It has the chemical 

name: (cis + trans) [3, 7, 11-Trimethyl-1, 6, 

10-dodecatrien-3-ol] and Formula: C15H26O  . Five ml of 

Tween 60 were added (as emulsifier) to 5 ml of ethyl 
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alcohol (95%). Then, these solvents were mixed 

thoroughly with 5 ml of nerolidol. For obtaining a stock 

solution, 90 ml of distilled water was added to the 

mixture for preparing a concentration of 4.8 % nerolidol, 

emulsion. The stock solution was diluted with distilled 

water in volumetric flasks for preparation of a series of 

concentrations: 400.00, 200.00, 100.00, 50.00, 25.00, 

12.50 & 6.25 ppm. 

 

Bioassay of nerolidol 
Bioassay of nerolidol was carried out against 

the newly moulted 5
th

 (penultimate) larvae and newly 

moulted 6
th

 (last) larvae. Discs of fresh castor bean 

leaves were dipped in each concentration for 5 minutes 

and air dried before introduction to larvae as food for 24 

hr under the aforementioned laboratory conditions. 

Control larvae received leaf discs after dipping in Tween 

60 and alcohol (95 %) solution for 5 minutes. Ten 

replicates of treated and control larvae (one 

larva/replicate) were kept separately in glass vials. Then, 

mortality and biological parameters were recorded daily.  

 

Insecticidal activity 
All mortalities of treated and control (larvae, 

pupae and adults) were recorded every day and corrected 

according to Abbott’s formula [81] as follows: 

 

 

 
 

% of corrected mortality   = 

 

 

The LC50 was calculated for total mortality by 

Microsoft
®
 office Excel (2007), according to Finny [82]. 

 

Growth, development and metamorphosis 
Larval body weight gain: Each individual larva 

(treated or control) was carefully weighed every day 

using a digital balance for recording the weight gain as 

follows:  

 

Initial body weight (before the beginning of 

experiment) - final body weight (at the end of 

experiment). 

 

Growth rate: It was calculated according to Waldauer 

[83] as follows:  

Fresh weight gain during the feeding 

period/Feeding period x mean fresh body weight of larva  

 

Developmental duration and rate: Dempster’s 

equation [84] was applied for calculating the 

developmental duration, and Richard’s equation [85] 

was used for calculating the developmental rate.  

 

Pupation rate was expressed in % of the 

successfully developed pupae. 

 

Adult emergence: number of successfully 

emerged adults was expressed in % according to 

Jimenez-Peydro et al. [86]
 
as follows:         

[No. of completely emerged adults / No. of pupae] × 100 

 

 

Morphogenesis: The deranged metamorphosis 

and morphogenesis programs were detected and 

calculated in larval-pupal or pupal-adult intermediates 

(%). Also, pupal deformation was calculated in %. 

Features of impaired programs were recorded in photos. 

 

 

 

STATISTICAL ANALYSIS OF DATA 
Data obtained were analyzed by the Student's 

t-distribution, and refined by Bessel correction [87] for 

the test significance of difference between means using 

GraphPad InStat
© 

v. 3.01 [88]. 

 

RESULTS 
Insecticidal activity of nerolidol against S. littoralis 

After treatment of newly moulted penultimate 

(5
th

) instar larvae of S. littoralis with seven concentration 

levels of nerolidol, data of the insecticidal activity were 

summarized in Table (1). According to these data, 

nerolidol exhibited acute toxicity on the 5
th

 instar larvae 

only at the higher two concentration levels (50 & 20% 

larval mortality, at 400 & 200 ppm, respectively, vs. 0% 

mortality of control congeners). Stronger toxicity was 

observed on the successfully moulted last instar larvae, 

since mortality % increased parallel to the concentration 

level, with an exception of the lowest concentration level 

(50, 50, 40, 40, 30 & 20% larval mortality, at 400, 200, 

100, 50, 25 & 12.5 ppm, respectively, vs. 0% mortality of 

control larvae). A weak toxic effect was exhibited by 

nerolidol on the developed pupae and emerged adult 

moths (see Table 1). LC50 value was calculated in 50.01 

ppm.  

 

After treatment of newly moulted last (6
th

) 

instar larvae of S. littoralis with seven concentration 

levels of nerolidol, data of the insecticidal activity 

against all developmental stages were arranged in Table 

(2). In the light of these data, nerolidol exhibited a 

considerably toxic effect on larvae, in a dose-dependent 

course, with an exception of the lowest concentration 

level (80, 70, 60, 50, 30 & 20% larval mortality, at 400, 

200, 100, 50, 25 & 12.5 ppm, respectively, in 

comparison with 0% mortality of control larvae). 

Nerolidol displayed a pupicidal effect only after larval 

treatment with the higher two concentration levels. In 

    % of test mortality - % of control 

mortality X 100 

                  100 - % of control mortality 
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respect of the successfully emerged adult moths, only the 

higher three concentration levels caused various degrees 

of toxicity against adults (50, 50 & 20% adult mortality, 

at 200, 100 & 50 ppm, respectively, vs. 0% mortality of 

control adults). LC50 value was determined in 42.24 

ppm. 

 

In the light of data of both tables 1 & 2, 

nerolidol was found more toxic after treatment of 6
th

 

instar larvae than its toxicity after treatment of 5
th

 instar 

larvae. In other words, the last instar was more sensitive 

to Nerolidol toxicity than penultimate instar.  

 

Effect of nerolidol on growth, development, 

metamorphosis and morphogenesis of S. littoralis 

After treatment of 5
th

 instar larvae with seven 

concentration levels of nerolidol, data of weight gain, 

growth, development, metamorphosis and 

morphogenesis were assorted in Table (3). Data of 

similar criteria were arranged in Table (4), after 

treatment of 6
th

 instar larvae with nerolidol.   

 

Effect on the weight gain and growth 

Data of Table (3) revealed a remarkable 

reduction of larval weight gain (wtg), after treatment of 

5
th

 instar larvae with nerolidol, in a dose-dependent 

course (48.19±2.11, 56.33±1.74, 62.14±1.09, 

65.64±0.98, 73.25±1.76, 81.72±1.09 & 84.15±2.05 mg, 

at 400, 200, 100, 50, 25, 12.5, 6.25 ppm, respectively, vs. 

86.19±2.71mg of control larvae). Similarly, nerolidol 

suppressed the larval growth rate (GR), in a 

dose-dependent course (3.00±0.01, 4.34±0.56, 

5.43±0.56, 6.19±0.78, 8.95±0.16, 9.65±0.26 & 

10.36±0.42, at 400, 200, 100, 50, 25, 12.5, 6.25 ppm, 

respectively, vs. 12.49±0.53 of control larvae). In 

addition, wtg of the successfully moulted 6
th

 instar larvae 

had been subjected to a strong reducing action of 

nerolidol. Also, these larvae appeared with 

pronouncedly regressed GR (for detail, see 3). 

 

After treatment of 6
th

 instar larvae with 

nerolidol, data of Table (4) revealed a drastic reduction 

of the larval wtg (142.13±2.77, 162.68±3.19, 

188.24±4.08, 193.51±1.19, 211.18±3.67, 226.20±4.15 & 

233.14±0.28 mg, at 400, 200, 100, 50, 25, 12.5, 6.25 

ppm, respectively, vs. 234.28±2.01 mg of control larvae) 

and considerably regressed GR.   

 

Effect on the developmental durations and rate 

Data of Table (3) revealed a remarkably 

prolonged larval duration after treatment of 5
th

 instar 

larvae with only higher three concentration levels of 

Nerolidol (48.19±2.11, 56.33±1.74, 62.14±1.09, 

65.64±0.98, 73.25±1.76, 81.72±1.09 & 84.15±2.05 days 

of treated larvae, at 400, 200, 100, 50, 25, 12.5 & 6.25 

ppm, respectively, vs. 2.31±0.48 days of control larvae). 

Also, the successfully moulted 6
th

 instar larvae passed a 

general prolonged period, but significantly prolonged 

period only after treatment with the higher two 

concentration levels of nerolidol (9.00±0.33 & 

8.67±0.48 days of treated larvae, at 400 & 200 ppm, 

respectively, vs. 7.81±0.67 days of control larvae). In 

addition, the successfully developed pupae after 

treatment of 5
th

 instar larvae with all nerolidol 

concentration levels, except the lowest one, survived 

significantly prolonged period (8.19±0.36, 7.87±0.16, 

7.74±0.25, 7.49±0.53 & 7.28±0.67 days of treated 

pupae,   at 200, 100, 50, 25 & 12.5 ppm, respectively, vs. 

6.87±0.33 days of control pupae).  

 

A similar prolongation of pupal duration was 

determined after treatment of 6
th

 instar larvae with 

nerolidol. This prolonged duration was found in a 

dose-dependent course (8.52±0.47, 8.28±0.24, 

7.96±0.10, 7.78±0.25, 7.53±0.42 & 7.23±0.34 days of 

treated pupae, at 200, 100, 50, 25, 12.5 & 6.25 ppm, 

respectively, vs. 6.87±0.33 days of control pupae, see 

Table 4). 

 

With regard to the developmental rate (DR), 

data of Table (3) displayed a strong suppressing action of 

nerolidol on DR of treated 5
th
 instar larvae, proportional 

to the increasing concentration level. A similar 

regression of DR was recorded for 6
th

 instar larvae after 

treatment with nerolidol (for detail, see Table 4). 

 

Effect on the developmental program 

Data of Table (3) included a criterion of the 

disrupted developmental program, failure of ecdysis. For 

some detail, some percentages of the treated 5
th

 instar 

larvae failed to completely moult into the 6
th

 instar, only 

after treatment with the higher three concentration levels 

of nerolidol (20, 20 & 10% failed larvae to moult, at 400, 

200 & 100 ppm, respectively, compared to 0% failure of 

control larvae). As shown in Fig. (1), these 6
th

 instar 

larvae appeared with rudimentary 5
th

 instar exuvia and 

abdominal constrictions.  

 

Another feature of disrupted developmental 

program is the production of larval-pupal intermediates. 

Depending on data of Table (3), treatment of 5
th

 instar 

larvae with Nerolidol were induced to produce different 

intermediate creatures. With exception of the lower two 

concentration levels, these intermediates were produced 

in increasing percentage with the increasing 

concentration level (30, 30, 20, 10 & 10% of larval-pupal 

intermediates, at 400, 200, 100, 50 & 25 ppm, 

respectively). 

 

In addition, a similar feature of disrupted 

developmental program was recorded after treatment of 

6
th

instar larvae. The larval-pupal intermediates were 

increasingly produced as the concentration level was 

increased, with exception of the lowest concentration 

level of nerolidol (70, 50, 40, 40, 20 & 10% of 

intermediates, at 400, 200, 100, 50, 25 & 12.5ppm, 

respectively, see Table 4). Irrespective of the larval 

instar under treatment, the important features of these 
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intermediates had been observed with pupal abdomen 

and larval head and thorax (see Fig. 2). 

Effect on the metamorphosis 

Pupation 
Depending on data assorted in Table (3), 

nerolidol exerted a strong inhibitory action on pupation, 

since pupation rate was regressed in a dose-dependent 

course, after treatment of 5
th

 instar larvae, with exception 

of the lowest concentration level (30, 40, 60, 70 & 80% 

pupation, at 200, 100, 50, 25 & 12.5 ppm, respectively, 

vs. 100% pupation of control congeners). A similar 

inhibitory effect was exhibited by nerolidol on the 

pupation after treatment of 6
th

 instar larvae. As obviously 

seen in Table (4), the pupation blocking increased 

proportional to the increasing nerolidol concentration 

level (20, 30, 40, 50, 70 & 80% pupation, at 400, 200, 

100, 50, 25 & 12.5 ppm, respectively, vs. 100% pupation 

of control congeners). 

 

Adult emergence 
It may be important to mention that the adult 

emergence is a prerequisite process of the insect 

metamorphosis. On the basis of data assorted in both 

tables (3 & 4), nerolidol had a weak blocking potency on 

adult emergence after treatment of 5
th

 instar larvae or 6
th
 

instar larvae. For some detail, the adult emergence was 

partially blocked after treatment of 5
th

 instar larvae only 

with the higher two concentration levels of nerolidol 

(66.67 & 83.33% adult emergence, at 200 & 100 ppm, 

respectively, vs. 100% emergence of control congeners, 

Table 3). Also, treatment of 6
th

 instar larvae only with 

200 ppm nerolidol resulted in 66.67% emerged adults 

while 100% emerged adults were recorded at other 

concentrations (Table 4).   

 

Effect on the morphogenesis program 

As seen in Table (3), nerolidol failed to exert 

anti-morphogenic action on S. littoralis after treatment 

of 5
th

 instar larvae. On the other hand, treatment of 6
th

 

instar larvae only with the higher two concentration 

levels of Nerolidol impaired the morphogenesis of some 

pupae (100.00 & 33.33% deformed pupae, at 400 & 200 

ppm, respectively, vs. 0% deformation of control pupae, 

see Table 4). As observed in Fig. (3), the malformed 

pupae developed with bent abdomens, hump-backs or 

with last larval exuvia attached to head and mouth parts. 

 

Table-1: Insecticidal activity (%) of Nerolidol against S. littoralis after treatment of newly moulted penultimate (5
th

) 

instar larvae 

Conc. 

(ppm) 

Larval mortalities 
Pupal 

mortality 

Adult 

mortality 

Total 

mortality 

Corrected 

mortality 

LC50 

(ppm) 
5

th
 

instar 

6
th

 

instar 

400.00 50.00 100.00 --- --- 100.00 100.00 

 50.01 

200.00 20.00 62.50 33.33 0.00 80.00 80.00 

100.00 0.00 40.00 0.00 16.67 70.00 70.00 

50.00 0.00 40.00 16.67 0.00 50.00 50.00 

25.00 0.00 30.00 0.00 0.00 30.00 30.00 

12.50 0.00 20.00 0.00 0.00 20.00 20.00 

6.25 0.00 0.00 0.00 0.00 0.00 0.00 

Control 0.00 0.00 0.00 0.00 0.00 -- 

Conc.: concentration. ---: no developed pupae or adults. 

 

Table-2: Insecticidal activity (%) of Nerolidol against S. littoralis after treatment of newly moulted last instar larvae 

Conc. 

(ppm) 

Larval 

mortality 

Pupal 

mortality 

Adult 

mortality 

Total 

mortality 

Corrected 

mortality 
LC50 (ppm) 

400.00 80.00 100.00 --- 100.00 100.00 

 42.24 

200.00 70.00 33.33 50.00 90.00 90.00 

100.00 60.00 0.00 50.00 80.00 80.00 

50.00 50.00 0.00 20.00 60.00 60.00 

25.00 30.00 0.00 0.00 30.00 30.00 

12.50 20.00 0.00 0.00 20.00 20.00 

6.25 0.00 0.00 0.00 0.00 0.00 

Control 0.00 0.00 0.00 0.00 -- 

Conc. ---: see footnote of Table (1). 
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Table-3: Growth and development of S. littoralis after treatment of the newly moulted 5
th

 instar larvae with 

Nerolidol 
C

o
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Conc., ---:  See footnote of Table (1). Develop. Developmental. Inter.: Intermediate. Mean ± SD followed with  letter: a: insignificant (P 

>0.05), b: significant (P<0.05), c: highly significant (P<0.01), d: extremely significant (P<0.001) 
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Table-4: Growth and development of S. littoralis after treatment of the newly moulted 6
th

 instar larvae with 

Nerolidol 

Conc. 

(ppm) 

Larval instar Pupal stage 

Adult 

emergence 

(%) 

Weight 

gain    

(mean mg ± 

SD) 

Duration   

(mean 

days ± 

SD) 

Growth 

rate 

(mean± 

SD) 

Develop. 

Rate 

Larval- 

pupal 

Inter. 

(%) 

Pupation 

(%) 

Pupal 

deformities 

(%) 

Pupal 

duration 

(mean 

days ± 

SD) 

400.00 
142.13±2.77 

d 

9.17±0.08 

d 

9.26±0.75 

d 
10.91 70.00 20.00 100.00 --- --- 

200.00 
162.68±3.19 

d 

9.05±0.33 

d 

11.58±0.36 

d 
11.05 50.00 30.00 33.33 

8.52±0.47 

d 
66.67 

100.00 
188.24±4.08 

d 

8.56±0.41 

d 

14.44±0.57 

d 
11.68 40.00 40.00 0.00 

8.28±0.24 

d 
100.00 

50.00 
193.51±1.19 

d 

8.33±0.11 

c 

16.67±0.33 

d 
12.00 40.00 50.00 0.00 

7.96±0.10 

d 
100.00 

25.00 
211.18±3.67 

d 

7.74±0.21 

b 

19.56±0.39 

d 
12.92 20.00 70.00 0.00 

7.78±0.25 

d 
100.00 

12.50 
226.20±4.15 

d 

7.67±0.52 

a 

22.18±0.81 

b 
13.04 10.00 80.00 0.00 

7.53±0.42 

d 
100.00 

6.25 
233.14±0.28 

a 

7.56±0.33 

a 

23.46±0.37 

b 
13.23 0.00 100.00 0.00 

7.23±0.34 

c 
100.00 

Control 234.28±2.01 7.20±0.63 25.27±0.56 13.89 0.00 100.00 0.00 6.87±0.33 100.00 

Conc.: see footnote of Table (1).  Develop.. Inter., a, b, c, d:  see footnote of Table (3). 

 

 
Fig-1: Failure of ecdysis of S. littoralis 5th instar larvae after treatment with higher concentrations of Nerolidol. (A): Normal 5th 

instar larva.  (B) Normal 6th instar larva.  (C, D, E, F & G): Various symptoms of incompletely moulted 6th instar larvae with old 

5th instar cuticles and abdominal constrictions. 
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Fig-2: Larval-pupal intermediates of S. littoralis as features of disturbed metamorphosis program by Nerolidol, regardless the 

concentration or larval instar under treatment. (A) Normal last instar larva.  (B) Normal pupa. (C, D, E & F): Various 

larval-pupal intermediates (pupal abdomen with larval thorax and head). 

 

 
Fig-3: Pupal deformations of S. littoralis produced by Nerolidol after treatment of last instar larvae with higher concentrations. 

(A) Normal pupa. (B) Normal pupa (at left) and dwarf pupa with bent abdomen (at right). (C) Hump- back pupa. (D & E) 

Hump-back pupa with last larval cuticle attached to head and mouth parts 
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DISCUSION  
Biopesticidal potential of nerolidol against S. littoralis 

Different monoterpenes, phenylpropenes and 

sesquiterpenes had been reported to exhibit insecticidal 

activities against Spodoptera littoralis [20, 45, 56, 58, 

89, 90]. For examples, 5,6-dihydroxy-3,4-7 trimethoxy 

flavones (isolated from Artemisia maritima) was found 

to be toxic against 2
nd

 and 4
th

 instar larvae of S. littoralis 

[91]. The trans-ethyl cinnamate, thymol, carvacrol, 

trans-anethole and piperitone revealed contact toxicities 

against the 3
rd

 larval instar of S. littoralis [56, 89]. Also, 

γ-terpinene and terpinen-4-ol caused contact toxicities 

against the 4
th

 larval instar of S. littoralis  [56, 57] and 

(−)-carvone and 1,8-cineole showed strong contact 

toxicities against the 3
rd

 larval instar of S. littoralis [58]. 

Toxicity of linoleic acid against the larvae of S. littoralis 

was reported by Yousef et al. [92]. Different isolated 

compounds from the essential oil of Schinus 

terebinthifolius, such as α-pinene, α-terpinene, 

β-ocimene, limonene, terpinen-4-olα-terpineol, 

citronellol, thymol and carvacrol had high insecticidal 

activities against S. littoralis [93, 94]. Pavela [89] 

evaluated the acute toxicity of 32 volatile compounds 

against 3
rd

 instar larvae of S. littoralis and reported that 

α-pinene, p-cymene, γ-terpinene, thymol and carvacrol 

(applied at 300μg/larva) caused 100% mortality within 

24 hr. As recorded by Pavela et al. [90], thymol, 

carvacrol, geranyl acetate, (E)-Nerolidol or phenolic 

monoterpenes showed significant toxic effects on larvae 

of S. littoralis. Recently, Abdelgaleil et al. [45] found 

Cuminaldehyde, (−)-carvone and 1,8-cineole as highly 

active toxicants against the 2
nd

 larval instar of S. 

littoralis. Recently, also, Hamadah, et al. [78] treated the 

newly moulted larvae of 5
th

 and 6
th

 instar larvae of S. 

littoralis with seven concentrations of nerolidol. This 

sesquiterpene compound exhibited an adulticidal 

activity, only at the higher concentrations.  

 

In addition to S. littoralis, various plant 

products had been reported to exhibit toxicities against 

different insects, such as Pogostone against Spodoptera 

litura and Spodoptera exigua [95]; Biostop Moustiques
®
 

against 4
th

 instar larvae of susceptible and resistant 

strains of the mosquito Anopheles gambiae [96]; some 

sesquiterpene  lactones  and  monoterpenoids  against 4
th

 

instar  larvae  of the fly Bradysia  odoriphaga [97]; 

carvacrol, (−)-α-bisabolol and chamazulene against 

Diaphorina citri [98]; some Sesquiterpene lactone 

compounds against Spodoptera frugiperda [99], as well 

as Azamax
®
 was more toxic than the oils of Melaleuca 

leucadendra and (E)-nerolidol against Tetranychus 

urticae. However, the oils and (E)-nerolidol were more 

toxic to Plutella xylostella than Azamax
®
 [77]. Also, 

Tang et al. [100] recorded a high toxicity of 

Concanavalin, a legume lectin, against the potato psyllid 

Bactericera cockerelli. Cinnamon oil and its components 

had the highest contact toxicity against Drosophila 

suzukii, whereas lemongrass oil, its main components, 

and farnesol were less toxic, and geraniol was the least 

toxic [101]. 

 

Results of the present study were, to a great 

extent, in agreement with the previously reported results, 

because treatment of newly moulted penultimate (5
th

) 

instar larvae with nerolidol resulted in different 

mortalities of the treated larvae, only at the higher two 

concentrations. Moreover, the tested compound 

exhibited stronger toxicity against the successfully 

moulted last instar larvae while a weak toxic effect was 

exhibited on the developed pupae and emerged adult 

moths. In addition, treatment of newly moulted last (6
th

) 

instar larvae with nerolidol resulted in a considerable 

larval mortality, in a dose-dependent course. Also, this 

compound displayed a pupicidal effect only at the higher 

two concentrations. Nerolidol caused various degrees of 

toxicity against adults, only at the higher concentrations.  

 

Also, the present results were in corroboration 

with some reported results of the insecticidal activity of 

another sesquiterpene compound, Farnesol, against 

various insects and mites [102, 103]. For examples, the 

(E,E)-α-Farnesene and a mixture of Farnesol isomers 

caused considerable toxicities against nymphs of the 

black bean aphid Aphis fabae and the peach potato aphid 

Myzus persicae [104]; Farnesol (isolated from Stellera 

chamaejasma) was recorded with remarkably 

insecticidal activity against the aphids Aphis craccivora 

and Leucania separata [105]; Awad [106] reported that 

Farnesol showed a significant dose-dependent increase 

in mortality of the black cutworm Agrotis ipsilon 4
th

 

instar larvae; the high dose of Farnesol reduced the 

survival of the nymphs of the red cotton stainer bug 

Dysdercus koenigii to 70% after 24h of exposure and 

increasing mortality during subsequent days [107]. 

Recently, Ghoneim et al. [108] recorded serious 

insecticidal activity of Farnesol against different 

development stages of S. littoralis.  For  the  pure  

compounds (isolated from Warburgia ugandensis 

extracts), the  larger  grain  borer  Prostephanus 

truncates was most  susceptible  to polygodial  and  

warbuganal  which  caused  64.3  and 61.7%  deaths,  

respectively [109]. 

 

To interpret the insecticidal activity of nerolidol 

against S. littoralis, in the present investigation, some 

suggestions could be provided. The larval mortality may 

be attributed to the failure of larvae to moult owing to the 

inhibition of chitin synthesis [110, 111]. The larval 

mortality may be attributed to the inability of moulting 

larvae to swallow volumes of air for splitting the old 

cuticle and expand the new one during ecdysis [112]. 

Also, the larval deaths might be due to the prevented 

feeding and continuous starvation [113]. The pupal 

mortality in S. littoralis, in the current study, could be 

directly or indirectly relate to activities of nerolidol 

against some vital processes, such as suffocation, 

bleeding and desiccation owing to imperfect exuvation, 
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failure of vital homeostatic mechanisms, etc. [114]. The 

adult mortality of S. littoralis could be explained by the 

retention and distribution of nerolidol in the insect body 

as a result of direct and rapid transport via the 

haemolymph to other tissues, and/or by lower 

detoxification capacity of adults against the tested 

compound [115].  

 

Also, it may be important to explicate the 

toxicity of nerolidol, in the present work, leading to 

mortality of larvae, pupae and/or adults of S. littoralis, 

by its inhibition of Acetylcholinesterase (AchE), one of 

the most recognized insecticidal mechanisms, since 

many terpenoid compounds have been reported to inhibit 

AchE activity in insects resulting in death [116-119]. 

Moreover, toxicity of the tested Sesquiterpene 

compound, nerolidol, can be mediated through: i) 

inhibition of AchE activity which leads ultimately to 

impaired neurotransmission, ii) depletion of the activity 

of antioxidant enzymes leading to accumulation of 

Reactive oxygen species and peroxidation of membrane 

lipids and iii) Binding to octopamine receptors or 

GABA-gated chloride channels and iv) inhibition of 

cytochrome P450-mediated detoxification [120-122]. In 

addition, nerolidol might induce the apoptosis in S. 

littoralis midgut cells leading to death [100]. 

 

With regard to LC50 values of nerolidol against 

S. littoralis, in the current study, the tested compound 

was remarkably more toxic after treatment of last (6
th

) 

instar larvae than treatment of penultimate (5
th

) instar 

larvae. In other words, the last instar larvae were more 

susceptible to the insecticidal potency of nerolidol than 

the penultimate instar larvae. This result based on the 

LC50 values which were determined in 42.24 ppm and 

50.01 ppm, respectively. A similar result was reported 

for the same insect by Ghoneim et al. [108] since 

Farnesol exhibited stronger insecticidal activity after 

treatment of 6
th

 instar larvae (LC50 = 33.67 ppm) than 

treatment of 5
th

 instar larvae (LC50= 36.56 ppm). On the 

other hand, results of the current study on S. littoralis 

revealed that the 6
th

 instar larvae were more sensitive to 

nerolidol than 5
th

 instar larvae. The present result 

disagreed with many reported results on insects, in 

particular Lepidoptera, since the earlier larval instars had 

been recorded more sensitive to the toxicity of different 

plant compounds than the later larval instars. 

Unfortunately, there is no conceivable interpretation of 

this finding right now!!  However, different LC50 values 

had been determined for various plant products against 

several insects. For examples, some naphtooquinone 

derivatives exhibited different toxicities on S. littoralis 

larvae and isovalerylshikonin was significantly more 

toxic (LD50= 0.8μg/cm
2
) than isobutyrylshikonin (LD50= 

7.3μg/cm
2
) [19]. Farnesol exhibited toxicity against A. 

craccivora and L. separata, with LC50 values of 20.2 and 

15.2 mg L
-1

, respectively [105]. The plant compounds, 

1-desacetylwilforgine, wilforgine, 1-desacetylwilforine 

and wilforine showed insecticidal  activities  to the  3
rd

 

instar  larvae  of mosquito Culex pipiens, with LC50=  

25.70, 25.40,  22.58  and  14.57  µg/ml,  respectively and  

to adults  of Musca  domestica, with LC50= 87.29, 70.19,  

47.80  and  21.00  µg g/ml,  respectively [123]. Among 

eleven terpene ketones, thymoquinone exhibited the 

highest toxicity against adults of Sitophilus zeamais, 

with LC50=16.5µg/cm
2
 and LC50 13.8 µL/L air (24hr 

after treatment) of contact and fumigant methods, 

respectively [124]. As reported by AlShebly et al. [125], 

epi-β-bisabolol showed high toxicity against the early 3
rd

 

instar larvae of the mosquito Anopheles stephensi 

(LC50=14.68 µg/ml), the mosquito Aedes aegypti 

(LC50=15.83 µg/ml) and the mosquito Culex 

quinquefasciatus (LC50= 17.27 µg/ml). Baranitharan et 

al. [126] isolated Methyl 4-piperidineacetate among 

identified seven compounds in the ethanolic extract of 

Punica granatum. After treatment of 3
rd

 instar larvae of 

the mosquito C. quinquefasciatus, LC50 was found to be 

110.36 ppm. In a recent study of Benelli et al. [76], 

Phytol was the most effective against the aphid 

Metopolophium dirhodum (LC50= 1.4 mL L
−1

), followed 

by (E)-nerolidol (LC50= 3.5 mL L
−1

) and spathulenol 

(LC50 = 4.3 mL L
−1

). It may be important to mention that 

the LC50 values depend on several factors, such as 

susceptibility of the insect and its treated stage or instar, 

lethal potency of the tested compounds or products and 

their concentrations, method and time of treatment or 

exposure, as well as the experimental conditions [108, 

127].  

 

Reduced weight gain and inhibited growth of S. 

littoralis by nerolidol 

Some plant products were reported to reduce 

the weight of larval, pupal and adult stages of various 

insects [128]. In the present study on S. littoralis, a 

remarkable reduction of larval weight gain was recorded 

after treatment of 5
th

 instar or 6
th

 instar larvae with the 

sesquiterpene compound, nerolidol, in a dose-dependent 

course. This result was in agreement with many reported 

results of reduced larval body weight of S. littoralis after 

treatment with Farnesol [108] and Linoleic acid (= 

omega-6 fatty acid) [92] or allyl cinnamate 0.05% [129]. 

Feeding of S. littoralis larvae and the migratory locust 

Locusta migratoria nymphs on diet treated with 

Gibberellic acid (GA3) resulted in remarkably reduced 

larval body weight in both insects [130]. In addition, 

feeding of A. ipsilon larvae on a food plant treated with 

Farnesol, the larval body weight was reduced [131]. The 

body weight gain of the lesser mealworm Alphitobius 

diaperinus larvae was reduced after feeding on diet 

treated with β-damascone (isolated from Bulgarian rose 

oil) or its synthetic derivatives γ- and δ-halolactones 

[132].  

 

To explicate the reduction of weight gain of S. 

littoralis larvae after treatment with nerolidol, in the 

current study, the treated larvae might suffer gut 

alterations, suggesting that such larvae stopped feeding 

and consequently lost weight [4]. Another suggestion is 
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a post-ingestion toxic effect of nerolidol, causing poor 

utilization of food by these larvae or inhibiting important 

vital processes, causing the weight loss [133]. 

 

With regard to the growth, different plant 

products were reported to exhibit inhibitory effects on 

the growth of insect larvae [128]. In the present study, 

nerolidol was found a strong growth inhibitor against S. 

littoralis, after treatment of 5
th

 instar or 6
th
 instar larvae. 

This result was consistent with the reported results of 

inhibited growth of the same insect after treatment with 

different plant products. For example, some triterpenes 

caused growth inhibition of S. littoralis larvae, such as 

limonoids from Khaya senegalensis, Chukrasia 

tabularis and Swietenia mahogany [5, 134]. Various 

monoterpenes, phenylpropenes, sesquiterpenes and 

some terpenoid compounds showed inhibitory effects on 

the growth of S. littoralis [20, 54, 135, 136, 137]. 

Isobutyrylshikonin and isovalerylshikonin inhibited the 

growth of S. littoralis larvae [19]. After treatment of 5
th

 

or 6
th

 instar larvae of S. littoralis with Farnesol, serious 

reduction of the larval growth rate [108]. Abdelgaleil et 

al. [45] evaluated the growth inhibitory activities of 

seven monoterpenes, two phenylpropenes and two 

sesquiterpenes on 2
nd

 instar larvae of S. littoralis. All 

compounds drastically inhibited the growth of larvae. 

The cuminaldehyde, 1,8-cineole and eugenol were the 

most potent growth inhibitors.  

 

Apart from S. littoralis, many studies recorded 

different inhibitory effects of various plant compounds 

on the larval growth of some insects. For examples, 

treatment of the early larvae of S. frugiperda with 

gedunin, photogedunin or Toosendanin resulted in the 

larval growth inhibition, in a dose-dependent course 

[138]. The growth inhibition in Bactrocera cucurbitae 

larvae was documented in dose-dependent course by 

Kaur and Rup [139] after treatment with Gibberellic acid 

(GA3) or Coumarin, kinetin, GA3 and 3-indoleacetic 

acid. Feeding of S. litura larvae on an artificial diet 

fortified with Miraculan resulted in suppression of larval 

growth [140]. Corzo et al. [141] recorded regressed 

growth rate of S. frugiperda larvae by feeding on some 

sesquiterpenoids. Szołyga et al. [142] showed that α- and 

β-thujone inhibited the growth of A. diaperinus. 

Treatment of S. frugiperda larvae with Jasmonic acid 

reduced the larval growth [143]. Treatment of 3
rd

 instar 

larvae of S. litura with Alantolactone and 

isoalantolactone, and two eudesmane-type sesquiterpene 

lactones resulted in the inhibition of larval growth [144]. 

It was also reported that the eudesmane sesquiterpenes 

inhibited the growth of S. frugiperda [145]. Our result 

was in corroboration with the previously reported results 

but disagreed with few studies which recorded some 

inducing effects of certain plant compounds on the larval 

growth of some insects, such as cucurbitacin-C (an 

oxygenated triterpene) which had been appeared to 

promote the growth of S. exigua larvae [146]. 

 

The explication of growth inhibition of S. 

littoralis larvae by nerolidol, in the current study, could 

be provided as follows. The growth inhibition might be a 

result of the retardation and/or delay in release of certain 

peptides from neurohaemal organs, causing alteration in 

the hemolymph ecdysteroid and juvenoid titers [147].  

 

Prolonged developmental durations and retarded 

developmental rate of S. littoralis by nerolidol 

In the present study, a remarkably prolonged 

larval duration was recorded after treatment of 5
th

 instar 

or 6
th

 instar larvae with only higher three concentrations 

of the sesquiterpenoid compound, nerolidol. Also, the 

developed pupae lived significantly prolonged duration 

after treatment of 5
th

 instar larvae with nerolidol. The 

compound exerted a strong suppressing action on the 

developmental rate, regardless the larval instar under 

treatment. These results were, to some extent, in 

agreement with many reported results of prolonged 

larval and/or pupal duration in different insects after 

treatment with some plant compounds, such as S. 

littoralis after treatment with 5,6-dihydroxy-3,4-7 

trimethoxy flavone [91]; A. ipsilon after feeding on 

leaves sprayed with Farnesol [131];  S. litura larvae after 

feeding on an artificial diet fortified with Miraculan 

[140] and after treatment with higher concentrations of 

Alantolactone and isoalantolactone [144] or Erucin 

(4-Methylthiobutyl isothiocyanate) [148]; Schistocerca 

gregaria after feeding on clover leaves treated with 

Farnesol [102]; Galleria mellonella larvae after injection 

of Abscisic acid into the haemocoel [149]; A. diaperinus 

after feeding on diet treated with β-damascone or its 

synthetic derivatives γ- and δ-halolactones [41]. 

Recently, Ghoneim et al. [108] treated the 5
th

 or 6
th

 instar 

larvae of S. littoralis with Farnesol and recorded 

remarkably prolonged larval and pupal durations, in a 

dose-dependent course. In contrast, the present results 

disagreed with some reported results of significantly 

shortened larval and pupal durations after treatment with 

some plant compounds, such as S. litura and S. exigua 

after treatment with Pogostone [95] and the domestic 

mosquito C. pipiens after treatment with Saponin [150]. 

 

In the present study, prolongation of the larval 

and pupal durations and retarded development of S. 

littoralis, after larval treatment with nerolidol, could be 

interpreted by some scenarios. Nerolidol might 

indirectly interfere with the neuroendocrine organs 

responsible for the synthesis and release of tropic 

hormones, like prothoracicotropic hormone [151]. The 

final step of chitin biosynthesis pathway could be 

inhibited by nerolidol and the precursor was not 

converted into chitin for moulting leading to a 

prolongation of the developmental duration [152]. Also, 

the prolongation of larval duration might be due to 

reduced food intake, caused by phagodeterrence of 

nerolidol [153], or by a deviation of part of the taken 

food to the detoxification metabolism [154]. With 

decreased food ingestion and low biomass conversion, 
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the insect takes longer to reach the critical weight for 

ecdysis, leading to the prolongation of larval duration 

[133]. In addition, nerolidol might exhibit a delaying 

effect on the pupal transformation into adults [112]. In 

other words, the prolongation of pupal duration might be 

due to an elevated titer of juvenile hormone in the 

haemolymph. Only in the absence of JH in haemolymph, 

ecdysone could be activated and led to the production of 

the next stage [155].  

 

Disrupted developmental program of S. littoralis by 

nerolidol 

Ecdysis failure of larvae  

The failure of larval ecdysis is a criterion of the 

disrupted developmental program in insects.  Depending 

on the currently available literature, no information was 

found on this development criterion, as an effect of 

sesquiterpene compounds or other plant compounds, 

except a study of Ghoneim et al. [108] who reported that 

some 5
th

 instar larvae of S. littoralis (20%) failed to 

completely moult into the next instar, after treatment 

only with the highest concentration level (400 ppm) of 

Farnesol. A similar result was recorded in the present 

study, since some percentages of the treated 5
th
 instar 

larvae failed to completely moult into the 6
th

 instar, only 

after treatment with the higher three concentrations of 

nerolidol. These 6
th

 instar larvae were observed with 

rudimentary 5
th

 instar exuvia and abdominal 

constrictions. 

   

For the interpretation of this ecdysis failure of 

treated S. littoralis larvae, it may be important to 

mention that the moulting hormone "ecdysone" plays a 

key role in the shedding of old cuticle in a phenomenon 

called "ecdysis" or "moulting". Nerolidol might exhibit 

serious disturbances during larval moulting, indicating 

disruption of the function of larval endocrine system, 

thereby preventing completion of moulting [151]. For 

some detail, nerolidol might suppress the activity of 

ecdysone in larvae leading to the failure of moult and 

ultimately died [156, 157, 158, 159, 160]. On the other 

hand, failure of ecdysis of S. littoralis larvae, in the 

current study, may be attributed to an inhibitory effect of 

nerolidol on the chitin formation [6, 111] or to the 

inability of larvae to shed their exocuticle during ecdysis 

[112].  

 

Production of intermediate creatures 

Another feature of disrupted developmental 

program in insects is the production of larval-pupal 

or/and pupal-adult intermediates. The formation of some 

intermediates had been reported for different insect 

species as response to the disruptive effects of some 

botanicals [161, 162], such as Tribolium confusum after 

treatment of 5
th

 instar larvae (production of larval-pupal 

intermediates) or 6
th

 instar larvae or 0-hr-old pupae 

(production of pupal-adult intermediates) with 1µg/µl of 

Andrographolide (a terpenoid) [163]. Also, larval 

treatment of S. litura with the same plant compound led 

to the production of larval-pupal intermediates, at all 

concentrations [164]. Recently, Ghoneim et al. [108] 

observed some larval-pupal intermediates after treatment 

of 5
th

 instar or 6
th

 instar larvae with Farnesol, in a 

dose-dependent course. Results of the present study on S. 

littoralis were, to a great extent, agreed with these 

reported results, since the treatment of 5
th

 instar or 6
th
 

instar larvae of S. littoralis with nerolidol led to the 

production of some larval-pupal intermediates 

increasingly with the increasing concentration. 

Irrespective of the larval instar under treatment, the 

important features of these intermediates had been 

observed with pupal abdomen and larval head and 

thorax. 

 

To explicate the production of larval-pupal 

intermediates in S. littoralis by nerolidol, in the present 

study, this sesquiterpene compound might interfere with 

the pupal moulting and development via the disturbance 

of hormonal regulation, such as the moulting hormone, 

leading to an ecdysteroid reduction [163]. However, it 

may be important to provide some suggestions for 

explicating this criterion of disrupted development 

program. (1) Nerolidol might inhibit the development 

program via the interference with the release of the 

neurosecretion [165]. (2) The production of these 

intermediates might indicate a juvenile hormone-like 

activity of nerolidol retarding the perfect larval-pupal 

transformation. (3) Nerolidol might interfere with the 

chitin biosynthesis and chitin synthase leading to 

moulting into non-viable forms between stages [166]. (4) 

The production of these mosaic creatures in S. littoralis 

may be explicated by an inhibitory effect of nerolidol on 

the DNA synthesis. (5) The moult induction had lethal 

consequences because the induction of a rapid moult did 

not provide enough time for the completion of 

larval-pupal transformation. Thus, the insects moulted to 

non-viable forms between the stages [166]. Molts had 

been induced during the early phase of the last instar to 

produce larval-like individuals, while those formed in 

the late phase generate pupal-like individuals [167]. (6) 

Nerolidol might cause a misexpression of br-C which 

then leads to improper expression of one or more 

downstream effector genes controlled by br-C gene 

products. Symptoms of the impaired development, like 

larval-pupal intermediates, are the end results [168, 169].  

 

Impaired metamorphosis of S. littoralis by nerolidol 

Inhibited pupation 

As reported by some studies, pupation rate of 

different insects was suppressed after treatment with 

plant extracts or plant-derived compounds [144, 148, 

170]. In the present study, nerolidol exerted a strong 

inhibitory action on pupation, since pupation rate was 

regressed in a dose-dependent course, after treatment of 

5
th

 instar or 6
th

 instar larvae. The pupation impediment 

increased proportional to the increasing nerolidol 

concentration. This result was in accordance with some 

reported results of inhibited pupation of some insects 
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after treatment with various plant products. For 

examples, treatment of the S. frugiperda larvae with 

doses 0.2-5.0µg/mL of eucalyptin, chrysin, eucalyptin, 

quercetin, luteolin, and betulinic and oleanolic acids 

considerably reduced the pupation [171].  Addition of 

alantolactone and isoalantolactone to the diet of 3
rd

 instar 

larvae of S. litura significantly reduced the pupation% 

[144]. A reduction of pupation was recorded in S. litura 

after larval feeding on Miraculan-treated diet [140]. 

Also, reduction of pupation was observed in G. 

mellonella after injection of ABA into the larval 

haemocoel [149]. After treatment of 5
th

 or 6
th

 instar 

larvae of S. littoralis with Farnesol, the pupation rate was 

drastically suppressed [108].  

 

To understand the regressed pupation rate of S. 

littoralis, in the current investigation, nerolidol might 

exert a suppressive action on the chitin synthesis and 

prevented the normal deposition of new cuticle during 

apolysis [172]. For some detail, nerolidol might exert an 

inhibitory action on the prothoracic gland 

(ecdysone-producing gland) and hence the ecdysone 

could not be synthesized and/or released. In other words, 

nerolidol might block the release of morphogenic 

peptides, causing disturbance in titers of both 

ecdysteroids and juvenoids [173]. Also, nerolidol might 

disrupt the ecdysteroid metabolism or might 

alternatively act directly to inhibit the release of 

ecdysis-triggering hormone [174]. In addition, reduction 

of the pupation rate of S. littoralis might be due to 

inhibitory effect of nerolidol on the synthesis of specific 

storage proteins in fat body during the last larval instar 

and their deposition at the time of pupation [175]. 

 

Blocked adult emergence 

It is known from the literature sources that the 

adult emergence of different insects was completely or 

partially blocked by various plant extracts [170, 156, 

176-180, 144, 181-183]. In the present study, nerolidol 

appeared to have a weak blocking potency on the adult 

emergence because partially blocked adult emergence 

was recorded only at the higher concentrations of 

Nerolidol, irrespective of the larval instar under 

treatment. The present result was in agreement with 

many reported results of significantly blocked adult 

emergence after larval treatment with some plant 

products or compounds, such as S. littoralis after 

treatment of 2
nd

 instar larvae of S. littoralis with 

5,6-dihydroxy-3,4-7 trimethoxy flavones [91] and  after 

treatment of 5
th

 or 6
th
 instar larvae with Farnesol 

(Sesquiterpene compound) [108].  

 

Apart from S. littoralis, significantly blocked 

adult emergence of S. frugiperda was recorded by 

Céspedes et al. [138] after treatment of the neonate 

larvae with gedunin, photogedunin epimeric mixture, 

photogedunin acetates mixture or Toosendanin, and 

Salazar et al. [171] after treatment with eucalyptin, 

chrysin, eucalyptin, and quercetin, luteolin, and 

oleanolic acids. Also, partially blocked adult emergence 

of T. confusum was observed after treatment of 5
th

 or 6
th
 

instar larvae with Andrographolide (a terpenoid) [163]. 

The adult emergence of S. litura and S. exigua had been 

blocked after larval treatment with Pogostone [95].  

Blocked adult emergence of H. armigera and S. litura 

had been reported after treatment larvae with Flindersine 

(an alkaloid) [184]. Also, blocked adult emergence of S. 

litura was recorded after feeding of 2
nd

 instar larvae on 

fresh food treated with Allyl isothiocyanate (an 

isothiocyanate) [180] or after treatment of 3
rd

 instar 

larvae with alantolactone and isoalantolactone 

(sesquiterpenes) [144]. Djeghader et al. [150] reported a 

blocked adult emergence of C. pipiens after treatment of 

4
th

 instar larvae with Saponin. In addition, a similar 

result on B. cucurbitae was recorded by Kaur and Rup 

[139] after treatment the larvae with the plant growth 

regulators, Cn, kinetin, GA3 and IAA. Among the  pure 

compounds (isolated from Warburgia ugandensis 

extracts), polygodial and  ugandensolide exhibited 

significantly  higher  blocking  effects  on  adult  

emergence  of the  larger  grain  borer Prostephanus 

truncates [109].   

 

Prior to the interpretation of blocked adult 

emergence of S. littoralis, in the present study, it may be 

important to mention that the adult emergence is a 

prerequisite process of the insect metamorphosis. This 

crucial physiological process has been regulated by the 

eclosion hormone. Disturbance of this hormone partially 

or completely arrest the adults to emerge [165]. For 

interpretation of the blocking of adult emergence after 

treatment of 5
th

 or 6
th

 instar larvae of S. littoralis, in the 

present study, nerolidol might exhibit a disturbing effect 

on the normal metabolism of insect hormones during the 

development of the immatures leading to failure of adult 

emergence. In particular, nerolidol might disturb the 

adult eclosion hormone release and/or inhibition of the 

neurosecretion [165, 185]. On the molecular basis, 

nerolidol might cause misexpression of certain genes, 

particularly the broodcomplex (br-C) transcription factor 

gene, leading to symptoms of impaired metamorphosis, 

like blocking of adult emergence [168, 169]. 

 

Perturbed morphogenesis program of S. littoralis by 

nerolidol 

As reported in the current literature, plant 

extracts of different families or isolated plant compounds 

drastically affect the morphogenesis of pupae in several 

insects, as appeared in pupal deformities [158, 163, 186, 

151, 171, 180, 160].  In the present study, nerolidol 

failed to exert anti-morphogenic action on S. littoralis 

after treatment of 5
th

 instar larvae. On the other hand, 

treatment of 6
th

 instar larvae with the higher two 

concentrations of nerolidol impaired the morphogenesis 

of some pupae. The malformed pupae developed with 

bent abdomens, hump-backs or with last larval exuvia 

attached to head and mouth parts. The present result was 

in corroboration with some reported results of 
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malformed pupae of different insects after treatment 

with various plant compounds, such as S. littoralis after 

treatment of 5
th

 or 6
th

 instar larvae of with Farnesol 

[108]; S. frugiperda after treatment of larvae with 

eucalyptin, chrysin, eucalyptin, quercetin, luteolin, and 

oleanolic acids [171] and S. litura after treatment of 

larvae with Andrographolide [164]. 

 

To explicate the disruption of pupation program 

in S. littoralis, in the present study, nerolidol might 

inhibit the chitin synthesis or/and might prevent the 

normal deposition of new cuticle during apolysis leading 

to the pupal deformities [172]. The anti-morphogenic 

effect of nerolidol might be due to the disturbance of 

release of ecdysteroids responsible for the form of 

developing pupae [138]. In this regard, nerolidol might 

block the release of morphogenic peptides, causing 

alteration in titers of juvenoids required for the perfect 

pupal transformation [173]. 

 

CONCLUSION  
Depending on results of the present study, 

nerolidol exhibited considerably toxic effect on S. 

littoralis, caused serious reduction of larval weight gain 

and detrimentally inhibited growth and development; 

disturbed development program, remarkably suppressed 

pupation, partially blocked adult emergence, and 

deformed pupae. Therefore, nerolidol could be 

recommended as an eco-friendly alternative to synthetic 

insecticides for the management of this dangerous pest. 
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