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Abstract: Long chain polyunsaturated fatty acids (LC-PUFAs) such as docosahexaenoic acid and arachidonic acid have 
important role in maternal and fetal development. Several studies have provided link between docosahexaenoic acid 

(DHA) status of mother with visual and cognitive development of her child. Moreover, supplementation of LC-PUFA 

during pregnancy increases gestation period as well as birth weight of fetus. Placenta preferentially transfers LC-PUFA 

as a result of selective uptake by syncytiotrophoblast, intracellular metabolism and selective export to fetal circulation. 
Cellular uptake and intracellular translocation of fatty acid is associated with various membrane associated fatty acid 

binding proteins such as plasma membrane fatty acid binding protein (FABPpm), fatty acid translocase (FAT/ CD36) and  

fatty acid transport proteins (FATPs) along with cytoplasmic fatty acid binding proteins (FABPs). FABP pm is 

preferentially involved in uptake of LC-PUFAs. FATP-4 protein has key importance in mediating DHA transfer across 

the human placenta. This review summarizes biosynthesis of LC-PUFAs, placental transfer and its effect on maternal and 

fetal outcome. 
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INTRODUCTION 

 Polyunsaturated fatty acids (PUFA) like linoleic acid 

(LA) and α-lenoleic acid (ALA) are the precursor of 

Long chain polyunsaturated fatty acids (LC-PUFAs) 

[1]. The LC-PUFA, Aarachidonic acid (ARA) and 

docosahexanoic acid (DHA) play an important 
physiological role during pregnancy both for the 

pregnant woman and to the outcome of her pregnancy.  

It is also important for growth and tissue development 

of the fetus and early development of the nervous 

system [2]. 

 

Biosynthesis of Long chain Polyunsaturated fatty 

acid (LCPUFA) 
 Long chain polyunsaturated fatty acids (Arachidonic 

acid and Docosahexaenoic acid) are derived from LA 

(18:2 ω-6) and ALA (18:3 ω-3)by enzymatic 
desaturation and chain elongation (Figure 1). ω-3 are 

mainly present in fish, shellfish, sea mammals and are 

scarce in land animals and plants, whereas ω-6 mainly 

derive from vegetable oils[2,3]. Linoleic acid is 

metabolized to Arachidonic acid (ARA), whereas α-

Linoleic acid metabolized to Elcosapentenoic acid 

(EPA) & to the Docosahexaenoic acid (DHA) [4, 5]. 

 

 Insertion of double bond at Δ6 position of α-LA 

(18:3 ω-3) or LA (18:2 ω-6) by Δ6 desaturase 

synthesize stearidonic acid or gamma-linolenic acid. It 

is followed by an elongation step and then a second 

insertion of a double bond at the Δ5 position of the fatty 

acid by Δ5 desaturaseto form EPA (20:5 ω-3) or 

ARA(20:4 ω-6). They are further metabolized to 

docosahaxaenoic acid (DHA) 22:6 ω-3 
ordocosapentaenoic acid (DPA) 22:5 ω-6 [6]. 

 

Placental transfer of Fatty acid  

 Physiologically, the fetus may synthesize some 

saturated fatty acids and monounsaturated fatty acids de 

novo fromglucose. However, long chainpolyunsaturated 

fatty acids like DHA and ARA do not synthesize by 

placenta and fetus both due to insufficient desaturase 

enzyme activity[8]. Also,the amount of LC-PUFA 

produced from EFA is insufficient to match the in utero 

accretion rate [9]. Therefore, the primary source of LC-
PUFA for thefetus is of maternal origin. 

 

 Placental membrane made up of endothelium fetal 

vessel walls, the villous stroma, the cytotrophoblast and 

syncytiotrophoblast. Placental trophoblast cells arise 

from embryo & differentiate to perform specialized 

functions. Cytotrophoblast disappears within gestational 

week 20 [7].Any substance crossing between the 

maternal and fetal circulation has to pass through the 

villous trophoblast which consists of two membranes; 
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microvillous facing the maternal blood and basal facing 

the fetal blood (Figure 2). All fatty acids can cross lipid 

bilayer such as syncytiotrophoblast by simple diffusion 

& partition as free fatty acid (FFA) derived from 

lipoproteins [7,10]. 

 

 

Fig. 1: Biosynthesis of LC-PUFA from essential fatty acids linoleic acid (18:2n-6) and α-Linolenic acid (18:3n-3) 

[1, 7]. 

 
During first two trimester of pregnancy there is an 

increase in maternal lipogenesis & adipose tissue stores 

[11].Triglyceride hydrolase or lipoprotein lipase is 

responsible for hydrolysis of triglyceride rich 

lipoproteins, i.e. chylomicrons and very low-density 

lipoproteins (VLDL) Which resulting in free fatty acid 

transported across the placenta and entering the 

syncytial placenta cells [12,13]. 

 

 In placental cell, free fatty acids are esterified with 

glycerol & resulting triglycerides deposited in Lipid 
droplets. Lipid droplets are similar to lipoproteins 

which mediate intracellular lipid storage & lipid 

metabolism. Lipoprotein lipase is responsible for 

release of free fatty acid from Lipid droplets [14,15]. 

 

 In human placenta, Endothelial lipase (EL) and 

lipoprotein lipase (LPL) are expressed which 

responsible for hydrolysis of placental lipoproteins. 

LPL mostly present in placental macrophages While EL 

was detected in trophoblasts and endothelial cells [16]. 

As gestation and placental development advance both 

lipases are significantly down-regulated at the maternal 

surface of the placenta. At the end of gestation, EL is 

still expressed, but LPL is virtually absent from the 

trophoblast [17]. 

 

 During last trimester of pregnancy and at the time of 

delivery, free fatty acid concentration difference 

between maternal and fetal circulation increases by two 
ways. First, lipoprotein lipase activity increase which 

increases FFA for fetal transport. Second, Placenta also 

partly mobilize fatty acid from adipose tissue through 

secretion of leptin, a potent stimulator of lipolysis [18, 

19]. 

 

 Various lipid sensing nuclear transcription factors 

like peroxisome proliferator activated receptor 



 

Jayswal  PD et al., Sch. Acad. J. Pharm., 2014; 3(3):250-256 

252 
 

γ(PPARγ), liver X receptor (LXR), sterol regulatory 

element binding proteins (SREBP) are critical 

regulators in cellular homeostasis, which control the 

expression of several lipid metabolic genes such as fatty 

acid transporter/binding proteins, lipase, acyl-CoA 

synthetase. LC-PUFA and their derivatives are potential 

natural ligands for these nuclear transcription factors 

[20]. 

 

 
Fig. 2: Figure taken from Hanebutt et al. [7]. Fatty acid uptake, Fatty acid metabolism and fatty acid 

binding/transporter proteins. 

   

Cellular uptake & intracellular translocation of free 

fatty acid occur through several plasma membrane fatty 

acid binding proteins& intracellular/cytoplasmic 

binding proteins. These proteins are located on both 

syncytiotrophoblast basal & microvillus membrane, 

except p-FABPpm which is present only in microvillus 
membrane [22]. 

  

Membrane associated fatty acid binding proteins also 

present in mammalian cell like hepatocytes, adipocytes, 

cardiomyocytes & jejunal mucosal cell[23].There are 

several membrane associated binding proteins include 

40-kDa plasma membrane associated fatty acid binding 

protein (FABPpm), the heavily glycosylated 88-kDa 

fatty acid translocase(FAT) also known as CD36 & 

family of 63-70-kDa fatty acid transport 

proteins.(FATP 1-6) (Figure 3) [22, 24, 25]. 

  

FAT/CD36 & FATP are the integral proteins while 
FABPpm is a peripheral membrane protein act as an 

extracellular fatty acid acceptor [26,27]. FAT & FATP 

allow transport of FFA bidirectionally from mother to 

fetus and vice versa, while FABPpm-preferentially 

binds to LC-PUFA located on maternal side allow 

transfer to placenta [22, 25, 28]. 

 

 
Fig. 3: Proteins associated with fatty acid transport. Plasma membrane fatty acid-binding protein (FABPpm); fatty 

acid-transport proteins (FATPs); fatty acid translocase (FAT /CD36); Fatty acid-binding proteins (FABPs) 
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Cytoplasmic/intracellular fatty acid binding proteins 

(FABPs) 

 FABPs have different tissue expression patterns. 

They are described as FABP1 or liver FABP, FABP3 or 

heart FABP, FABP4 or adipocyte FABP, FABP5 or 

keratinocyte FABP, and FABP7 or brain FABP. Fatty 

acid binding protein affinity decrease with decrease 

chain length & increase with double bond number [29]. 

Human placental trophoblast demonstrate the presence 
of cytoplasmic liver type (L-) & heart type (H-) FABP 

[22]. There are differences in binding activity of these 

proteins [30]. H-FABP binds only long chain fatty acids 

whereas L-FABP binds to various growth stimulatory & 

inhibitory elcosanoids as well as selenium.L-FABP 

increases fatty acid uptake and also play important role 

in elcosanoid synthesis in feto-placental unit [23]. 

 

Membrane associated fatty acid binding proteins 

 Placental plasma membrane fatty acid 

binding protein(p-FABPpm) 
 p-FABPpm & FABPpm are peripheral 

membrane proteins similar in size and 

membrane location but different in structure 

(amino acid composition) & function[31]. 

FABPpmwas first isolated from hepatic 

plasma membrane and later from major tissues 

with high transmembrane fatty acid fluxes. 

This protein is closely related to mitochondrial 

aspartate aminotransferase (mAspAT) [32]. 

While, p-FABPpm is located in 

choriocarcinoma (BeWo) cell of placental 

microvillus membrane and did not have 
AspAT activity [31].This protein had higher 

affinity and binding capacity for LC-PUFA so 

it is preferentially involved in uptake of LC-

PUFA and favours the unidirectional flow of 

maternal LC-PUFA to fetus [33]. 

 

 Study on BeWo cell with anti p-FABPpm 

revealed that p-FABPpm had higher affinity 

and binding capacity for LC-PUFA compared 

with other fatty acids. It inhibits most of 

uptake of DHA (64%) & AA (68%) whereas 
OA uptake is inhibited only 32% [31]. The 

order of antibody mediated fatty acid uptake 

inhibition was 

DHA>ARA>>>ALA>LA>>>OA. p-FABPpm 

preferentially involved in uptake of LC-PUFA 

by these cells [34]. 

 

 Fatty acid translocase (FAT/CD36) 

 FAT/CD36 (88kDa) is integral membrane 

proteins having two transmembrane domains 

with short amino terminal and carboxy 

terminal and a large multiply N-glycosylated 
extracellular loop at either ends of the 

molecule [35]. It is located on the surface of 

human placenta, platelets, endothelial cells, 

monocytes, erythrocytes [35-38]. In placenta, 

FAT/CD36 present in both microvillus as well 

as basal membrane [22]. It was first 

investigated during fatty acid uptake by 

adipocytes[39].It is a multifunctional protein 

binding with multiple ligands like FFAs, 

collagen, thrombospondin, and oxidized low-

density lipoprotein [35,36,38,40]. It is 

involved in lipid metabolism, angiogenesis, 

atherosclerosisand also in inflammation 

process [28]. 
 

 Fatty acid transporter proteins (FATPs) 

 FATP-1 to 6, gene-solute carrier family 27 

(Slc27) could be identified in human & mouse 

genomes [41].FATPs (63-70 kDa) are integral 

membrane proteins located on both microvillus 

as well as basal membranes. FATPs found in 

skeletal muscle, heart and fat cell in highest 

level while in brain, kidney, lung & liver in 

lower level. They have lack of specificity for 

particular type of FFA so transport occur 
bidirectionally. FATPs over expression may 

increase the rate of fatty acid internalization by 

increasing the rate of “flip flop” trapping the 

fatty acids [28]. 

 

 FATP-1 and 4 located in human placental 

membranes. FATP-1 affects the lipid 

metabolism & has potential implication on 

lipid homeostasis [42]. While FATP-4 has 

important role in materno-fetal fatty acid 

transport during early embryogenesis [43]. It 

acts in concert with enzyme fatty acylCoA 
synthatase (FACS) that prevent fatty acid 

efflux and rendering fatty acid uptake 

unidirectional [28]. 

 

Effect of LC-PUFA on maternal & fetal outcomes 
 During last trimester of pregnancy, women have a 

significantly higher LC-PUFA requirement due to rapid 

fetal growth [7]. A Data from meta-analysis on 1278 

infants from 6 Randomized controlled intervention 

trials shows that n-3 LC-PUFA supplementation during 

pregnancy slightly enhance the length of pregnancy 
duration (on average 1.57 days) along with increase  

head circumference (on average 0.23 cm), but the mean 

effect  size is small [44]. 

  

 A Cochrane review of 6 trials on 2783 women 

reported that during second half of pregnancy, 

supplementation of marine oil increases mean gestation 

that was 2.6 days longer compared with no marine oil 

treatment. Moreover, Birth weight was also slightly 

greater in infants born to women in the marine oil group 

compared with controls [45]. 

 
 Studies shows that maternal intake of fish and fish 

oils prolonged gestation by a mean of 1.6 days, increase 

of birth weight by a mean 47 gms and reduced the risk 

of preterm birth before 34 weeks of gestation. It was 

also supported by other independent study, maternal 
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intake of n-3 LC-PUFA prolonged gestation by a mean 

of 2.6 days, increases birth weight by a mean 54 gms 

and also reduced risk of preterm birth by 31% [44,45]. 

Moreover, High fish consumption lowers the risk of 

pre-eclampsia. It also has putative role in inflammatory 

and vascular response altering prostaglandin balance to 

delay initiation of  labour and cervical ripening led to 

improve major pregnancy outcomes [46]. An enhanced 

maternal fetal n-3 LC-PUFA is also responsible for 
lower childhood adiposity [47]. 

 

 Over-nutrition or imbalance of n-3 LC-PUFA during 

pregnancy and lactation is associated with 

sensory/neurological abnormalities and lower body 

weights in old adulthood. It may occur due to a 

“nutritional toxicity” during fetal and/or neonatal 

development that programmed them for life-long health 

disorder [48]. 

 

 Docosahexaenoic acid (DHA) is important for long-
term cognitive and visual development in neonate. Five-

year-old children whose mothers received modest DHA 

supplementation versus placebo for the first 4 months of 

breastfeeding period reported better psychomotor 

development at 30 months of age, suggests that DHA 

intake during early infancy confers long-term benefits 

on specific aspects of neurodevelopment [49]. 

Moreover, Randomly allocated 30 pregnant women 

supplemented either 200 mg DHA or no DHA and 

showed improved visual acuity measured in the infants 

at 4 but not 6 months of age [50].The effect of 400 mg 

DHA/day or placebo supplementation in 135 pregnant 
women showed no difference between the DHA and 

control group in the visual acuity of infants at 2 months 

of age [50]. 

 

 Many studies show that depletion in DHA in retinal 

& neural membrane result in reduced visual function, 

behavioral abnormalities, altered metabolism of several 

neurotransmitter and decrease membrane protein, 

receptor and ion channel activities [51]. 

 

CONCLUSION 
 In fetopla cental unit, preferential transfer of maternal 

plasma fatty acid is required for fetal growth and 

development. LC-PUFAs placental transfer occurs 

through various mechanisms including selective uptake 

by trophoblast, intracellular metabolism and selective 

transfer to fetus. Fatty acid transport system consists of 

multiple membrane binding proteins (pFABPpm, FAT, 

FATP) and cytoplasmic fatty acid binding proteins 

(FABPs). p-FABPpm preferentially involved in uptake 

of LC-PUFA. FATP-4 protein has key importance in 

mediating DHA transfer across the human placenta. 

LC-PUFA during pregnancy increase gestation length, 
increase birth weight and decrease the risk of pre-

eclampsia. A further understanding of fetoplacental LC-

PUFA transport and its relationship with fatty acid 

binding proteins are required to improve maternal and 

fetal outcome. 
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